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Abstract

Maximum-Likelihood Linear Regression (MLLR) and Con-
strained MLLR (CMLLR) have been recently used for feature
extraction in speaker recognition. These systems use (C)MLLR
transforms as features that are modeled with Support Vec-
tor Machines (SVM). This paper evaluates and compares sev-
eral of these approaches for the NIST Speaker Recognition
task. Single CMLLR and up to 4-phonetic-class MLLR trans-
forms are explored using Gaussian Mixture Models (GMM) and
large-vocabulary speech recognition Hidden Markov Models
(HMM), using both speaker recognition and speech recognition
cepstral front-ends and normalizations. Results for the individ-
ual systems as well as in combination with two standard cep-
stral systems are provided. Relative gains of 3% and 12% were
obtained when combining the best performing CMLLR-based
and MLLR-based systems with two standard cepstral systems,
respectively.

1. Introduction

Recently, several novel feature extraction approaches for
speaker recognition have been proposed. Together with already
well-known modeling techniques, such as Gaussian Mixture
Models (GMM) or Support Vector Machines (SVM), these
systems obtain excellent performance, comparable to that of the
well-known MFCC-GMM paradigm. Gaussian Supervectors
(GSV-SVM) [1] is one of such approaches, which successfully
combines both GMM and SVM modeling together in a simple
and easy-to-develop framework. In a different direction,
modeling Maximum-Likelihood Linear Regression (MLLR)
transforms by means of SVM has also become successful.
GSV-SVM and MLLR-SVM become more and more present in
state-of-the-art text-independent speaker recognition systems
[2,3].

Using MLLR transforms as features for speaker recogni-
tion was introduced in [4]. One or several MLLR transforms
are estimated using a large-vocabulary HMM-based speech
recognition system along with the automatic transcription of the
speech data. These linear transforms represent the difference
between a speaker-independent and speaker-dependent model
and they are used as feature vectors to be classified by a
SVM. This approach typically requires acoustic models of an
Automatic Speech Recognition (ASR) system, as well as a pro-
nunciation lexicon. A slightly different approach is presented
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in [5]. There, Constrained MLLR (CMLLR) transforms are
computed on a GMM/UBM the speaker-independence of which
is improved by means of Speaker Adaptive Training (SAT) [6].
Since an overall transform is computed for the speaker training
data, there is no need for phonetic-class segmentation and,
thus, no need for transcripts either.

In this paper we focus on the comparison of several
CMLLR and MLLR approaches which can be found in current
speaker recognition systems. We explore both approaches with
either GMM or ASR phonemic HMM. We also investigate
the role of the cepstral features, since they rarely follow the
same normalization steps in speech recognition and speaker
recognition systems. The paper is organized as follows:
Section 2 introduces MLLR and CMLLR and describes the
way they are used for feature extraction purposes in speaker
recognition. Section 3 describes all the components of the
speaker verification system as well as the evaluation task.
Results on the NIST Speaker Recognition Evaluation 2005
are given for the described systems in Section 4. These
include individual results as well as fusion results with other
acoustic-level systems. Conclusions are given in Section 5.

2. MLLR and CMLLR in Speaker
Recognition

Maximum-Likelihood Linear Regression (MLLR) [7, 8] and
its variant Constrained MLLR (CMLLR) [9] are two adapta-
tion techniques typically used for speaker adaptation purposes
in speech recognition systems. The parameters of an HMM
are adapted via an affine transform. This results in a signif-
icant reduction of the amount of parameters to be estimated
compared to a direct adaptation approach [10]. In the gen-
eral MLLR framework, both mean and variance parameters are
transformed, as

Au+b (D
HxH” 2)

M =
Il

where 4 is a mean vector in the model, X, its corresponding
covariance matrix and f and 3 are the adapted mean and
covariance matrix, respectively. The likelihood function of
the adaptation data given the model is to be maximized with
respect to the transform parameters (A, b, H). This is typically
done using Expectation Maximization (EM) in two steps [8],
by first estimating the mean transform given by (A,b) and,



next, the covariance transform H. To further reduce the number
of parameters a diagonal transformation matrix is typically
assumed or only mean adaptation is performed.

Constrained MLLR (CMLLR) [9] forces the transform to

be the same for both mean and variance parameters, (fi, 32), as

/l - AC/J‘ —be (3)
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This constraint allows the covariance matrix to be trans-
formed as well without increasing the amount of parameters to
be estimated. Furthermore, it makes possible to apply the trans-
form at the feature level as

61; = Ac_lot + Ac_lbc (5)

where o is the observed feature vector at time ¢.

