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Abstract
Factor analysis (FA) is one of the key advances presented in re-
cent speaker verification evaluations. This technique is able to
successfully remove session variability effects and it is currently
used in many state-of-the-art automatic speaker verification sys-
tems. This paper addresses several practical issues in using an
FA model in order to speed up model training and to achieve
good performance. A parallelized training algorithm as well as
maximum-likelihood estimation are proposed for fast training.
The front-end feature normalization techniques are also inves-
tigated in the context of FA model. We demonstrate that factor
analysis is very robust, and can be successfully applied to var-
ious kinds of feature normalization. Moreover, the proposed
parallelized MLE implementation speeds up the training proce-
dure from several days to several hours without sacrificing the
performance.

Index Terms: speaker verification, factor analysis, maximum-
likelihood estimation, parallelization.

1. Introduction
One of the most important challenges in automatic speaker ver-
ification (ASV) is how to deal with the intersession variability.
Under matched conditions, ASV systems usually perform well.
This is not the case under mismatched conditions, where inter-
session variability compensation becomes a need. Factor anal-
ysis (FA) is one of the key innovations in recent NIST speaker
verification evaluations being able to successfully deal with the
intersession variability issue and is widely used in state-of-the-
art ASV systems. The FA method models the intersession vari-
ability explicitly and the compensation can be performed either
in feature domain or model domain, both are proved to be very
effective [1].

There are also many compensation techniques in feature do-
main, such as feature cepstrum mean subtraction (CMS) [2],
feature mapping [3] and feature warping [4], which address
the variation issue and achieve good performance with a sin-
gle technique. However, it is unclear if those techniques can
still be useful with FA.

The contribution of this paper is to re-examine the fea-
ture normalization techniques in the context of FA modeling.
CMS/feature mapping/feature warping are tested in combina-
tion with FA and compared to the feature where no normaliza-
tions at all is performed.

Another practical issue of using FA is that the training is
usually very time-consuming, especially when more Gaussian
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mixtures and higher feature dimensions are used. To address
this problem, we propose a parallelized implementation based
on maximum-likelihood estimation (MLE) in this paper to sup-
port fast training. This estimation requires less storage of in-
terim statistics without decreasing performance.

This paper is organized as follows: Section 2 introduces the
factor analysis model and the session compensation approach.
Section 3 presents the introduction of different feature normal-
ization techniques. The parallelization implementation as well
as Maximum Likelihood Estimation are introduced in section
4, the experimental results are given in section 5 and section 6
concludes the paper.

2. Session Variability Modeling and Hybrid
Domain Session Compensation

GMM (Gaussian Mixture Models)-UBM (Universal Back-
ground Models) approach represents one of the most impor-
tant widely used techniques in state-of-the-art speaker verifi-
cation systems. The speaker models are estimated from a com-
mon GMM seed model (UBM). Usually this is done by MAP
[5] adaptation only of the mean. For a set of speaker models
only the mean vectors are different and the other parameters are
shared with the UBM. In this case, each speaker is represented
by a supervector constructed by concatenating all of the mean
vectors.

The basic assumption in factor analysis model is that a
speaker- and channel-dependent supervector can be decom-
posed into three different components: a speaker-session-
independent component m, a component which only depends
on the speaker, and a component only depending on channel.
The channel dependent component and speaker dependent com-
ponent are assumed to be statistically independent and normally
distributed.

A theoretical framework of factor analysis is proposed by
Kenny in [6] and the reduced model, eigenchannel MAP is in-
troduced in [7]. This model can be expressed as:

m(h,s) = m + Dys + U · x(h,s), (1)

where m(h,s) is the mean of session-speaker dependent super-
vector (its dimension is MD × 1, where M is the number of
Gaussians, and D is the dimension of the feature) correspond-
ing to session index h and speaker index s, D is a diagonal
matrix, ys is the speaker vector, U is the session variability
matrix (a MD × R matrix) and x(h,s) is the channel factor (a
R dimensional vector). Each column in matrix U corresponds
to one possible projection direction in channel-dependent space
and all the R vectors account for most of the channel variability.
Typically R � MD.
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FA-based channel compensation can be implemented both
in model domain and feature domain. The hybrid domain nor-
malization strategy proposed in [8] is adopted in this paper.
Given the speech data for target speaker, the session variability
is subtracted from the target speaker model (and normalization
models as well) to make the target model a “true speaker model”
which is independent of session variability. The compensation
in the testing data is performed at the frame level which can be
regarded as a feature post-processing procedure. That is1:

ms = m + Dys; t
′ = t−

MX

g=1

γg(t) · {U · xhtest}[g], (2)

where ms is the target speaker model, t′ is the compensated
feature. The verification is based on the log-likelihood ration:

log P (Y|m(htar,star))− log P (Y|m), (3)

where m(htar,star) is the true speaker model and Y is the
speech feature sequence after subtracting session effects.

