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Abstract. We analyze the transport equation driven by a zero quadratic
variation process. Using the stochastic calculus via regularization and the
Malliavin calculus techniques, we prove the existence, uniqueness and absolute
continuity of the law of the solution. As an example, we discuss the case when
the noise is a Hermite process.

1. Introduction. Transport phenomena arise in many research fields; geosciences,
physics, biology, even in social sciences, for naming just a few. The linear transport
equation,

∂tu(t, x) + b(t, x) · ∇u(t, x) = 0 , (1)

emerges as a model for the concentration (density) of a pollutant in a flow, and may
be considered as a particular case of the convection/advection equation when the
flow under consideration is incompressible (i.e. has zero divergence).

To point out some applications of this equation, we refer the reader to the works
of Lions ([12, 13]) for a detailed exposition of its use in fluid dynamics, the work of
Dafermos [3] for its relation to conservation laws, and the work of Perthame [22] to
understand the relevance of equations like (1) in biology. Transport equations also
appear in models for ocean salinity, see [4].
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In this paper we analyze a stochastic transport equation. The following one-
dimensional Cauchy problem is considered: given an initial-data u0, find u(t, x;ω) ∈
R, satisfying







∂tu(t, x;ω) + ∂xu(t, x;ω)
(

b(t, x) +
dZt

dt
(ω)
)

= 0,

u(t0, x) = u0(x),
(2)

with (t, x) ∈ UT = [0, T ]× R, ω ∈ Ω, b : [0, T ]× R → R a given vector field, and
the noise (Zt)t≥0 is a stochastic process with zero quadratic variation. Problem (2)
may be understood as a model for the concentration (density) of a pollutant in a
flow where the velocity field has a random perturbation.

The stochastic transport equation driven by the standard Brownian motion was
first addressed in Kunita’s books (see [10], [11]). More recently it has been studied
by several authors; in [1] the linear additive case is considered, existence and unique-
ness of weak Lp-solutions and a representation for the general solution were shown.
The non-blow-up problem is addressed for the multiplicative case with Stratonovich
form in [5]. In [7] the authors have shown that the introduction of a multiplicative
noise in the PDE allows some improvements in the traditional hypothesis needed to
prove that the problem is well-posed, this is extended later to a non-linear case in
[20]. A new uniqueness result is obtained in [14] by means of Wiener-chaos decom-
position, and working on the associated Kolmogorov equation. The extension of the
model to the fractional Brownian noise has been done in [21], where the existence
of density of the solution and Gaussian estimates of the density were proven.

Our purpose is to solve the equation (2) and to analyze the properties of its
solution in the case when the noise is a more general stochastic process, possibly
non-Gaussian. We will focus on the situation when the noise Z in (2) is a stochastic
process with zero quadratic variation, this is well defined in the next section of the
paper.

The reason why we chose such a noise is that the stochastic integration theory in
the sense of Russo-Vallois (see [24], [25]) can be applied to it. In fact, the stochastic
integral in (2) will be understood as a symmetric integral in the Russo-Vallois sense
with respect to the noise Z. Besides, in most of the papers cited in the previous
paragraph, the Itô-Wentzell formula plays a crucial role in the characterization
of the solution, consider a zero quadratic variation process is as far as one can
go in order to prove that characterization, avoiding the presence of second order
terms (see Proposition 9 in [8]). Among the zero covariance processes lies the
fractional Brownian motion (for H ≥ 1/2), a self-similar process that find some of
their applications in various kind of phenomena, going from hydrology and surface
modelling to network traffic analysis and mathematical finance, to name a few.

In this paper, first, the existence and uniqueness of the solution to (2) is proved,
by using the so-called method of characteristics that comes from the works of Kunita
([9], [10]). Then it is show that the solution can be expressed as the initial data
u0 applied to the inverse flow associated to the transport equation. Later, using
the techniques of Malliavin calculus on this representation, it is possible to prove
the existence of the density of this solution. This will be done by showing that
the Malliavin derivative of the solution is strictly positive. To this end, the explicit
expression of the Malliavin derivative must be calculated and controlled.

