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We analyze the transport equation driven by a zero quadratic variation process. Using the stochastic calculus via regularization and the Malliavin calculus techniques, we prove the existence, uniqueness and absolute continuity of the law of the solution. As an example, we discuss the case when the noise is a Hermite process.

1. Introduction. Transport phenomena arise in many research fields; geosciences, physics, biology, even in social sciences, for naming just a few. The linear transport equation,

∂ t u(t, x) + b(t, x) • ∇u(t, x) = 0 , (1) 
emerges as a model for the concentration (density) of a pollutant in a flow, and may be considered as a particular case of the convection/advection equation when the flow under consideration is incompressible (i.e. has zero divergence).

To point out some applications of this equation, we refer the reader to the works of Lions ([12, 13]) for a detailed exposition of its use in fluid dynamics, the work of Dafermos [START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics[END_REF] for its relation to conservation laws, and the work of Perthame [START_REF] Perthame | Transport Equations in Biology[END_REF] to understand the relevance of equations like [START_REF] Catuogno | L p solutions of the stochastic transport equation[END_REF] in biology. Transport equations also appear in models for ocean salinity, see [START_REF] Duan | Stochastic dynamics of a coupled atmosphere-ocean model[END_REF].

In this paper we analyze a stochastic transport equation. The following onedimensional Cauchy problem is considered: given an initial-data u 0 , find u(t, x; ω) ∈ R, satisfying    ∂ t u(t, x; ω) + ∂ x u(t, x; ω) b(t, x) + dZ t dt (ω) = 0,

u(t 0 , x) = u 0 (x), (2) 
with (t, x) ∈ U T = [0, T ] × R, ω ∈ Ω, b : [0, T ] × R → R a given vector field, and the noise (Z t ) t≥0 is a stochastic process with zero quadratic variation. Problem (2) may be understood as a model for the concentration (density) of a pollutant in a flow where the velocity field has a random perturbation.

The stochastic transport equation driven by the standard Brownian motion was first addressed in Kunita's books (see [START_REF] Kunita | First order stochastic partial differential equations[END_REF], [START_REF] Kunita | Stochastic Flows and Stochastic Differential Equations[END_REF]). More recently it has been studied by several authors; in [START_REF] Catuogno | L p solutions of the stochastic transport equation[END_REF] the linear additive case is considered, existence and uniqueness of weak L p -solutions and a representation for the general solution were shown. The non-blow-up problem is addressed for the multiplicative case with Stratonovich form in [START_REF] Fedrizzi | Noise prevents singularities in linear transport equations[END_REF]. In [START_REF] Flandoli | Well-posedness of the transport equation by stochastic perturbation[END_REF] the authors have shown that the introduction of a multiplicative noise in the PDE allows some improvements in the traditional hypothesis needed to prove that the problem is well-posed, this is extended later to a non-linear case in [START_REF] Olivera | Well-posedness of first order semilinear PDE's by stochastic perturbation[END_REF]. A new uniqueness result is obtained in [START_REF] Maurelli | Wiener chaos and uniqueness for stochastic transport equation[END_REF] by means of Wiener-chaos decomposition, and working on the associated Kolmogorov equation. The extension of the model to the fractional Brownian noise has been done in [START_REF] Olivera | The density of the solution to the transport equation with fractional noise[END_REF], where the existence of density of the solution and Gaussian estimates of the density were proven.

Our purpose is to solve the equation [START_REF] Chow | Stochastic Partial Differential Equations[END_REF] and to analyze the properties of its solution in the case when the noise is a more general stochastic process, possibly non-Gaussian. We will focus on the situation when the noise Z in (2) is a stochastic process with zero quadratic variation, this is well defined in the next section of the paper.

The reason why we chose such a noise is that the stochastic integration theory in the sense of Russo-Vallois (see [START_REF] Russo | Forward, backward and symmetric stochastic integration[END_REF], [START_REF] Russo | Elements of stochastic calculus via regularization[END_REF]) can be applied to it. In fact, the stochastic integral in (2) will be understood as a symmetric integral in the Russo-Vallois sense with respect to the noise Z. Besides, in most of the papers cited in the previous paragraph, the Itô-Wentzell formula plays a crucial role in the characterization of the solution, consider a zero quadratic variation process is as far as one can go in order to prove that characterization, avoiding the presence of second order terms (see Proposition 9 in [START_REF] Flandoli | Generalized integration and stochastic ODEs[END_REF]). Among the zero covariance processes lies the fractional Brownian motion (for H ≥ 1/2), a self-similar process that find some of their applications in various kind of phenomena, going from hydrology and surface modelling to network traffic analysis and mathematical finance, to name a few.

