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Abstract
In this paper, we propose two techniques to extend the re-
cently introduced global Maximum Likelihood Linear Regres-
sion (MLLR) transformation (i.e. super-vector) based m-vector
system for speaker verification into a multi-class MLLR m-
vector system in the Universal Background Model (UBM)
framework. In the first method, Gaussian mean vectors of the
UBM are first grouped into several classes using conventional
K-means and a proposed clustering algorithm based on Ex-
pectation Maximization (EM) and Maximum Likelihood (ML)
concepts. Then, MLLR transformations are calculated for a
given speech data with respect to each class, which are used in
the form of super-vector for speaker representation by their m-
vectors. In the second approach, several MLLR transformations
are estimated with respect to pre-defined models called anchors.
The proposed systems show better performance than the con-
ventional system. Furthermore, the proposed UBM-based sys-
tem does not require additional alignment of speech data with
respect to the UBM for estimation of multiple MLLR transfor-
mations. We also further show that the proposed EM & ML
clustering algorithm is robust to random initialization and pro-
vides equal or comparable system performance compared to K-
means. The experimental results are shown on NIST 2008 SRE
core condition over various tasks.
Index Terms: m-Vector, Multi-Class MLLR, Anchor Model,
EM Clustering, Speaker Verification

1. Introduction
The recently introduced m-vector technique [1] based on Uni-
versal Background Modeling (UBM) uses a global Maximum
Likelihood Linear Regression (MLLR) transformation in the
form of a super-vector for speaker characterization by their m-
vectors. As per [1], the global MLLR transformation is esti-
mated with respect to UBM for a given speaker data/speech seg-
ment without any phonetic/speech transcription knowledge, and
is then uniformly segmented using a sliding overlapped window;
each segment is called an m-vector. During test, m-vectors of
the test utterance and claimant are post-processed for session
variability compensation before scoring. It is shown in [1, 2]
that the m-vector system is able to retrieve more speaker rel-
evant information from the MLLR super-vector than the con-
ventional way of speaker representation by their full MLLR
super-vectors and yields promising Speaker Verification (SV)
performance compared to the classical i-vector based SV sys-
tem. Later, the effectiveness of the m-vector technique is also
revealed in a Automatic Speech Recognition (ASR) based sys-
tem [2] with phonetic class wise MLLR transformation and
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shows performance better than UBM based.

However, one of the major drawback of the ASR based sys-
tems is that it is computationally very expensive for estima-
tion of the MLLR transformation. Since, it uses the Hidden
Markov Modeling (HMM) concept to capture the temporal in-
formation of phones and requires huge modeling parameters.
On the other-hand, UBM based system uses 512-2048 Gaus-
sian components for modeling. Therefore, UBM based systems
are more suitable in real time applications for SV than ASR.

Motivation of this paper is to extend the conventional
global/single class MLLR transformation i.e. super-vector
based m-vector system in UBM framework into multi-class
wise MLLR transformation based m-vector system to incorpo-
rate the advantage of class specific MLLR transformations. Our
proposed techniques are broadly divided into two categories:
first case, the Gaussian components of the UBM are clustered
into different groups and then an MLLR transformation is es-
timated with respect to each class using the sufficient statistics
accumulated from the Gaussian components of the particular
class. Two clustering algorithms are considered: one is conven-
tional K-means and the other is a proposed algorithm based on
the concept of Expectation Maximization (EM) and Maximum
Likelihood (ML). It develops two proposed systems called, K-
means and EM multi-class MLLR m-vector systems, respec-
tively. The salient feature of these proposed systems is that it
does not require additional alignment of data even for estima-
tion of multiple MLLR transformations with respect to UBM
compared to the conventional UBM based m-vector system.
Further, the proposed clustering technique is robust to random
initialization, unlike K-means, and provides equal or compara-
ble system performance which is best obtained with K-means
over several pass run of experiments.

In the second case, MLLR transformations are estimated
with respect to pre-defined models called anchors for the m-
vector system. Anchor models are built by clustering either
non-target or target training speaker data. It yields two pro-
posed multi-class MLLR m-vector systems: one is non-target
and the other is target anchor based, respectively. Several re-
cent studies of speaker identification using anchor modeling can
be found in [3, 4]. We show that the proposed system provides
better speaker verification performance than the conventional
m-vector system. Experimental results are presented on various
tasks of the NIST 2008 SRE core condition.