The outline of this paper is as follows: In Section 2 we present the basics defini-
tions of the integration theory in the sense of Russo-Vallois, stochastic calculus via
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regularization, and the Malliavin techniques. The existence and uniqueness of weak
solution to problem (2) is proved in Section 3. Section 4 provides the demonstration
of the existence of the density of the solution. Finally in Section 5 we illustrate the
results considering a Hermite process as the driving noise.

2. Preliminaries. In this section, we recall the notions from the stochastic calculus
via regularization and from Malliavin calculus that we will use in what follows. More
details can be found in [25] or [17].

2.1. Stochastic calculus via regularization. Throughout this paper T will be
a fixed positive real number. We recall the definition of the symmetric integral d◦X
that will appear in (2) and in the definition of the solution in formula (5).

Assume (Xt)t≥0 is a continuous process and (Yt)t≥0 is a process with paths in

L1
loc(R

+), i.e. for any b > 0,
∫ b

0
|Yt|dt <∞ a.s. The generalized stochastic integrals

(forward, backward and symmetric) are defined through a regularization procedure
see [24], [25]. Here we recall only the definition of the symmetric integral (actually,
since we are dealing with zero quadratic variation processes, the three integrals will
coincide) . Let I0(ε, Y, dX) be the ε−symmetric integral

I0(ε, Y, dX)(t) =

∫ t

0

Ys
(Xs+ε −Xs−ε)

2ε
ds, t ≥ 0.

The symmetric integral
∫ t

0 Ysd
◦Xs is defined as

∫ t

0

Ysd
◦Xs := lim

ε→0
I0(ε, Y, dX)(t), (3)

for every t ∈ [0, T ], provided the limit exists in the ucp sense (uniformly on compacts
in probability).

In a similar way, the covariation or generalized bracket, [X,Y ]t of two stochastic
processes X and Y is defined as the limit ucp when ε goes to zero of

[X,Y ]ε,t =
1

ε

∫ t

0

(Xs+ε −Xs) (Ys+ε − Ys) ds, t ≥ 0.

Note that [X,Y ] coincide with the classical bracket when X and Y are semi-
martingales.

A processX , such that [X,X ] exists, is called finite quadratic variation processes.
If [X,X ] ≡ 0 we say that X is a zero quadratic variation process. Our integrand in
(2) will be such a zero quadratic variation process.

2.2. Malliavin derivative. We also present the elements from the Malliavin cal-
culus that will be used in the paper. We refer to [17] for a more complete exposition.
Consider H a real separable Hilbert space and (B(ϕ), ϕ ∈ H) an isonormal Gauss-
ian process on a probability space (Ω,A,P), that is, a centered Gaussian family of
random variables such that E (B(ϕ)B(ψ)) = 〈ϕ, ψ〉H.

We denote by D the Malliavin derivative operator that acts on smooth functions
of the form F = g(B(ϕ1), . . . , B(ϕn)) (g is a smooth function with compact support
and ϕi ∈ H, i = 1, ..., n)

DF =

n
∑

i=1

∂g

∂xi
(B(ϕ1), . . . , B(ϕn))ϕi.
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It can be checked that the operator D is closable from S (the space of smooth
functionals as above) into L2(Ω;H) and it can be extended to the space D

1,p which
is the closure of S with respect to the norm

‖F‖p1,p = EF p + E‖DF‖pH.

We denote by D
k,∞ := ∩p≥D

k,p for every k ≥ 1. In this paper, H will be the
standard Hilbert space L2([0, T ]).

We will make use of the chain rule for the Malliavin derivative (see Proposition
1.2.4 in [17]). That is, if ϕ : R → R is a differentiable with bounded derivative and
F ∈ D

1,2, then ϕ(F ) ∈ D
1,2 and

Dϕ(F ) = ϕ′(F )DF. (4)

An important role of the Malliavin calculus is that it provides criteria for the
existence of the density of a random variable. Here we will use the following result:
if F is a random variable in D

1,2 such that ‖DF‖H > 0 almost surely, then F admits
a density with respect to the Lebesgue measure (see e.g. Theorem 2.1.3 in [17]).

