
HAL Id: hal-01690268
https://hal.science/hal-01690268

Submitted on 23 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparing Prosodic Models for Speaker Recognition
Cheung-Chi Leung, Marc Ferràs, Claude Barras, Jean-Luc Gauvain

To cite this version:
Cheung-Chi Leung, Marc Ferràs, Claude Barras, Jean-Luc Gauvain. Comparing Prosodic Models for
Speaker Recognition. Interspeech 2008, Sep 2008, Brisbane, Australia. �hal-01690268�

https://hal.science/hal-01690268
https://hal.archives-ouvertes.fr


Comparing Prosodic Models for Speaker Recognition
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Abstract
Recently, speaker verification systems using different kinds of
prosodic features have been proposed. Although it has been
shown that most of these speaker verification systems can im-
prove system performance using score-level fusion with state-
of-the-art cepstral-based systems, a systematic comparison of
the prosodic modelling algorithms used in these prosodic sys-
tems has not yet been performed. This motivated us to review
the proposed prosodic modelling algorithms and compare them
using a common experimental condition.

These experiments explored different approaches in the
sampling/segmentation of prosodic contours and the selection
of prosodic features. They show that simple prosodic sys-
tems with features extracted from fixed-size contour segments,
without knowledge of phone/pseudo-syllable level information,
still provide significant performance improvement when fused
with a state-of-the-art cepstral-based system. Moreover, some
prosodic systems are shown to be complementary to each other.
Fusion of these systems with the cepstral-based system can pro-
vide further performance improvement on the speaker verifica-
tion task.
Index Terms: Speaker recognition, prosodic features

1. Introduction
Cepstral features, such as MFCC, and speaker modelling tech-
niques, such as Gaussian Mixture Models (GMM) and Sup-
port Vector Machines (SVM), have become the predominant
approaches in speaker verification. The performance of such
systems is however relatively sensitive to the recording condi-
tions. It is believed that prosodic features are less vulnerable to
the channel distortion than cepstral features. Although prosodic
features alone cannot perform as well as cepstral features, the
fusion of these two types of features has been proposed to fur-
ther improve the performance of conventional cepstral-based
speaker verification systems [1, 2, 3, 4, 5, 6].

Prosody is used to describe many speech characteristics,
such as speaking rate, loudness and pitch. Pitch and energy
are commonly used in prosodic systems and these features are
the main focus of this paper.

Many approaches have been proposed in prosodic systems.
For instance, in prosodic contour sampling/segmentation, Carey
et al [1] and Xie et al [2] extracted pitch features from fixed-
size contour segments. However, Mary et al [3], Shriberg et
al [4] and Dehak et al [5] proposed to segment an utterance
into syllable or pseudo-syllable units and extract pitch feature
per syllable/pseudo-syllable. In prosodic feature selection, Xie
et al [2] and Mary et al [3] used pitch statistics, such as the
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mean, minimum and maximum values of pitch, as features. De-
hak et al [5] used Legendre polynomials to approximate pitch
contours. Moreover, Adami et al [6] suggested to capture tem-
poral dynamic prosodic information with delta-pitch and delta-
energy, and n-gram modelling.

Although it has been shown that prosodic systems can pro-
vide performance gains using score-level fusion with cepstral-
based systems, a comparison of the prosodic modelling algo-
rithms used in these systems has, to the best of our knowl-
edge, not yet been performed. This motivates us to review
these proposed prosodic modelling algorithms and compare
them through a common experimental evaluation. In the experi-
ments reported in this paper, we explore different approaches to
the sampling/segmentation of prosodic contours and the selec-
tion of prosodic features. We also study whether these different
approaches can complement each other and if their fusion can
provide further performance improvements on the speaker veri-
fication task.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the algorithms that we adopt and evaluate.
Section 3 describes the experimental conditions and results, fol-
lowed by conclusions in Section 4.

2. Prosodic models
A prosodic system typically involves four major compo-
nents: prosodic contour extraction; prosodic contour sam-
pling/segmentation: prosodic feature selection: and speaker
probabilistic modelling of the prosodic features.

Prosodic contours on log scale are extracted, being sam-
pled every 10ms with a 30ms analysis window using the Praat
toolkit [7]. Pitch estimation is based on the local maxima of
the short-term autocorrelation function of the utterance [8]. In
the estimation, the pitch floor, the pitch ceiling and the maxi-
mum number of pitch candidates are set to 50Hz, 500Hz and
5 respectively. The log energy is normalized by substracting
the maximum value in the utterance. The duration feature is
extracted from the prosodic contour segmentation.