In this paper, first, the existence and uniqueness of the solution to (2) is proved, by using the so-called method of characteristics that comes from the works of Kunita ([9], [START_REF] Kunita | First order stochastic partial differential equations[END_REF]). Then it is show that the solution can be expressed as the initial data u 0 applied to the inverse flow associated to the transport equation. Later, using the techniques of Malliavin calculus on this representation, it is possible to prove the existence of the density of this solution. This will be done by showing that the Malliavin derivative of the solution is strictly positive. To this end, the explicit expression of the Malliavin derivative must be calculated and controlled.

The outline of this paper is as follows: In Section 2 we present the basics definitions of the integration theory in the sense of Russo-Vallois, stochastic calculus via regularization, and the Malliavin techniques. The existence and uniqueness of weak solution to problem (2) is proved in Section 3. Section 4 provides the demonstration of the existence of the density of the solution. Finally in Section 5 we illustrate the results considering a Hermite process as the driving noise.

2. Preliminaries. In this section, we recall the notions from the stochastic calculus via regularization and from Malliavin calculus that we will use in what follows. More details can be found in [START_REF] Russo | Elements of stochastic calculus via regularization[END_REF] or [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF].

2.1. Stochastic calculus via regularization. Throughout this paper T will be a fixed positive real number. We recall the definition of the symmetric integral d • X that will appear in [START_REF] Chow | Stochastic Partial Differential Equations[END_REF] and in the definition of the solution in formula [START_REF] Fedrizzi | Noise prevents singularities in linear transport equations[END_REF].

Assume (X t ) t≥0 is a continuous process and (Y t ) t≥0 is a process with paths in L 1 loc (R + ), i.e. for any b > 0, b 0 |Y t |dt < ∞ a.s. The generalized stochastic integrals (forward, backward and symmetric) are defined through a regularization procedure see [START_REF] Russo | Forward, backward and symmetric stochastic integration[END_REF], [START_REF] Russo | Elements of stochastic calculus via regularization[END_REF]. Here we recall only the definition of the symmetric integral (actually, since we are dealing with zero quadratic variation processes, the three integrals will coincide) . Let I 0 (ε, Y, dX) be the ε-symmetric integral

I 0 (ε, Y, dX)(t) = t 0 Y s (X s+ε -X s-ε ) 2ε ds, t ≥ 0.
The symmetric integral

t 0 Y s d • X s is defined as t 0 Y s d • X s := lim ε→0 I 0 (ε, Y, dX)(t), (3) 
for every t ∈ [0, T ], provided the limit exists in the ucp sense (uniformly on compacts in probability).

In a similar way, the covariation or generalized bracket, [X, Y ] t of two stochastic processes X and Y is defined as the limit ucp when ε goes to zero of

[X, Y ] ε,t = 1 ε t 0 (X s+ε -X s ) (Y s+ε -Y s ) ds, t ≥ 0.
Note that [X, Y ] coincide with the classical bracket when X and Y are semimartingales.

A process X, such that [X, X] exists, is called finite quadratic variation processes. If [X, X] ≡ 0 we say that X is a zero quadratic variation process. Our integrand in (2) will be such a zero quadratic variation process.

Malliavin derivative.

We also present the elements from the Malliavin calculus that will be used in the paper. We refer to [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF] for a more complete exposition. Consider H a real separable Hilbert space and (B(ϕ), ϕ ∈ H) an isonormal Gaussian process on a probability space (Ω, A, P), that is, a centered Gaussian family of random variables such that E (B(ϕ)B(ψ)) = ϕ, ψ H .

We denote by D the Malliavin derivative operator that acts on smooth functions of the form F = g(B(ϕ 1 ), . . . , B(ϕ n )) (g is a smooth function with compact support and

ϕ i ∈ H, i = 1, ..., n) DF = n i=1 ∂g ∂x i (B(ϕ 1 ), . . . , B(ϕ n ))ϕ i .
It can be checked that the operator D is closable from S (the space of smooth functionals as above) into L 2 (Ω; H) and it can be extended to the space D 1,p which is the closure of S with respect to the norm

F p 1,p = EF p + E DF p H .
We denote by D k,∞ := ∩ p≥ D k,p for every k ≥ 1. In this paper, H will be the standard Hilbert space L 2 ([0, T ]).

We will make use of the chain rule for the Malliavin derivative (see Proposition 1.2.4 in [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]). That is, if ϕ : R → R is a differentiable with bounded derivative and

F ∈ D 1,2 , then ϕ(F ) ∈ D 1,2 and Dϕ(F ) = ϕ ′ (F )DF. (4) 
An important role of the Malliavin calculus is that it provides criteria for the existence of the density of a random variable. Here we will use the following result: if F is a random variable in D 1,2 such that DF H > 0 almost surely, then F admits a density with respect to the Lebesgue measure (see e.g. Theorem 2.1.3 in [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]).