3. Existence and uniqueness. This section presents the results concerning the
existence of the weak solution for the stochastic transport equation (2) driven by a
zero quadratic variation process.

Let (Ω,F , P ) be a fixed probability space and (Wt)t∈[0,T ] a standard Wiener
process on it. Consider a continuous process (Zt)t≥0, adapted to the filtration
generated by W , and such that

[Z,Z]t = 0, ∀ t ≥ 0.

The quadratic variation [Z,Z] is understood in the sense of stochastic calculus via
regularization, as introduced in Section 2.1.

We consider the one-dimensional Cauchy problem (2) driven by the process Z,
with a given initial-data u0.

We recall the notion of weak solution to (2) (see [7]).

Definition 3.1. A stochastic process u ∈ L∞(Ω × [0, T ] × R) is called a weak
Lp−solution of the Cauchy problem (2), if for any ϕ ∈ C∞

c (R),
∫

R
u(t, x)ϕ(x)dx is an

adapted real valued process which has a continuous modification, finite covariation,
and for all t ∈ [0, T ], P-almost surely

∫

R

u(t, x)ϕ(x)dx =

∫

R

u0(x)ϕ(x) dx+

∫ t

0

∫

R

u(s, x) b(s, x)∂xϕ(x) dxds

+

∫ t

0

∫

R

u(s, x)b′(s, x)ϕ(x) dxds+

∫ t

0

∫

R

u(s, x)∂xϕ(x) dxd
◦Zs,

where b′(s, x) denotes the derivative of b(s, x) with respect to the spatial variable
x, and the integral d◦Z is a symmetric integral defined via regularization (see (3)).

Following the arguments presented in [21], the existence and uniqueness of the
weak solution to (2) follows immediately.

Proposition 1. Assume that b ∈ L∞((0, T );C1
b (R)). Then there exists a C1(R)

stochastic flow of diffeomorhism (Xs,t, 0 ≤ s ≤ t ≤ T ), that satisfies

Xs,t(x) = x+

∫ t

s

b(u,Xs,u(x))du + Zt − Zs (5)
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for every x ∈ R
d. Moreover, given u0 ∈ L∞(R), the stochastic process

u(t, x) := u0(X
−1
t (x)), t ∈ [0, T ], x ∈ R (6)

is the unique weak L∞−solution of the Cauchy problem 2, where Xt := X0,t for
every t ∈ [0, T ].

Proof. The demonstration follows closely the lines of the proof of Theorem 1 in
[21], which is based on the Itô formula in the Russo-Vallois sense for functions
depending on ω. Although in [21] the noise is a fractional Brownian motion with
Hurst parameter H > 1

2 , the only property of the fBm needed in the demonstration

is the fact that, for H > 1
2 , is a zero quadratic variation process. Therefore, all the

steps in the proof of Theorem 1 in [21] remain valid when the noise is a general zero
quadratic variation process.

From (6), it is clear that the properties of the solution to the transport equation
(2), in particular the existence of its density, will depend on the initial condition
u0 and on the properties of the inverse flow X−1

t . Since later in the paper we will
assume on u0 as much regularity as needed, we focus on the analysis of the inverse
flow. Let’s start by describing its dynamic.

Lemma 3.2. Assume b ∈ L∞
(

(0, T );C1
b (R)

)

∩ C ((0, T )× R) . Then the inverse
flow satisfies the backward stochastic equation

Ys,t(x) = x−

∫ t

s

b(r, Yr,t(x))dr − (Zt − Zs) (7)

for every 0 ≤ s ≤ t ≤ T and for every x ∈ R.
Moreover, Y is the unique process that satisfies (7) with Ys,s(x) = x.

Proof. Analogously to the proof of Lemma 2 in [21].

Remark 1. If we set Rt,x(u) = Yt−u,t(x) for u ∈ [0, t], and x ∈ R, then we have

Rt,x(u) = x−

∫ u

0

b(t− a,Rt,x(a))da− (Zt − Zt−u). (8)

This can be easily seen from (7) by making the change of variable a = t − r. If we
set

Bt(a, x) = −b(t− a, x)

for a ≤ t, x ∈ R, and

Zu,t = −(Zt − Zt−u)

for t ∈ [0, T ] and u ≤ t, then (8) becomes

Rt,x(u) = x+

∫ u

0

Bt(a,Rt,x(a))da + Zu,t. (9)

We will actually use the above equation in order to obtain the properties of the
inverse flow.