The paper is organized as follows: Section 2 describes
MLLR super-vector. Section 3 describes m-vector technique.
Section 4 describes proposed systems. Section 5 describes
post-processing and scoring. Baseline system and experimen-
tal setup are described in Section 6. Results and discussions are
presented in Section 7 before the conclusion in Section 8.
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2. MLLR Super-Vector
Estimation of a MLLR [5] transformation W for a given
speaker/speech data X = {x1, x2, . . . , xT } with respect to
UBM involve the following steps:
Initial: Load UBM, feature vectors, X and calculate the prob-
abilistic alignment, γj (t) for the jth Gaussian of UBM as:

γj (t) = p(j|xt) =
ωjbj(xt)∑c

k=1 ωkbk(xt)
(1)

where c and bk indicate the number of Gaussians and the density
function of the kth Gaussian of the UBM, respectively.
Step 1: Calculate the following two sufficient statistics for the
ith components (dimension) of the feature vectors,

K
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μj and σ2
ji are jth mean, and ith component of jth covariance

matrix of UBM, respectively. The symbol (.)′ indicates matrix
transpose.
Step 2: ith row of the MLLR transformationW is obtained as,

Wi = K
(i)
G

(i)−1
(4)

Step 3: Repeat Step 1 to 2 upto feature vector dimension

Afterward, the rows of the MLLR transform are stacked [6]
to form a super-vector. We use 47 dimensional feature vectors
which gives 47 ∗ 47 = 2209 dimensional MLLR super-vectors.

3. m-Vector Technique
In this technique [1, 2], speakers are characterized bym-vectors,
which are obtained by uniform segmentation of their MLLR
super-vectors using an overlapped window as illustrated in Fig.
1. Following eqn.(4), each row of the MLLR transformation is
associated to a particular component of the feature vectors. It
gives several m-vectors per speaker and constitutes several sub-
systems. In the test phase, m-vectors of the test utterance are ex-
tracted in a similar manner and scored against the corresponding
m-vectors of the claimant. Before scoring, m-vectors are post-
processed for session variability compensation. It is observed
in [1, 2] that full system (which represents speakers conven-
tionally by their full super-vector) also contains complementary
information for m-vector system and fusion of both systems fur-
ther reduce the speaker verification error rate. Hence, all system
performances are presented in this paper with fusion of their full
system with m-vector system.

[1× 500]

mr
1 mr

2

[1× 500]

sub-sys1 sub-sys2

W r
sup [1×2209]

Figure 1: m-vector extraction of rth speaker from his/her MLLR
super-vector using an overlapped window of 500 elements.

4. Proposed Systems
4.1. EM multi-class MLLR m-vector system
Here, UBM’s Gaussian mean vectors are first clustered into
different groups using the proposed clustering algorithm
based on the concept of Expectation Maximization (EM) and
Maximum Likelihood (ML) as described in Algorithm 1.

Algorithm 1: Proposed clustering algorithm using EM and ML
Initial: Load UBM and chose number of clusters L
Step 1: Use Gaussian mean vectors of the UBM as fea-
ture vectors, Y = {μ1, μ2, . . . μc}

Step 2: Train a L components Gaussian Mixture Model
(GMM)∼ N (ω̃i, μ̃i, Σ̃i), i = 1 . . . L, using the feature
vectors Y with EM algorithm of random initialization
Step 3: Iterate EM algorithm in Step 2 several times
Step 4: Separate each Gaussian component of the GMM
obtained in Step 2 as a single Gaussian model and dis-
card the weights ω̃i to give equal importance to all the
models:

λi ∼ N (μ̃i, Σ̃i) (5)

Step 5: Assign the cth Gaussian mean vector of the
UBM, i.e. μc to cluster k in the ML sense as,

k = arg max
1≤j≤L

p(μc|λj) (6)

1000 iterations are used in Step 3 of Algorithm 1 (with con-
straints on initial and final variance ceiling, flooring of global
data). The parameters of the models λ1, . . . λL are slightly dif-
ferent each run for a particular cluster, however it yields the
same final clustering output, showing that this clustering algo-
rithm is not affected by the random initialization.