3. Feature Normalization Techniques and
Factor Analysis

Cepstrum Mean Subtraction (CMS) is an effective method for
removing linear effects introduced by the communication chan-
nel from the speech signal, by subtracting the mean cepstrum
from each feature in the duration of the utterance.

The objective of feature warping is to construct a more ro-
bust representation of the cepstrum feature distribution. It was
found that cepstrum based feature vector warping using a Gaus-
sian target distribution is an effective method of reducing the
effects of mismatch.

Feature mapping uses the a priori information from a set
of models trained in known conditions in order to map the fea-
ture vectors to a channel independent feature, and a data-driven
technique has also been proposed to release the requirement of
explicit identification and labeling of conditions.

All these techniques have been successfully used in ASV,
however, if these techniques can well be applied with FA model,
and which is the best is still not clear. The combination of dif-
ferent feature normalization techniques with FA as well as the
best configuration are given in section 5.

4. Parallelized Factor Analysis Model
Training

The training of session variability matrix U is quite time-
consuming especially when many Gaussians are used with high
dimensional vectors. Typically, the number of Gaussians is
around several thousands. It takes long time to train a matrix U
given thousands of sessions data without parallelization. How-
ever, this procedure could be parallelized in two stages:

• The estimation of each speaker and session dependent
parameters;

• The estimation of transformation matrix U[g] which cor-
responds to each Gaussian.

Moreover, if the maximum-likelihood estimation is per-
formed, the storage of necessary statistics will be reduced and
the training will be simplified.

1Notation: Let A be a MD × K matrix formed by concatenating
vertically M matrices of dimesnions D × K, we denote A[g] the gth

matrix in A.

4.1. Maximum-likelihood Estimation

We begin with the definition for general statistics. Let Ns

and N(h,s) be the vectors containing the zero order speaker-
dependent and session-dependent statistics respectively, and Xs

and X(h,s), the first order statistics:

Ns[g] =
X

t∈s

γg(t);N(h,s)[g]
=

X

t∈(h,s)

γg(t), (4)

Xs[g] =
X

t∈s

γg(t) · t;X(h,s)[g]
=

X

t∈(h,s)

γg(t) · t. (5)

After that, the session effects and speaker effects are re-
moved to give speaker dependent statistics Xs and session de-
pendent statistics X(h,s) respectively:

Xs[g] = Xs[g] −
X

h∈s

N(h,s)[g]
· {m + U ·X(h,s)}[g]

X(h,s)[g]
= X(h,s)[g]

− {m + Dys}[g] ·
X

h∈s

N(h,s)[g]
,

(6)

The statistics L(h,s) and B(h,s) are defined as follows:

L(h,s) =
X

g∈UBM

N(h,s)[g]
· {U}t

[g] ·Σ−1
[g] · {U}[g]

B(h,s) =
X

g∈UBM

{U}t
[g] ·Σ−1

[g] ·X(h,s)[g]
.

(7)

The speaker factor is estimated the same as MAP adapta-
tion, but the channel factor follows the maximum likelihood
eigen-decomposition (MLED) [9]. That is:

x(h,s) = L
(−1)

(h,s) ·B(h,s)

ys[g] =
τ

τ + Ns[g]

·Dg · Σ(−1)
g ·Xs[g],

(8)

where Dg =
Σ

1/2
g√
τ

, τ is the MAP relevance factor.

To calculate the ith line of U[g], we use:

Ui
[g] = LU−1

g ·RUi
g, (9)

where RUi
g and LUg are defined as follows:

LUg =
X

s

X

h∈s

(x(h,s)x
T
(h,s)) ·N(h,s)[g]

RUi
g =

X

s

X

h∈s

X(h,s)[g]
[i] · x(h,s).

(10)

The implementation in [8] varies in two aspects. In equa-
tion 7 an identity matrix is added to L(h,s), and the calculation
of LUg in equation 10 also needs extra statistics, i.e:

L(h,s) = I +
X

g∈UBM

N(h,s)[g]
· {U}t

[g] ·Σ−1
[g] · {U}[g]

LUg =
X

s

X

h∈s

(L
(−1)

(h,s) + x(h,s)x
T
(h,s)) ·N(h,s)[g]

.
(11)

Note that, to be consistent with the training, the estimation
of latent variables (x(h,s) and ys) on a single utterance should
also use MLE to update the parameters x(h,s) (Equation 8).