4. The Malliavin derivative and the density of the solution. We will show
that the solution to (2) is Malliavin differentiable and, using the techniques of the
Malliavin calculus, that it admits a density with respect to the Lebesgue measure.
From the representation (6), it is enough to focus on the Malliavin derivative of the
inverse flow X−1

t whose dynamic is governed by (7) or (9).
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4.1. Malliavin differentiability of the inverse flow. Throughout this section
we assume that

b ∈ L∞
(

(0, T );C1
b (R)

)

∩ C ((0, T )× R) . (10)

The noise Z is a zero quadratic variation process, adapted to the filtration (Ft)t∈[0,T ]

such that Zt ∈ D
1,2 for every t ∈ [0, T ]. We suppose also that

sup
t∈[0,T ]

E |Zt|
2
<∞ and sup

t∈[0,T ]

E‖DZt‖
2
L2([0,T ]) <∞. (11)

Lemma 4.1. Under hypothesis (10) and (11), the equation (9) has an unique so-
lution.

Proof. Using classic Picard iterations is clear that there exists an unique solution
to equation (9). We refer the reader to the proofs of Lemma 5 in [6] or Lemma 2.2.1
in [17] for similar results.

Now, the goal is to show the Malliavin differentiability of the solution to (9).

Proposition 2. Assume (10) and (11). Then, for x ∈ R, t ∈ [0, T ], u ≤ t, the
random variable Rt,x(u) given by (9) belongs to D

1,2. Moreover, the Malliavin
derivative of Rt,x(u) satisfies

DαRt,x(u) =

∫ u

0

B′
t(s,Rt,x(s))DαRt,x(s)ds+DαZu,t (12)

for every α < t.

Proof. Fix t ∈ [0, T ], x ∈ R. Define the usual iterations

R
(0)
t,x(u) = x for every t ∈ [0, T ]

and for n ≥ 0,

R
(n+1)
t,x (u) = x+

∫ u

0

Bt(s,R
(n)
t,x )(s)ds + Zu,t

with 0 ≤ u ≤ t.

It is clear that R
(0)
t,x(u) is Ft-measurable and belongs to D

1,2. By a trivial in-

duction argument and using Proposition 1.2.4 in [17], we have that R
(n)
t,x (u) is Ft-

measurable and R
(n)
t belongs to D

1,2 for every n ≥ 0. This implies that

DαR
(n)
t,x (u) = 0 if α > t.

Our proof follows the following standard arguments: first, we notice the L2

convergence of R
(n)
t,x (u) to Rt,x(u). Secondly, we prove an uniform bound on the

sequence of Malliavin derivatives of R
(n)
t,x (u) and then we conclude the Malliavin

differentiability of Rt,x(u) along with the expression of its Malliavin derivative.
Concerning the first step, we only remind that (see e.g. the proof of Lemma 5 in

[6]), for every u ∈ [0, T ]

sup
t≥u

E

∣

∣

∣
R

(n)
t,x (u)−Rt,x(u)

∣

∣

∣

2

→n→∞ 0. (13)

Let us use the notation

mT := sup
t∈[0,T ]

sup
u∈[0,t]

E‖DZu,t‖
2
L2([0,T ]) (14)
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which is a finite positive constant due to (11). We now show that

sup
n≥1

sup
t≥u

E‖DR
(n)
t,x (u)‖

2
L2([0,T ]) <∞. (15)

For u ∈ [0, T ] fixed, denote by

gnu = sup
t≥u

E‖DR
(n)
t,x (u)‖

2
L2([0,T ]) = sup

t≥u
E

∫ T

0

(DαR
(n)
t,x (u))

2dα.