After that, a MLLR transformation is estimated for a given
speech data X = {x1, x2, . . . , xT } with respect to each class
using the sufficient statistics accumulated from the Gaussian
components for the respective class described in Algorithm 2.

Algorithm 2: Estimation of cluster-wise MLLR transformation
Step 1: Estimate γj (t) for the feature vector X with
respect to the UBM as in Eqn.(1)
Step 2: For the Lth class, compute the sufficient statis-
tics using Gaussian components ε L as in Eqn.(2-3),
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Step 3: ith row of the MLLR transformation for Lth

class is obtained,
W

L
i = K

(i)
L G

(i)−1

L (9)

Step 4: Repeat Step 2 to 3 upto the number of classes

It can be observed from Algorithm 2 in Step 1 that align-
ment of data is required only once with respect to UBM, even
with estimation of multiple class-wise MLLR transformations.
Finally, these MLLR transformations are used for speaker ver-
ification with m-vector technique described in Sec.3. Fig.2 il-
lustrates the above procedure.
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{Gaussian components index}

{2, 8, 15, . . .} {1, 7, 3, . . .}

MLLR tran. 1 MLLR tran. L

{6, 10, . . .}

Figure 2: Clustering of UBM Gaussian components and esti-
mation of an MLLR transformation with respect to each cluster.

4.2. K-means multi-class MLLR m-vector system
This system is similar to the EM multi-class MLLR m-vector
system except that a conventional K-means algorithm with ran-
dom initialization and an euclidean distance measure is used for
clustering. Clustering stops when the clusters are stable.

4.3. Anchor based multi-class MLLR m-vector systems
Non-target anchor multi-class MLLR m-vector system: UBM
training non-target speaker data are first clustered into differ-
ent groups using their MLLR super-vectors and then cluster-
wise model is derived from UBM with Maximum a posteri-
ori (MAP) adaptation using data from the respective group.
Then, cluster-specific models are used to iteratively recluster the
data in the ML sense similarly to Multiple Background Model
(MBM) formation in [7]. It generates new cluster-wise mod-
els after each iteration. We follow 20 such iterations and ob-
serve that clustered associated data are not altered. Finally, a
Gaussian Mixture Model (GMM) with 512 components called
anchor model/anchor is estimated with respect to each cluster
using data belonging to the particular cluster from scratch. Dur-
ing training/testing, MLLR transformations of a given speech
data are estimated with respect to anchor models for m-vectors.

Target anchor case is similar to the non-target anchor case
with the only difference that target speaker training data is used
for the clustering and anchor model formation.

5. Post-processing and Scoring
Different session variability compensation techniques can be
found in literature, e.g., LDA followed by Within Class Covari-
ance Normalization (WCCN) or Probabilistic (P)-LDA [8, 9].
In our setup, Linear Discriminant Analysis (LDA) projected m-
vectors are conditioned using the Eigen Factor Radial (EFR)
[10] algorithm recently introduced in i-vector environment to
handle the session variability compensation as in Eqn.(10).

m̂←
V −

1

2 (m−m)√
(m−m)′V −1(m−m)

(10)

where m̄ and V are respectively, the mean and covariance ma-
trix of m-vectors for non-target speakers in the development set
and m̂ represents the conditioned m-vector.

During test phase, the score between the two LDA-EFR
processed m-vectors is calculated using a Mahalanobis based
scoring function [10]. LDA and EFR are implemented sepa-
rately for each sub-system. Finally, m-vector scores for the re-
spective sub-systems are fused with equal weights across a par-
ticular LDA dimension. All results presented in the paper were
computed with two iterations of EFR.

6. Experimental Setup
Following [1], the baseline system considers a global MLLR
transformation derived from the UBM for a given speech utter-

ance and processed by the m-vector technique to characterize
the speaker as described in Sec.3. All experiments are carried
on NIST 2008 SRE male speakers as per NIST evaluation plan
[11]. There are 1270 utterances for training 1270 target mod-
els. Each utterance is around 5 minutes long with 2.5 minutes
of speech in average.