3. Existence and uniqueness. This section presents the results concerning the existence of the weak solution for the stochastic transport equation ( 2) driven by a zero quadratic variation process.

Let (Ω, F , P ) be a fixed probability space and (W t ) t∈[0,T ] a standard Wiener process on it. Consider a continuous process (Z t ) t≥0 , adapted to the filtration generated by W , and such that

[Z, Z] t = 0, ∀ t ≥ 0.
The quadratic variation [Z, Z] is understood in the sense of stochastic calculus via regularization, as introduced in Section 2.1. We consider the one-dimensional Cauchy problem (2) driven by the process Z, with a given initial-data u 0 .

We recall the notion of weak solution to (2) (see [START_REF] Flandoli | Well-posedness of the transport equation by stochastic perturbation[END_REF]).

Definition 3.1. A stochastic process u ∈ L ∞ (Ω × [0, T ] × R) is called a weak L p -solution of the Cauchy problem (2), if for any ϕ ∈ C ∞ c (R), R u(t, x)ϕ(x)
dx is an adapted real valued process which has a continuous modification, finite covariation, and for all t ∈ [0, T ],

P-almost surely R u(t, x)ϕ(x)dx = R u 0 (x)ϕ(x) dx + t 0 R u(s, x) b(s, x)∂ x ϕ(x) dxds + t 0 R u(s, x)b ′ (s, x)ϕ(x) dxds + t 0 R u(s, x)∂ x ϕ(x) dxd • Z s ,
where b ′ (s, x) denotes the derivative of b(s, x) with respect to the spatial variable x, and the integral d • Z is a symmetric integral defined via regularization (see (3)).

Following the arguments presented in [START_REF] Olivera | The density of the solution to the transport equation with fractional noise[END_REF], the existence and uniqueness of the weak solution to (2) follows immediately.

Proposition 1. Assume that b ∈ L ∞ ((0, T ); C 1 b (R)). Then there exists a C 1 (R) stochastic flow of diffeomorhism (X s,t , 0 ≤ s ≤ t ≤ T ), that satisfies X s,t (x) = x + t s b(u, X s,u (x))du + Z t -Z s (5) 
for every x ∈ R d . Moreover, given u 0 ∈ L ∞ (R), the stochastic process

u(t, x) := u 0 (X -1 t (x)), t ∈ [0, T ], x ∈ R (6)
is the unique weak L ∞ -solution of the Cauchy problem 2, where X t := X 0,t for every t ∈ [0, T ].

Proof. The demonstration follows closely the lines of the proof of Theorem 1 in [START_REF] Olivera | The density of the solution to the transport equation with fractional noise[END_REF], which is based on the Itô formula in the Russo-Vallois sense for functions depending on ω. Although in [START_REF] Olivera | The density of the solution to the transport equation with fractional noise[END_REF] the noise is a fractional Brownian motion with Hurst parameter H > 1 2 , the only property of the fBm needed in the demonstration is the fact that, for H > 1 2 , is a zero quadratic variation process. Therefore, all the steps in the proof of Theorem 1 in [START_REF] Olivera | The density of the solution to the transport equation with fractional noise[END_REF] remain valid when the noise is a general zero quadratic variation process.

From [START_REF] Ferrante | Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1 2[END_REF], it is clear that the properties of the solution to the transport equation ( 2), in particular the existence of its density, will depend on the initial condition u 0 and on the properties of the inverse flow X -1 t . Since later in the paper we will assume on u 0 as much regularity as needed, we focus on the analysis of the inverse flow. Let's start by describing its dynamic.

Lemma 3.2. Assume b ∈ L ∞ (0, T ); C 1 b (R) ∩ C ((0, T ) × R) .
Then the inverse flow satisfies the backward stochastic equation

Y s,t (x) = x - t s b(r, Y r,t (x))dr -(Z t -Z s ) (7) 
for every 0 ≤ s ≤ t ≤ T and for every x ∈ R. Moreover, Y is the unique process that satisfies [START_REF] Flandoli | Well-posedness of the transport equation by stochastic perturbation[END_REF] with Y s,s (x) = x.

Proof. Analogously to the proof of Lemma 2 in [START_REF] Olivera | The density of the solution to the transport equation with fractional noise[END_REF].

Remark 1. If we set R t,x (u) = Y t-u,t (x) for u ∈ [0, t], and x ∈ R, then we have

R t,x (u) = x - u 0 b(t -a, R t,x (a))da -(Z t -Z t-u ). (8) 
This can be easily seen from ( 7) by making the change of variable a = t -r.

If we set B t (a, x) = -b(t -a, x) for a ≤ t, x ∈ R, and Z u,t = -(Z t -Z t-u ) for t ∈ [0, T ] and u ≤ t, then (8) becomes R t,x (u) = x + u 0 B t (a, R t,x (a))da + Z u,t . (9) 
We will actually use the above equation in order to obtain the properties of the inverse flow.