2.1. MLLR Feature extraction

The first approach to MLLR feature extraction for speaker
recognition was proposed in [4]. There, MLLR transforms are
estimated for each speaker of interest using a large-vocabulary
HMM-based ASR system. One or more matrices can be com-
puted depending on the amount of speech data available for
adaptation and the desired number of phonetic classes. Using
many classes results in a finely represented phonetic space but
less speech data is available for each class-dependent transform.
Once computed, the transform parameters are stacked together
to be used as a feature vector that is suited for SVM modeling.
We will refer to this approach as MLLR/HMM from now on.

Since a large-vocabulary ASR system needs huge amounts
of data and resources to be trained, a simple and cost-effective
alternative to this approach is to replace the HMM by a GMM.
Feature vectors are now to be aligned against a single state
with a global gaussian mixture and, therefore, phonetic-class
alignment is not possible anymore (multiple transforms could
still be computed for a given subset of gaussians). Because of
its simplicity, it is also feasible to perform training on any type
of feature vector. In the context of speaker recognition, this
translates into being able to use any type of front-end setup or
normalization of the cepstral features, for instance, any number
of cepstral coefficients or channel compensation technique. All
other steps in the feature extraction are kept as in the system
described above. We will refer to this simplified approach as
MLLR/GMM.

2.2. CMLLR Feature Extraction

The approach to CMLLR feature extraction proposed in [5] is
a natural extension of MLLR/GMM to CMLLR transforms. In
addition, though, an iterative approach is adopted such that the
features used for GMM training are CMLLR-transformed in a
per-speaker basis to obtain a more speaker-independent GMM.
Fig. 1 illustrates this process. A GMM/UBM is first trained us-
ing cepstral features from a set of background speakers. Next,
assuming only one speaker per segment, a CMLLR transform
is computed for each of the speakers. Finally, each of the CM-
LLR transforms is applied onto the corresponding segment and

the GMM is trained again using the new features. This SAT-
like scheme leads to a more speaker-independent model at each
iteration. Once the GMM is ready, CMLLR transforms can be
computed on it by following a procedure analogous to that in
the MLLR/GMM approach. We will refer to this approach as
CMLLR/GMM.

v

Train GMM/UBM on
background speaker features

!

Estimate CMLLR transform
for each background speaker

!

Apply CMLLR transforms on
background speaker features

Stop criterion met?

yes

Figure 1: Block diagram for iterative CMLLR GMM/UBM re-
estimation in the CMLLR/GMM approach.

For a large vocabulary ASR HMM, a CMLLR/HMM
approach can be easily setup by extracting CMLLR transforms
using ASR phonemic HMM, which may be trained using SAT
as well. We will refer to this approach as CMLLR/HMM.

3. Experimental Setup
3.1. Task and evaluation data

All the systems were evaluated on speaker verification ex-
periments conducted on conversational telephone speech.
The system is asked to decide whether a given target speaker
spoke in a particular speech segment. We used the primary
condition task evaluation data of the NIST Speaker Recognition
Evaluation 2005', containing 5-minute-long speech segments
in English language, both for training and test. A total of 646
(274 male, 372 female) segments were available for target
model training. Overall, 2429 test segments (1074 male,
1355 female) were scored against roughly 10 gender-matching
impostors and against the true speaker.

3.2. Cepstral Feature Extraction
3.2.1. Speaker Recognition (PLP15N)

All the non-ASR-based systems explored in this paper shared
the same cepstral front-end. Cepstral feature vectors were
extracted every 10ms using a 30ms window on the 0-3.8kHz
bandwidth. They consisted of 15 MEL-PLP cepstrum coeffi-
cients, 15 A coefficients plus A energy, and 15 AA coefficients
plus AA energy (47 features). The frames selected by the

IThe NIST year 2005 speaker recognition evaluation plan, http:
/ . nist .gov/speachy/tests/sk/2005/



Snack Sound Toolkit? for pitch extraction were considered
only, and unvoiced speech frames were dropped. Channel
compensation for GSM, CDMA, TDMA, landline-carbon and
landline-electret data was performed using per-gender feature
mapping [11]. Speech segments from test speakers from the
NIST SRE 1997 to 2002 evaluations (24769 speech segments)
were chosen for model training. Around 6 hours of speech
data were used to train each gender-dependent channel model.
Finally, feature warping [12] was performed over a sliding
window of about 3 seconds to reshape the histogram of the
cepstral coefficients into a Gaussian distribution.