Then, using the fact that b′ is bounded

g(n+1)
u =sup

t≥u
E

(

∫ T

0

∫ u

0

B′
t(a,R

(n)
t,x (a))DαR

(n)
t,x (a)da+DαZu,t

)2

dα

≤C(T ) sup
t≥u

(

E

∫ T

0

dα

∫ u

0

da(DαR
(n)
t,x (a))

2 +mT

)

≤C(T ) sup
t≥u

(

∫ u

0

da sup
t≥a

E

∫ T

0

dα(DαR
(n)
t,x (a))

2 +mT

)

=C(T )(

∫ u

0

gnada+mT ),

because a ≤ u ≤ t. By taking the supremum over n ≥ 1, and then applying
Gronwall lemma, we get

sup
n≥1

gnu ≤ C1(T )e
C2(T ) <∞.

So, (15) holds. This, together with (13) and Lemma 1.2.3 in [17] implies that

Rt,x(u) ∈ D
1,2 for every t ∈ [0, T ],

and the sequence of derivatives (DR
(n)
t,x (u))n≥0 is convergent in L2(Ω × [0, T ]) to

DRt,x(u), hence (12) holds true.

4.2. The density of the solution. Let Ys,t(x) be the inverse flow given by (7),
with 0 ≤ s ≤ t ≤ T and x ∈ R. Recall the notation Rt,x(u) = Yt−u,t(x) if u < t,
and the hypothesis on the noise Z.

From (9) and Proposition 2, it follows that Ys,t(x) is Malliavin differentiable.
Our next step is to find the expression of its Malliavin derivative.

Proposition 3. Assume that b satisfies (10), Z satisfies (11) and let Y be given
by (7). Then for every s ≤ t, α ≤ t and x ∈ R, we have

DαYs,t(x) =1(0,T )(α)e
−

∫
t

s
b′(u,Yu,t(x))du

∫ t

s

b′(u, Yu,t(x))Dα(Zu,t)e
∫

t

u
b′(r,Yr,t(x))dr du

+ DαZs,t.

Proof. First we notice that, if α > t,DαYs,t(x) = 0, because Ys,t(x) is Ft-measurable.
Now, let’s observe that

DαRt,x(s) =

∫ s

0

B′
t(u,Rt,x(u))DαRt,x(u)du+DαZs,t,
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where we recall the notation Zs,t = −(Zt − Zt−s) for 0 ≤ s ≤ t ≤ T . Considering
the previous relation as an integral equation of functions depending on the vari-
able s, regularizing Z by standard mollifiers, applying the method of variations of
parameters and then integration by parts, we obtain

DαRt,x(s) =DαZs,t

+ e
∫

s

0
B′

t(u,Rt,x(u))du

∫ s

0

B′
t(u,Rt,x(u))Dα(Zu,t)e

−
∫

u

0
B′

t(r,Rt,x(r))drdu

Writting this in terms of the inverse flow Y ,

DαYt−s,t(x) =DαZs,t + e−
∫

s

0
b′(t−u,Yt−u,x(u))du ·

∫ s

0

b′(t− u, Yt−u,x(u))Dα(Zu,t)e
∫

u

0
b′(t−r,Yt−r,t(r))drdu.

Using the changes of variables u′ = t− u, r′ = t− r and the notation s′ = t− s we
obtain the desired result.

Let us prove that the random variable Ys,t admits a density, for every 0 ≤ s ≤
t ≤ T .

Proposition 4. Fix 0 ≤ s ≤ t ≤ T . Assume (10) and (11). In addition we will
suppose that for every 0 < s < t ≤ T

‖DZt‖
2
L2([t−s,T ]) =

∫ T

t−s

(DαZt)
2dα > 0, almost surely. (16)

Then the law of Ys,t(x) is absolutely continuous with respect to the Lebesgue measure.

Proof. By Theorem 2.1.3 in [17], we need to prove that

‖DYs,t‖
2
L2([0,T ]) =

∫ T

0

(DαYs,t)
2dα > 0 almost surely.