Given the factor rank is much less than the number of su-
pervectors (we estimate 40 ranks out of thousands of session
examples), and we also have enough data for each session (typ-
ically around 2mins after removing the non-speech data), the
degeneracy problem stated in [6] resulting from MLE should
not happen. This is verified by the experiment in section 5.
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Figure 1: System diagram of the parallelized implementation.
N is the number of speakers and M is the number of Gaussians.

4.2. Parallelized Training

As mentioned in the previous section, the parallelization can be
performed in two stages: the estimation of each speaker and ses-
sion dependent parameters and the estimation of transformation
matrix U[g]. These two steps are explained as follows. Since
the general statistics is estimated only once based on UBM and
will be always used in the following procedure, the calculation
of Ns, N(h,s), Xs and X(h,s) is treated as a pre-processing
step and performed in advance.

Parallelization of speaker-session factors estimation
The estimation of speaker and session dependent parame-

ters is performed speaker by speaker. For each speaker:

• Input the general statistics Ns, N(h,s), Xs and X(h,s),
the transformation U, the speaker and channel factor
x(h,s) and ys of the latest iteration to calculate the center

statistics Xs and X(h,s);

• Estimate the speaker and channel factor x′(h,s) and y′s
of this iteration;

Parallelization of transformation matrix U estimation
The estimation of transformation matrix U is performed

mixture by mixture. For each Gaussian mixture (the index of
Gaussian mixture is omitted without confusion):

• Input x′(h,s) and the general statistics N(h,s) for all
speakers to calculate LU;

• Given y′s of this iteration, update the center statistics

X
′
(h,s) to calculate RU;

• Update U′ according to LU and RU.

4.3. Implementation Issues

The work flow of the parallelized implementation is illustrated
by figure 1. The general statistics are omitted from the input
without confusion.

Although the system performance is quite similar, our im-
plementation has some advantages especially to parallelize the
calculation:

• The interface is cleaner and the input/output is easy to
manage. In step 1 we input the matrix U and chan-
nel/speaker factors x,y of the latest iteration to calcu-
late the channel/speaker factors for each speaker respec-
tively; after that, we input the updated channel/speaker
factors and the matrix of the latest iteration to update the
session variability matrix of each mixture respectively;

• The storage of interim statistics is minimized. The only
statistics we need to save are speaker and channel factors
and the variability matrix. If we follow the implementa-
tion in [8], the center statistics X(h,s) and L(h,s) for each
speaker should also be saved, which will bring heavy file
I/O burden.

5. Experimental Results
All the experiments were carried out on the NIST SRE’05 data
which is provided for one-conversation two-channel condition
task of the NIST SRE’05 evaluation2. The experiments only
refer to the NIST defined core condition which includes 23095
trials The primary performance measure is the Detection Cost
Function (DCF) defined as a weighted sum of missed detections
and false alarms, the normalized cost taking the following form
CNorm = 0.1 × PMiss + 0.99 × PFalseAlarm. In this paper,
we report the Minimal DCF (MDC) value obtained a posteri-
ori. The Equal Error Rate (EER) is also provided as another
performance measure.

The GMM-UBM system was implemented as in [10]. The
front-end feature extraction uses 15 PLP + 15 Delta PLP +
15 Delta-Delta PLP + 1 Delta Energy + 1 Delta-Delta Energy
which makes a 47-dimensional vector. The training data was
chosen from target speakers in NIST SRE’97-’01 and ’03 eval-
uations and test speakers in NIST SRE’03 evaluation. This data
was separated into 3 categories (cell./carb./elec.) and a GMM
with 512 components was trained on each set, resulting in a
GMM with 1536 Gaussians after fusion.

The rank number (R) of factor analysis model was fixed
to be 40, trained on SRE’04 data. To perform score normal-
izations (t-norm/z-norm/zt-norm) [11], 250 male session and
250 female session data were chosen randomly from SRE’04.
Gender-dependent score normalization was performed.

5.1. Experiments on Feature Normalization

In this experiment different front-end feature normalization
techniques including CMS, feature mapping and feature warp-
ing are compared in the context of factor analysis. The results
are given in table 1.

The trials were carried out in both the forward direction
(that is, test utterance vs. target model designations given by
NIST) and in the reverse direction. The two strategies give sim-
ilar results but averaging the scores gives additional improve-
ments.