3.2.2. Speech Recognition (PLP12)

We used the LIMSI RT04 English CTS speech recognition
system [13] for alignment and computation of MLLR trans-
forms. Acoustic models are gender-independent. Computing
(C)MLLR transforms for the speaker recognition task required
all training and test cepstral features to be of the same type as
used in the ASR system. The front-end used 39-dimensional
feature vectors made out of 12 MEL-PLP cepstrum coefficients
plus log-energy along with their corresponding A and AA
coefficients. Mean and variance normalization was next applied
to each segment of interest.

3.3. MFCC-GMM system

The MFCC-GMM system [14] is based on GMM with diagonal
covariance matrices trained using MAP adaptation [15]. For
speaker modeling, GMMs were trained using MAP adaptation
of the Gaussian means of the corresponding gender-dependent
UBM using 3 iterations of the EM algorithm. Each of the
two gender-dependent UBMs was a 1536-gaussian mixture
model, built by merging three GMMs, each with 512 Gaussians
trained on cellular, landline-electret and landline-carbon data.
Around 60-hours of speech data was used to train each gender-
dependent channel-specific 512-mixture GMM. The training
data was chosen from target speakers in NIST SRE 97-01 and
03 evaluations and test speakers in NIST SREO3 evaluation
(for a total of 9041 speech segments). Score normalization was
performed using T-norm [16] on 500 speech segments (250
males and 250 females) from the Fisher corpus®. The first 5
minutes of each segment in this corpus were extracted for score
normalization.

3.4. MFCC-SVM system

The MFCC-SVM system is based on several feature extrac-
tion steps that expand the discriminative power of the base cep-
stral features and SVM modeling [17]. We used a polynomial
feature extraction scheme to transform the MEL-PLP features
into high-dimensional feature vectors by means of a third order
monomial expansion. The resulting features were variance nor-
malized and averaged over the whole segment to obtain a sin-
gle 20824-dimensional vector. The dimension of this speaker-

2The Snack Sound Toolkit, hitp://wwr.speech.kth.se/
seck/ .

3Fisher Corpus, LDC Catalog, hitp://Awi.lct.upem.edy/
CGatalay

specific vector was reduced via Kernel Principal Component
Analysis (KPCA) [18] using a 2nd order cumulative homoge-
neous polynomial kernel, resulting in one 3200-dimensional
feature vector per speaker. An affine transform mapped each
feature component into the range [—1/\/5,1/\/5], D being the
dimension of the feature vector, so that only normalized dot
products were processed by the SVM.

The impostor speaker set consisted of 2243 speech seg-
ments from the NIST SREO4 training data plus 4854 speech
segments from the Switchboard I corpus. All of them were in
English language and had a minimum duration of 10 seconds of
speech (after forced-alignment). This configuration allowed all
SVM-based systems to share the same impostor data, as tran-
scripts* were available for all of the 7097 segments.

Kernel PCA used a subset of the impostor speakers as
training data. Statistics for feature normalization were also
taken from the impostor speaker set. A linear kernel was
chosen for SVM modeling using SVMTorch ° from IDIAP. No
T-norm score normalization was applied in this system.

3.5. CMLLR-SVM systems

CMLLR-SVM systems use one of the feature extraction
schemes described in Section 2.2, i.e., using either the iterative
GMM training approach plus CMLLR computation or CM-
LLR computation using the LIMSI RT04 English CTS ASR
system. In the former approach, the two gender-dependent
GMMs used 2 iterations of GMM/UBM re-estimation. The
impostor speakers were used as the background speaker set.
For the PLP15N cepstral front-end, the CMLLR transforms
resulted in 2256-dimensional (47x47 + 47, including b)
feature vectors, after stacking their coefficients. For PLP12
features, the CMLLR transforms were 1560-dimensional
(39x39 + 39). All of these were min-max normalized and
modeled exactly in the same way as in the MFCC-SVM system.

3.6. MLLR-SVM systems

MLLR-SVM systems use one of the feature extraction
schemes described in Section 2.1, i.e., computing MLLR
transforms on either a GMM or an ASR HMM. In any case,
only mean adaptation was performed. For MLLR/GMM, the
MLLR transforms were computed on two gender-dependent
GMMs directly trained on the background-speaker cepstral
features. = For MLLR/HMM, an analogous procedure is
followed in the LIMSI RT04 English CTS ASR system,
which uses speaker-independent (SI) acoustic models. We
experimented with one to four MLLR transforms. The
classes (non-speech/speech, non-speech/vowel/consonant,
non-speech/vowell/vowel2/consonant) were derived manually
using acoustic and phonetic-level rules. MLLR tranforms for
the non-speech class were not used as they were assumed
not to carry any relevant speaker information. Feature vector
dimensions were the same as in the CMLLR-SVM systems

4Human and ASR transcripts were available for SRE04 and Switch-
board I corpora.