2.1. Prosodic contour sampling/segmentation

A prosodic contour may cover information across several sylla-
ble or word units. Speaker-specific characteristics may be found
in short-term static or/and dynamic features, such as the statis-
tics of each speaker’s dynamic range of pitch values [2] and
the rising and falling patterns in prosodic contour segments [6].
To ensure that the features extracted from each contour con-
tain such speaker-specific information, we segment the contours
based on phone-level boundaries or pseudo-syllable boundaries,
as well as dividing the contours into a number of fixed-size seg-
ments.
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Starting with the English word transcriptions provided with
the evaluation corpus, the LIMSI automatic speech recognition
(ASR) system [9] is used to obtain the phone alignment. The
phone-level time labels are then chosen as the segment bound-
aries. The segment duration of each contour segment is also
appended in the feature vector, which will be defined in Sec-
tion 2.2.

Pseudo-syllable segment boundaries can be located based
on the valley points of the energy contour [10]. Similar to the
phone segmentation method, the segment duration of each con-
tour segment is also appended in the feature vector, which will
be defined in Section 2.2.

The prosodic contours are also chunked into a number of
equal-size segments, each of which contains a number of frames
extracted from the 30ms analysis window in the Praat toolkit,
and with a segment shift of 10 ms.

2.2. Prosodic features

Two types of prosodic features are used, including general
statistics of pitch and energy values, and Legendre coefficients
of pitch contours.

In the first approach, the features used are the mean, mini-
mum, maximum and delta of the pitch values, and delta of en-
ergy values in each contour segment [2]. The delta feature is
computed as the difference between the mean values in the first
half and the second half of the contour segment. In systems
using phone or pseudo-syllable contour segmentation, the seg-
ment duration of each contour segment is also appended to the
feature vector.

Moreover, we use Legendre coefficients to approximate
pitch contours. Similar to [5], each pitch contour segment along
time t is approximated by a sequence of Legendre polynomials
as

f(t) =

MX

i=0

aiPi(t) (1)

where Pi(t) is the i-th Legendre polynomial defined as

Pi(t) =
1

2ii!

di

dti
[(t2 − 1)i] (2)

The first M (M = 4, 6, 8, 10 or 12) coefficients of each
contour segment are used to form aM -dimensional feature. In
the experiments using phone or pseudo-syllable contour seg-
mentation, the contour segment length is appended, forming the
M+1-th dimensional feature. This method and the method us-
ing general statistics of pitch values share some identical fea-
tures. These are a0 and a1, which represent the pitch mean and
the delta pitch of the contour respectively.

2.3. Speaker probabilistic modelling of prosodic features

GMMs are used to model general statistics of pitch values and
the Legendre coefficients, while N-gram models are used to
model delta-pitch and delta-energy features.

In our experiments, GMMs are trained by MAP adapta-
tion [11] of the Gaussian means of the corresponding gender-
dependent UBM using 3 iterations of the EM algorithm. In the
GMM system using general statistics of pitch values in fixed-
size contour segments, a 4-dimensional feature vector is used.
In systems using general statistics of pitch values in phone or
pesudo-syllable segments, segment duration is included in the
feature vector and thus a 5-dimensional feature vector is used.

In systems using Legendre coefficients as features, the coeffi-
cients and the segment duration in each segment form aM + 1
dimensional feature vector.

When an N-gram is used, the delta-pitch and the delta-
energy are quantized into Np and Ne tokens respectively.
Speech data is needed to train the quantization boundaries so
that the delta features are equally distributed into their quan-
tized tokens. Unvoiced segment are represented by a “UV” to-
ken. In the system extracting features in fixed-size segments,
there are Np × Ne + 1 quantized tokens in the contour seg-
ment representation. In the systems using the phone or pseudo-
syllable segmentation, the segment duration is also quantized
into Nd tokens and included in the contour segment represen-
tation. Therefore, Np × Ne × Nd + 1 quantized tokens are
involved. In [6], (Np, Ne, Nd) = (2, 2, 3) is used and the pitch
and energy contours are segmented according to the local min-
ima and maxima of pitch values. In our experiments, differ-
ent combinations of (Np, Ne, Nd) are tested, and the pitch and
energy contours are segmented according to the methods de-
scribed in Section 2.1.