We will use the inequality
∫ T

0

(DαYs,t)
2dα ≥

∫ T

t−s

(DαYs,t)
2dα

and the fact that, for α ∈ (t− s, T ) and u ∈ (s, t), we have

DαZs,t = −DαZt and DαZu,t = −DαZt

since DαZt−s = DαZt−u = 0. Therefore
∫ T

0

(DαYs,t)
2dα ≥

∫ T

t−s

(DαYs,t)
2dα

=

∫ T

t−s

(

−e−
∫

t

s
b′(u,Yu,t(x))du

∫ t

s

b′(u, Yu,t(x))DαZte
∫

t

u
b′(r,Yr,t(x))dr du−DαZt

)2

dα

=

∫ T

t−s

(DαZt)
2

(

e−
∫

t

s
b′(u,Yu,t(x))du

∫ t

s

b′(u, Yu,t(x))e
∫

t

u
b′(r,Yr,t(x))dr du + 1

)2

dα

We claim that

e−
∫

t

s
b′(u,Yu,t(x))du

∫ t

s

b′(u, Yu,t(x))e
∫

t

u
b′(r,Yr,t(x))dr du+ 1 > C > 0. (17)
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Indeed, considering the boundedness of b′, and the inequalities

e−(t−s)‖b′‖∞ ≤ e±
∫

t

s
b′(a,Ya,t(x))da ≤ e(t−s)‖b′‖∞ , (18)

we may note that

e−
∫

t

s
b′(u,Yu,t(x))du

∫ t

s

b′(u, Yu,t(x))e
∫

t

u
b′(r,Yr,t(x))dr du

≥ inf
u∈(s,t);x∈R

b′(u, x) · (t− s) · e−2(t−s)‖b′‖∞

≥ −‖b′‖∞ · (t− s) · e−2(t−s)‖b′‖∞

= f(‖b′‖∞ · (t− s)),

with f(x) = −x exp(−2x). The function f attains its minimum at x = 1/2, with
f(1/2) = −1/2 exp(−1) > −1, this prove our claim. The conclusion follows from
condition (16).

Condition (16) ensures the existence of the density of the noise Zt for each t.
This property is then transfered to the solution.

Let us conclude the existence of the density of the solution to the transport
equation.

Theorem 4.2. Let u(t, x) be the solution to the transport equation (2). Assume
that u0 ∈ C1(R) such that there exists C > 0 with (u′0(x))

2 ≥ C for every x ∈
R. Then, for every t ∈ [0, T ] and for every x ∈ R, the random variable u(t, x)
is Malliavin differentiable. Moreover u(t, x) admits a density with respect to the
Lebesgue measure.

Proof. By formula (6), u(t, x) = u0(Y0,t(x)) and then we get the Malliavin differen-
tiability of u(t, x) from Proposition 2. The chain rule for the Malliavin derivative
(4) implies

Dαu(t, x) = u′0(Y0,t(x))DαY0,t(x)

and then, from the above result and the condition imposed on the initial value u0
∫ T

0

(Dαu(t, x))
2dα > 0

almost surely for every t ∈ [0, T ], x ∈ R. This implies that the random variables
u(t, x) admits a density.

5. An example: The Hermite process. In this section we will give an exam-
ple of a class of stochastic processes that satisfies the conditions required for the
noise Z in (2). Recall that we assumed that the noise Z is an adapted square inte-
grable process, with zero quadratic variation in the Russo-Vallois sense, Malliavin
differentiable, and satisfies (11) and (16).

The class of processes we consider is those of Hermite processes. The Hermite
process of order q ≥ 1 lives in the Wiener chaos of order q, and it is defined as
a multiple stochastic integral with respect to the standard Brownian motion. Its
representation is related to the Wiener integral representation of the fractional
Brownian motion. We recall that the fractional Brownian process (BH

t )t∈[0,1] with
Hurst parameter H ∈ (0, 1) can be written as

BH
t =

∫ t

0

KH(t, s) dWs, t ∈ [0, 1] (19)
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where (Wt, t ∈ [0, T ]) is a standard Wiener process, and if H > 1
2 , the kernel

KH (t, s) has the expression

KH (t, s) = cHs
1/2−H

∫ t

s

(u − s)H−3/2uH−1/2 du

where t > s and cH =
(

H(2H−1)
β(2−2H,H−1/2)

)1/2

and β(·, ·) is the Beta function. For

t > s, the kernel’s derivative is

∂KH

∂t
(t, s) = cH

(s

t

)1/2−H

(t− s)H−3/2.