5SVMTorch: a Support Vector Machine for Large-Scale Regression
and Classification Problems - httjo:/ /. idigp.dy/lesrming/
S\MIarch. himl



for one-class transforms, depending on the type of cepstral
features, either PLP15N or PLP12. 1560, 3120 and 4680
features were used for two-class, three-class and four-class
MLLR transforms, respectively. Feature normalization as well
as modeling were kept the same as in CMLLR-SVM systems.

3.7. Score-level fusion

Each of the systems consisted of a forward sub-system that
scored test speaker speech against train speaker models, and a
backward sub-system that scored train speaker speech against
test speaker models [19]. Therefore, 2 scores were obtained per
system and trial.

A three-fold cross-validation scheme was used for evalua-
tion purposes. The NIST SREOS evaluation data was split into
three independent datasets, the scores of which were zero-mean
and unit-variance normalized based on the statistics of the two
other sets.

As for system fusion, averaging was used by weighting
each of the sub-system scores uniformly.

3.8. Performance Measure

As described in the NIST SREOS evaluation plan, we used the
Detection Cost Function (DCF) as the primary performance
measure in our experiments. This function weights missed de-
tections and false alarms as DC' = Pariss+9.9X PraiseAtarm.-
All results were reported as Minimal DCF (MDC) value, ob-
tained a posteriori for the optimal decision threshold.
Therefore, they do not include calibration mismatch. Since DC
and MDC favor false alarm errors, Equal Error Rate (EER) is
also provided as an alternative performance measure. Detection
Error Trade-off (DET) curves are provided to assess system
behaviour in the full range of operating points.

4. Results

We conducted experiments to explore the behaviour of several
CMLLR-SVM and MLLR-SVM systems, by varying the type
of model used to compute the MLLR transforms, and the cep-
stral features. In order to simplify system naming, Table 1
shows the naming convention used for all the tested systems.

System | Xform |Model| Feature |SAT [#Classes |#Xforms
type setup

CG15 CMLLR|GMM |PLP1I5N| no
CG15/S |CMLLR|GMM |PLP15N| yes
CG12/S |CMLLR|GMM |PLP12 |yes
CHI12 CMLLR{HMM|PLPI2 | no

MG15 MLLR|GMM (PLP15N| no
MH12/1c¢ | MLLR{HMM|PLP12 | no
MH12/1t | MLLR{HMM|PLP12 | no
MH12/2t | MLLR|{HMM|PLP12 | no
MH12/3t | MLLR{HMM|PLP12 | no

BN = == = = =
LOS I N I T e

Table 1: System naming convention for CMLLR-SVM and
MLLR-SVM systems.

A two-axis set of experiments was first conducted for
CMLLR-SVM systems. The first axis aimed at evaluating
the impact of the model choice on performance. The second
axis focused on the choice of cepstral features, i.e., PLP15SN
or PLP12 cepstral front-ends. Table 2 shows results for the
CG15, CG15/S (using PLP15N features and none and one SAT
iterations), CG12/S (PLP12 features and one SAT iteration)
and CH12 (PLP12 features and ASR HMM modeling) systems.
A gain of about 9% in MDC and 11% in EER was found when
switching from GMM to HMM modeling (CG12/S vs. CH12).
This may be explained by the derivation of more precise MLLR
transforms when using the phone HMMs. However, when the
GMM-based system takes advantage of speaker recognition
feature normalizations (PLP15N vs PLP12), the reported
improvement is more than that provided by HMM modeling. In
that sense, a gain of 7% in MDC and 10% in EER relative terms
is obtained (CG15/S vs. CH12). If the SAT-like procedure for
GMM re-estimation is not used (CG15), performance decreases
but the system still outperforms CHI12. This stresses the
importance of normalization techniques, particularly channel
compensation, in speaker recognition. By taking advantage of
these normalizations (CG15/S vs. CG12/S) up to a 20% gain in
EER was found.

| System | minDCF [ EER (%) |

CG15 .0397 9.77
CG15/S .0393 8.90
CG12/S .0468 11.23

CH12 .0423 9.94

Table 2: MDC and EER SRE 2005 results for several CMLLR-
SVM systems.  Systems are described by MLLRTrans-
formType/Model Type/FeatureSetUp/NumberOfS ATIterations
parameters in the CMLLR computation (See Table 1 for system
naming convention).