It was found that it is necessary to perform another itera-
tion feature normalization after subtracting session variability
for each frame based on equation 2. That is because the distri-
bution of features is distorted after the factor analysis.

According to the experimental results, factor analysis is
quite robust and can be used with different feature normal-
ization techniques. The improvements are consistently around
30%∼40% in EER and 15%∼20% in MDC relatively (under
the same condition of using t-norm, forward only scoring).

2http://www.nist.gov/speech/tests/sre/2005/index.html.
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Conf. baseline no Norm t-norm z-norm zt-norm
F. B. F+B F. B. F+B F. B. F+B F. B. F+B

E
E

R
(%

) S1 22.69 21.83 24.12 21.00 15.80 18.17 13.38 13.10 15.67 10.48 11.60 13.01 10.60
S2 13.22 19.79 21.53 18.25 13.01 12.56 9.56 14.34 15.14 12.27 11.10 11.85 9.82
S3 10.49 9.85 11.39 8.82 6.15 6.90 5.36 6.57 8.23 5.82 5.95 6.70 5.49
S4 9.48 10.52 11.02 8.73 6.74 7.53 5.54 6.57 8.27 5.82 5.94 6.91 5.65

M
D

C
×

1
0
0 S1 6.75 7.20 7.52 6.41 5.33 5.68 4.41 5.54 5.81 4.46 4.27 4.81 3.85

S2 4.56 5.70 5.95 4.82 4.86 4.83 3.87 5.30 5.68 4.43 4.04 4.35 3.50
S3 3.89 4.34 4.15 3.56 3.03 2.81 2.31 2.88 3.43 2.58 2.34 2.71 2.33
S4 3.57 4.03 4.20 3.30 3.08 3.08 2.46 2.87 3.43 2.40 2.53 2.72 2.36

Table 1: Performance of different feature normalizations combined with FA on SRE’05. F. stands for forward, B. stands for backward
and F+B means averaging the scores from two directions. “S1” stands for the system without feature normalization, “S2” stands for
CMS, “S3” stands for feature warping and “S4” stands for feature warping+feature mapping. The baseline number is obtained with
t-norm and without factor analysis using forward-only scoring.

The only exception is CMS, which gives better EER but worse
MDC. This is probably because we normalize the speech after
removing non-speech data and merge all the data into one seg-
ment. It was also found that the feature mapping is no longer
necessary to get good performance. Although the baseline us-
ing feature mapping and feature warping are slightly better than
feature warping only, the best performance is obtained with fea-
ture warping after factor analysis. The score normalization is
also necessary to get good performance.

5.2. Experiments on Parallelized Maximum Likelihood Es-
timation

The parallelized fast training was applied on a cluster server
with IBM bi-proc blades using OSCAR (open source cluster
application resources) [12] system. Feature warping, the best
feature normalization configuration according to previous ex-
periments, was used in this experiment.

With only one single node (2.8G Intel Xeon CPU, 2G mem-
ory), it took 74.4 hours for the male model training (124 speak-
ers, 1197 sessions) and 138.9 hours for the female model train-
ing (186 speakers, 1743 sessions). Convergence was reached af-
ter 20 iterations. Running on 20 nodes (2.8G Intel Xeon CPU,
2G memory, training both the male and female model at the
same time), the computation time was reduced from several
days to several hours. Each iteration was done within 1.5 ∼
2.0 hours. However, similar performance is obtained with MLE
compared to LIA’s implementation.

Conf. no Norm t-norm
F. B. F+B F. B. F+B

EER

(%)

LIA toolkit 9.85 11.39 8.82 6.15 6.90 5.36
MLE 9.81 11.35 8.86 6.19 6.87 5.36

MDC

×100

LIA toolkit 4.34 4.15 3.56 3.03 2.81 2.31
MLE 4.33 4.14 3.55 3.04 2.82 2.31

Table 2: Performance of LIA’s implementation and MLE algo-
rithm on SRE’05.

6. Conclusions
The practical issues in using factor analysis model for auto-
matic speaker verification including the comparison of feature
normalization techniques and the parallelized implementation
of model training based on maximum likelihood estimation are
discussed in this paper. We demonstrate that factor analysis can
be well accompanied with feature normalization techniques,
however feature mapping is no more necessary when FA is per-
formed. The best performance is obtained with feature warp-

ing and without feature mapping. The parallelized implementa-
tion speeds up the model training without sacrificing the perfor-
mance.
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