We denote by (Z
(q,H)
t )t∈[0,T ] the Hermite process with self-similarity parameter

H ∈ (1/2, 1). For t ∈ [0, T ] it is given by

Z
(q,H)
t =d(H)

∫ t

0

. . .

∫ t

0

dWy1
. . . dWyq

·

(

∫ t

y1∨...∨yq

∂1K
H′

(u, y1) . . . ∂1K
H′

(u, yq)du

)

,

(20)

where KH′

is the usual kernel of the fractional Brownian motion that appears in
(19) and

H ′ = 1 +
H − 1

q
⇐⇒ (2H ′ − 2)q = 2H − 2.

The covariance of Z(q,H) is identical to that of fBm, namely

E

[

Z(q,H)
s Z

(q,H)
t

]

=
1

2
(t2H + s2H − |t− s|2H). (21)

The constant d(H) is chosen to have variance equal to 1.
The Hermite process Z(q,H) is H-self-similar and it has stationary increments,

the mean square of the increment is given by

E

[

∣

∣

∣
Z

(q,H)
t − Z(q,H)

s

∣

∣

∣

2
]

= |t− s|2H ; (22)

as a consequence, using the self-similarity and the stationarity of the increments
of ZH , it follows from Kolmogorov’s continuity criterion (see theorem 2.2.3 in [19])
that Z(q,H) has Hölder-continuous paths of any exponent δ < H . For q = 1, Z(1,H)

is standard fBm with Hurst parameter H , while for q ≥ 2 the Hermite process is
not Gaussian. In the case q = 2 this stochastic process is known as the Rosenblatt
process.

We will use the notation ZH := Z(q,H). Also, denote by LH the kernel of the
Hermite process

LH
t (y1, . . . , yq) = 1(y1∨...∨yq≤t)

∫ t

y1∨...∨yq

∂1K
H′

(u, y1) . . . ∂1K
H′

(u, yq)du. (23)

We can write ZH
t = Iq(L

H) with Iq being the multiple integral of order q with
respect to the Wiener process W . We refer the reader to the manuscript [28] and
references there in for a deeper discussion on Hermite processes and other self-similar
processes.

It is immediate to see that ZH has zero quadratic variation as defined in Section
2.
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Lemma 5.1. ZH is a zero quadratic variation process.

Proof. Indeed, from (22),

1

ε
E

∫ t

0

(ZH
s+ε − ZH

s )2ds = tε2H−1 →ε→0 0.

We will show that the process ZH satisfies the assumptions imposed throughout
the paper for the noise Z appearing in (2). Since it is defined as a multiple integral,
the random variable ZH

t is clearly Malliavin differentiable for every t ∈ [0, T ].

Lemma 5.2. The Hermite process satisfies (11) and (16).

Proof. Clearly, using (21)

sup
t∈[0,T ]

E|ZH
t |2 = T 2H <∞.

Also, with LH given by (23),

DαZ
H
t = qIq−1(L

H
t (·, α)),

the properties of multiple Wiener-Itô integrals gives

E

∫ T

0

(DαZ
H
t )2dα = qE[Iq(L

H
t )]2 = qE(ZH

t )2 = qt2H .

This implies

sup
t∈[0,T ]

E

∫ T

0

(DαZ
H
t )2dα <∞.

The condition (16) is satisfied because ZH
t is a multiple integral of order q. A

classical result by Shikegawa [27] (see also [15], Corollary 5.2) says that, if q ≥ 1 is
an integer, and f a of L2(Rq) with ‖f‖L2(Rq) 6= 0 , then the q-multiple Wiener-Itô
integral of f has a density and satisfies (16).

Remark 2. In the case q = 1, that is, ZH is a fractional Brownian motion, a
deeper analysis of the density of the solution to (2) can be done. In particular, it is
possible to prove Gaussian bounds for the density, see [21].
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