47 dimensional PLP features (15 static with their Δ, ΔΔ,
ΔE and ΔΔE) are extracted from the speech signal each 10 ms
with a Hamming window over the 0-3800 Hz bandwidth. An
energy-based voice activity detection is applied on the feature
vectors to discard less energetic or silent frames. Then, selected
frames are normalized to zero mean and unit variance at the ut-
terance level. A male gender dependent UBM of 512 mixture
with diagonal covariance matrices, is trained using non-target
speaker data from NIST 2004 SRE; unless mentioned, all re-
ported experiment are shown for a UBM with 512 Gaussians.
LDA and EFR are estimated using 12399 utterances from 890
non-target speakers over NIST 2004-05, Switchboard 1, 2, 3
and Switchboard cell 1 & 2 (about 15 sessions per speaker). All
systems use a single iteration of adaptation for MLLR transfor-
mation. If the inverse of G(i) matrix for a particular class is
singular due to a lack of data, the global MLLR transformation
is used instead. Equal Error Rate (EER) and Minimum Detec-
tion Cost Function (MinDCF) are used for the evaluation of the
system performances as per NIST 2008 plan [11].

7. Results and Discussion
For analysis, Speaker Verification (SV) performances in terms
of EER are compared on NIST 2008 SRE core condition det
7 task. For simplicity, optimal LDA dimension is not shown
in the tables. All m-vector system results are presented in the
paper for m-vector size of 500.

7.1. Selection of optimal anchor multi-class MLLR m-
vector system

Table 1 shows the effect of varying the number of anchor mod-
els on SV performance with the proposed anchor-based multi-
class MLLR m-vector system. Table 2 compares the perfor-
mance of the baseline system for different UBM sizes with the
optimal anchor-based multi-class m-vector system obtained in
Table 1. In the case of two anchors, one cluster contains 45%
and the other one 55% of the total training data also used for
UBM training. From Tables 1 and 2, it can be observed that the
proposed anchor multi-class MLLR m-vector system performs

Table 1: Performance of the anchor-based multi-class MLLR
m-vector system depending on the number of anchor models on
NIST 2008 SRE core condition (det 7 task).

Anchor based # of anchors [% EER]
m-vector system 2 3 4 5

Non-target 3.31 3.15 2.93 3.10
Target 3.20 3.13 3.27 3.10

Table 2: EER of best non-target anchor-based multi-class
MLLR m-vector system and of the baseline system with vari-
ous UBM sizes on NIST 2008 SRE core condition (det 7 task);
each anchor model has 512 mixture components.

m-vector UBM size for baseline/(equ. # of anchors)
system 512/(1) 1024/(2) 1536/(3) 2048/(4)

Baseline 3.45 3.70 3.60 3.78
Anch. non-target - 3.31 3.15 2.93
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Table 3: EER for a number of class-wise MLLR transformations
with UBM based multi-class MLLR m-vector system on NIST
2008 SRE core condition (det 7 task). Number of Gaussians in
the respective classes are shown in parenthesis.

m-vector Clustering # of class-wise EER
system Algorithm MLLR trans. (%)

Baseline - 1 (global) 3.45
EM multi-class Proposed 2 (358,154) 3.21

MLLR EM & ML 3 (100,100,312) 3.44
K-means multi- Conventional 2 (252,260) 3.22

class MLLR K-means 3 (170,180,162) 3.08

better than the baseline system with a UBM having an equiva-
lent number of Gaussian components.

7.2. Selection of optimal UBM multi-class MLLRm-vector
system

Table 3 compares the SV performance of the proposed UBM-
based multi-class MLLR m-vector systems for various number
of class wise MLLR transformations on NIST 2008 SRE core
condition det 7 task. For the K-means case, the system perfor-
mance is given for the experiment pass which showed the best
SV performance over 10 runs as in Fig.3.