As for MLLR-SVM systems, we assessed performance as
a function of model choice and, for HMM-based systems, the
number of computed MLLR transforms, i.e., from one to four
broad phonetic classes. Table 3 show results for the MG15
(using PLP15N features and GMM modeling) and MH12/1c,
MH12/1t, MH12/2t and MH12/3t (using PLP12 features, ASR
HMM modeling and 1, 2, 3 or 4 phonetic classes, i.e. 1, 1,
2 and 3 transforms). The non-speech MLLR transform was
dropped. The use of HMM modeling compares favorably
to the use of a GMM even if PLP15N features were used
for the GMM-based system. A relative gain of 8% in MDC
and 15% in EER is obtained when switching from GMM to
HMM (MG15 vs. MH12/1c). Using more classes results in
a significant improvement in MDC but not in EER, which
suggests a rotation of the DET curve. In any case, using 3
phonetic classes (MH12/2t) is found to be optimal in terms
of EER and it obtains a relative gain of 8% MDC versus the
one-class system (MH12/1c¢) at the same time.

Regarding CMLLR vs MLLR techniques, it seems advan-
tageous to use CMLLR in GMM-based systems, obtaining
an improvement of almost 4% both in EER and MDC terms
(CG15 vs. MGI5). Besides, multiple iterations of SAT



System | minDCF | EER (%) ]

MG15 .0413 10.15
MH12/1¢c 0377 8.61
MH12/1t .0362 8.86
MH12/2t .0344 8.40
MH12/3t .0334 9.56

Table 3: MDC and EER SRE 2005 results for several MLLR-
SVM systems. Systems are described by MLLRTransform-
Type/Model Type/FeatureSetUp/NumberOfPhoneticClasses pa-
rameters in the MLLR computation (See Table 1 for system
naming convention).

training in the CMLLR system can further increase this gain.
Interestingly, it seems that MLLR is better suited for HMM
systems. Relative gains of 10% MDC and 13% EER are found
for one-class MLLR (CH12 vs. MH12/1c), going up to 18%
MDC when 3 phonetic classes (2 transforms) are used. All
MLLR/HMM systems outperform the best performing CMLLR
system (CG15/S).

We next assessed performance of CMLLR and MLLR
systems in combination with two standard cepstral systems,
MFCC-GMM (a) and MFCC-SVM (b). CG15/S-SVM (c) and
MH12/2t-SVM (c’) were chosen as the best performing CM-
LLR and MLLR system candidates. Figure 2(a) shows DET
curves for all individual systems. The MLLR approach clearly
outperforms CMLLR as well as MFCC-GMM, especially near
the MDC. We set the baseline to be the combination of MFCC
systems, (a+b). Table 4 shows results for the individual systems,
the baseline combination, the three-way combination systems
(a+b+c), (a+b+c’) and an all-combination system, (a+b+c+c’).
When combined with the baseline, the CMLLR system (c)
brings an improvement of 3% MDC and 5% EER, whereas the
MLLR system (d) obtains a gain of 12% and 14% respectively.
Figure 2(b) shows DET curves for the combined systems. Sys-
tems behave consistently all along the DET curves. The all-
combination system (a+b+c+c’), globally outperforms all other
systems, although this is not clear enough on the MDC and EER
operating points.

| System | minDCF | EER (%) ]

MFCC-GMM (a) .0330 8.65
MFCC-SVM (b) .0279 7.23
CG15/S-SVM (¢) .0373 8.62
MHI12/2t-SVM (¢”) .0292 8.11
Baseline (a+b) .0264 6.35
(at+b+c) .0255 6.03

(at+b+c”) .0232 541
(at+b+c+c’) .0231 541

Table 4: MDC and EER SRE 2005 results for for-
ward+backward individual, baseline and other combined sys-
tems (See Table 1 for system naming convention).

5. Conclusions

We compared several CMLLR and MLLR approches for fea-
ture extraction in speaker recognition systems and we evaluated
them on the NIST SRE 2005 evaluation task. The iterative train-
ing CMLLR/GMM approach system outperformed all other
CMLLR-based systems, including computing CMLLR on an
ASR HMM system. CMLLR/GMM is able to use any kind of
cepstral features and normalization whereas in CMLLR/HMM,
the ASR system is constrained to using a certain type of fea-
tures that might be less suited for speaker recognition tasks. A
relative gain of 10% EER was obtained for CMLLR/GMM vs
CMLLR/HMM. MLLR outperformed all CMLLR approaches
specially when more than one phonetic class were used. A gain
of 10% was obtained by switching from CMLLR to MLLR,
both using transforms computed on an ASR HMM using speech
recognition cepstral features. The best performing CMLLR and
MLLR systems were combined with two standard cepstral sys-
tems, obtaining relative gains of 3% and 12% over the baseline,
respectively.
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