Standard maximum likelihood estimation and back-off are
used for each n-gram model representing a speaker. Bi-gram
and tri-gram models are used. To deal with the data sparseness,
an interpolation in n-gram probabilities is calculated as

p′
m = (1− α)pm + αpubm (3)

where p′
m is the re-estimated probability, pm and pubm are

the probabilities from the speaker specific training data and the
universal background data respectively, and α is an adaptation
weight between 0 and 1. Given a test utterance, a weighted
log-likelihood ratio between the target speaker model and the
background model is computed.

3. Experiments
3.1. Task and evaluation data

All the systems via speaker verification experiments conducted
on conversational telephone speech. The data is that used in
the one-conversation two-channel condition task of the NIST
SRE’05 evaluation 1.

Given a 5-minute long test conversation and a target
speaker, the goal is to decide whether this segment was spo-
ken by the target speaker or not. For each target speaker (274
male and 372 female), a 5-minute long conversation is avail-
able for model training. Overall, 2429 test segments (1074 male
and 1355 female) need to be scored against roughly 10 gender-
matching impostors and against the true speaker. The gender of
each target speaker is known. Only the English subset of the
evaluation data is considered in our experiments.

The primary performance measure for the NIST speaker
verification task is the Detection Cost Function (DCF) defined
as a weighted sum of missed detections and false alarms, the
normalized cost taking the following form CNorm = PMiss+
9.9×PFalseAlarm. For all results, we report the Minimal DCF
(MDC) value obtained a posteriori for the best possible de-
tection threshold. However, this operating point favors false
alarms, so the Equal Error Rate (EER) is also provided as an
alternative performance measure.

1The NIST year 2005 speaker recognition evaluation,
http://www.nist.gov/speech/tests/sre/2005/index.html.
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Table 1: Configuration of each prosodic system in the experiments († Duration feature is included in systems with features extracted
from phone or pseudo-syllable segments)

Systems S1 S2 S3 D1 D2 D3 L3

Prosodic contour segment
Fixed-size segment

√ √
Phone segment

√ √
Pseudo-syllable segment

√ √ √

Prosodic features
Mean, min, max and delta of pitch † √ √ √
Delta-pitch & delta-energy † √ √ √
Legendre coefficients † √

Speaker model GMM
√ √ √ √

N-gram
√ √ √

3.2. Prosodic systems and MFCC-GMM system

Seven prosodic systems were evaluated in our experiments. The
configuration of each system is summarized in Table 1. In the
prosodic systems, the training data of each gender-dependent
UBM was chosen from 1309 target speakers (770 female and
539 male) in the 1-conv and 8-conv trial conditions in the NIST
SRE’04 evaluation. This data was also used in the detection of
quantization boundaries in the prosodic n-gram systems. 128-
mixture GMMs were used in prosodic GMM systems. In the
prosodic n-gram systems, we used the adaptation weight α =
0.5, which was found to be optimal on the evaluation data.

The MFCC-GMM system was implemented in the same
way as in [14]. Each of the gender-dependent UBMs was a
1536-mixture GMM. The training data was chosen from the tar-
get speakers in NIST SRE ’97-’01 and ’03 evaluations and the
test speakers in NIST SRE’03 evaluation (for a total of 9041
speech excerpts).

Score normalization was performed using T-norm [13] in
the prosodic and MFCC-GMM systems. In the prosodic sys-
tems, T-norm model training and the UBM training shared the
same data. In the MFCC-system, T-norm model training was
chosen from 500 speech excerpts (250 male and 250 female)
from the Fisher corpus 2.

Linear logistic regression score-level fusion [15] was used,
and a three-fold cross-validation scheme was adopted for the
performance evaluation.

3.3. Results

Different parameters in the prosodic systems were tested and
their fusion with the MFCC-GMM system was evaluated in the
experiments.

First, the effect of the segment size in the fixed-size
prosodic contour segments was investigated. Segment sizes
ranging from 100ms to 140ms performed well, and the best per-
forming system had a segment size of 120ms.

The effect of selecting different statistics of the pitch values
was investigated with system S3. The experiment showed that
each of these features contributed to the system performance.
The standard deviation of pitch values was also tested in the
feature set, but it did not contribute to the system performance.

The effect of Legendre polynomial order used in system L3
was investigated. Since a 6th order polynomial performs the
best at most operating points, this setting is used in following
experiments.

In the three prosodic n-gram systems, the effect of
quantization-level of features was investigated. In system

2Fisher Corpus, LDC Catalog, http://www.ldc.upenn.edu/Catalog.