From Table 3, it can be observed that the proposed multi-
class MLLR m-vector systems show better performance than
the baseline system. Both proposed systems give lower EER as
the number of classes (i.e. MLLR transformations) increases
and obtain optimal results for 2 and 3 classes, respectively with
proposed and K-means algorithm. However, the performance
for 2 and 3 classes are very similar in K-means.

Having few classes leads to a higher acoustic variability
within a class, but increasing the number of classes reduces the
amount of data for each class and may split an acoustic con-
text across several classes. Hence, further clustering is not per-
formed.
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Figure 3: Effect of random initialization with K-means cluster-
ing algorithm in terms of speaker verification EER on det 7 task
of NIST 2008 SRE core condition.

From Table 3 and Figure 3, it can be deduced that the pro-
posed EM clustering method is robust to random initialization,
compared to K-means, and gives equal or comparable SV per-
formance than the best system obtained with K-means. Most
of the experiments results obtained with K-means for 3 classes
are similar to the proposed clustering. It also reflects that the
proposed algorithm provides optimal clustering and does not re-
quire many experiments to judge system performance like with
K-means.

7.3. Performance over different recording conditions

Table 4 compares the SV performance of the proposed opti-
mal multi-class MLLR m-vector systems obtained in Tables 1

Table 4: Comparison of speaker verification performance of the
baseline system with the proposed optimal multi-class MLLR
m-vector systems (in Tables 1 & 3) on NIST 2008 SRE core
condition over various tasks.

m-vector %EER/(MinDCF)
system det 5 det 6 det 7 det 8

Baseline 7.11 6.46 3.45 2.92
(0.0351) (0.0392) 0.0193 (0.0155)

EM multi- 5.51 6.62 3.21 2.20
class (0.0298) (0.0382) (0.0191) (0.0121)

K-means 5.55 6.50 3.08 2.16
multi-class (0.0300) (0.0380) (0.0181) (0.0101)

Anch. non-target 8.00 6.57 2.93 1.75
multi-class (0.0361) (0.0372) (0.0186) (0.0132)

& 3 with the baseline system on NIST 2008 SRE over vari-
ous tasks. From Table 4, it can be observed that the proposed
UBM based multi-class MLLR m-vector system shows lower
EER and MinDCF in most of the det tasks. The performance of
the proposed algorithm having 2 classes also shows very com-
parable performance to the system which is even obtained with
3 classes in K-means. Moreover, it does not require additional
temporal alignment of the data with respect to the UBM for es-
timation of multi-class wise MLLR transforms compared to the
baseline system (see Algorithm 2).

Anchor based non-target multi-class MLLR m-vector sys-
tem shows considerably better performance for det 7 & 8 (re-
lated to english data: tel-tel configuration) and slightly degrada-
tion in case of det 5 (tel-mic) & 6 (tel-tel with mix of languages).
It can be due to the fact that training data of anchor associated
clusters are not well balanced across language or microphone.

8. Conclusion
In this paper, we extended the conventional global MLLR
transformation based m-vector system in UBM framework into
multi-class wise MLLR m-vector system to account for the ad-
vantage of class specific MLLR transformations. We have pro-
posed two techniques: in the first approach, Gaussian mean vec-
tors of the UBM are grouped into several classes using conven-
tional K-means, and a proposed clustering algorithm based on
EM and ML concepts. Then, MLLR transformations are cal-
culated with respect to each class for a given speech data us-
ing sufficient statistics accumulated from the Gaussians of the
particular class, which are used in the form of super-vector for
speaker representation by their m-vectors. Hence, it does not re-
quire additional alignment of speech data with respect to UBM
for multiple MLLR transformations. In the second case, MLLR
transformations are estimated with respect to predefined anchor
models. The proposed systems show better performance than
the conventional system. The experimental results are com-
pared on various tasks in core condition of NIST 2008 SRE.
We also show that the proposed EM & ML based clustering al-
gorithm is robust to random initialization and provides equal or
comparable system performance compared to K-means. More-
over, it does not require many experiments to judge the system
performance like K-means based system. Lastly, anchor based
system indicates that it is better to use multiple MLLR transfor-
mations derived with respect to a number of anchors rather than
use a larger UBM based single-class/global MLLR transforma-
tion for speaker verification in m-vector framework.
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