Table 2: Performance (in MDC and EER) of various individual
prosodic systems

System MDC EER (%)
S1 0.908 21.37
S2 0.877 21.04
S3 0.897 20.88
D1 0.837 22.62
D2 0.897 25.16
D3 0.953 28.61
L3 0.877 19.17

Table 3: MDC and EER of MFCC-GMM system (B) and its
fusion with various prosodic systems

System MDC Relative
improve-
ment in
MDC

EER
(%)

Relative
improve-
ment in
EER

B 0.323 — 8.60 —
B + S1 0.309 4.3 % 8.07 6.2 %
B + S2 0.314 2.8 % 7.99 7.1 %
B + S3 0.323 0 % 8.27 3.8 %
B + D1 0.300 7.1% 8.15 5.2 %
B + D2 0.318 1.6 % 8.40 2.3 %
B + D3 0.325 -0.6 % 8.52 0.9 %
B + L3 0.324 -0.3 % 8.19 4.8 %

D1, (Np, Ne) = (5,3) performed the best. In system D2,
(Np, Ne, Nd) = (3, 2, 3) performed the best. In system D3,
(Np, Ne, Nd) = (4, 2, 2) performed the best. The effect of the
size of the n-gram was also investigated. In all three systems,
bi-gram models performed better than tri-gram models.

The performance of each individual prosodic system (with
the best setting reported previously) is summarized in Table 2.
In terms of MDC, system D1 performed the best, whereas in
terms of EER, system L3 performed the best.

Each prosodic system was also fused with the MFCC-
GMM system. The performance of the MFCC-GMM system
and the fusion systems are shown in Table 3. The experiments
showed that system D1 provided the best fusion improvement
in terms of MDC, where as system S2 provided the best fusion
improvement in terms of EER.

We also performed the best-3 score-level fusion test for the
prosodic and MFCC-GMM systems. The 3 best performing fu-
sions (in terms of EER) are shown in Table 4. The best fusion
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Table 4: MDC and EER of 3 best performing score-level fusion
of 3 systems (EER in ascending order)
B S1 S2 S3 D1 D2 D3 L3 MDC EER(%)√ √ √

0.296 7.69√ √ √
0.309 7.69√ √ √
0.299 7.73

system provides the EER of 7.69 and the MDC of 0.296 (i.e.
relative improvement of around 10% in EER and 8% in MDC).
Figure 1 shows that the fusion of two and three systems both
provide further performance improvements at most operating
points.

30

20

10

5

2

0.5
302010520.5

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

False Alarms probability (in %)

MFCC−GMM
MFCC−GMM + S2

MFCC−GMM + S2 + D1

Figure 1: DET curves showing the performance of MFCC-
GMM, best-2 and best-3 (in terms of EER) fused systems

System D1 was shown to be one of the most important
prosodic systems for the fusion. The addition of the other two
prosodic n-gram systems, which capture and model similar fea-
tures as system D1, did not provide any further system fusion
improvement. Similarly, since systems S1, S2, S3 and L3 cap-
ture and model features in similar ways, it is reasonable that
their fusion did not provide any further performance improve-
ment.

It is worth noting that the simple prosodic systems extracted
features from fixed-size contour segments, without the knowl-
edge of phone/pseudo-syllable level information, still provide
satisfactory results. The system fusion of the MFCC-GMM
system and two simple prosodic systems (system S1 and D1)
provides a relative improvement of 10% in EER in the English
subset of the NIST SRE’05 evaluation data. This result is com-
parable to the results reported in other prosodic systems. The
prosodic system (similar to system L3) in [5] includes the en-
ergy contour in the Legendre polynomial approximation and
factor analysis is used to compensate for the inter-session vari-
ability in the Legendre coefficients. Its fusion with a MFCC-
GMM system provides a relative improvement of 12% in EER
on the English subset of the NIST SRE’06 evaluation data. The
prosodic system in [4] uses the SNERF approach with a SVM
classifier and a speech recognition system is needed in this ap-

proach. Its fusion with a MFCC-GMM system provides a rel-
ative improvement of 14% in EER in the English subset of the
NIST SRE’06 evaluation data.

4. Conclusions
This paper has investigated various methods used in prosodic
contour sampling/segmentation and prosodic feature selection
in some proposed SRE systems. Our experiments show that
the simple prosodic systems with features extracted from fixed-
size contour segments, without the knowledge of higher level
information, still provide comparable performance gain in their
fusion with a state-of-the-art cepstral-based system. Moreover,
some prosodic systems are shown to be complementary to each
other and their system fusion with the cepstral-based system can
provide further performance improvement on a speaker verifi-
cation task.
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