4. The Malliavin derivative and the density of the solution. We will show that the solution to (2) is Malliavin differentiable and, using the techniques of the Malliavin calculus, that it admits a density with respect to the Lebesgue measure. From the representation (6), it is enough to focus on the Malliavin derivative of the inverse flow X -1 t whose dynamic is governed by [START_REF] Flandoli | Well-posedness of the transport equation by stochastic perturbation[END_REF] or (9). 

∈ L ∞ (0, T ); C 1 b (R) ∩ C ((0, T ) × R) . (10) 
The noise Z is a zero quadratic variation process, adapted to the filtration (F t ) t∈[0,T ] such that Z t ∈ D 1,2 for every t ∈ [0, T ]. We suppose also that

sup t∈[0,T ] E |Z t | 2 < ∞ and sup t∈[0,T ] E DZ t 2 L 2 ([0,T ]) < ∞. ( 11 
)
Lemma 4.1. Under hypothesis ( 10) and ( 11), the equation ( 9) has an unique solution.

Proof. Using classic Picard iterations is clear that there exists an unique solution to equation [START_REF] Kunita | Stochastic Differential Equations and Stochastic Flows of Diffeomorphisms[END_REF]. We refer the reader to the proofs of Lemma 5 in [START_REF] Ferrante | Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1 2[END_REF] or Lemma 2.2.1 in [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF] for similar results.

Now, the goal is to show the Malliavin differentiability of the solution to (9).

Proposition 2. Assume ( 10) and [START_REF] Kunita | Stochastic Flows and Stochastic Differential Equations[END_REF]. Then, for x ∈ R, t ∈ [0, T ], u ≤ t, the random variable R t,x (u) given by ( 9) belongs to D 1,2 . Moreover, the Malliavin derivative of R t,x (u) satisfies

D α R t,x (u) = u 0 B ′ t (s, R t,x (s))D α R t,x (s)ds + D α Z u,t (12) 
for every α < t.

Proof. Fix t ∈ [0, T ], x ∈ R. Define the usual iterations

R (0)
t,x (u) = x for every t ∈ [0, T ] and for n ≥ 0,

R (n+1) t,x (u) = x + u 0 B t (s, R (n) t,x )(s)ds + Z u,t with 0 ≤ u ≤ t.
It is clear that R (0) t,x (u) is F t -measurable and belongs to D 1,2 . By a trivial induction argument and using Proposition 1.2.4 in [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF], we have that R

(n) t,x (u) is F t - measurable and R (n) t belongs to D 1,2 for every n ≥ 0. This implies that D α R (n) t,x (u) = 0 if α > t.
Our proof follows the following standard arguments: first, we notice the L 2 convergence of R (n) t,x (u) to R t,x (u). Secondly, we prove an uniform bound on the sequence of Malliavin derivatives of R (n) t,x (u) and then we conclude the Malliavin differentiability of R t,x (u) along with the expression of its Malliavin derivative.

Concerning the first step, we only remind that (see e.g. the proof of Lemma 5 in [START_REF] Ferrante | Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1 2[END_REF]), for every u ∈ [0, T ]

sup t≥u E R (n) t,x (u) -R t,x (u) 2 → n→∞ 0. ( 13 
)
Let us use the notation

m T := sup t∈[0,T ] sup u∈[0,t] E DZ u,t 2 L 2 ([0,T ]) (14) 
which is a finite positive constant due to [START_REF] Kunita | Stochastic Flows and Stochastic Differential Equations[END_REF]. We now show that

sup n≥1 sup t≥u E DR (n) t,x (u) 2 L 2 ([0,T ]) < ∞. ( 15 
)
For u ∈ [0, T ] fixed, denote by

g n u = sup t≥u E DR (n) t,x (u) 2 L 2 ([0,T ]) = sup t≥u E T 0 (D α R (n) t,x (u)) 2 dα.
Then, using the fact that b ′ is bounded

g (n+1) u = sup t≥u E T 0 u 0 B ′ t (a, R (n) t,x (a))D α R (n) t,x (a)da + D α Z u,t 2 dα ≤C(T ) sup t≥u E T 0 dα u 0 da(D α R (n) t,x (a)) 2 + m T ≤C(T ) sup t≥u u 0 da sup t≥a E T 0 dα(D α R (n) t,x (a)) 2 + m T =C(T )( u 0 g n a da + m T ),
because a ≤ u ≤ t. By taking the supremum over n ≥ 1, and then applying Gronwall lemma, we get

sup n≥1 g n u ≤ C 1 (T )e C2(T ) < ∞.
So, [START_REF] Nourdin | Selected Aspects of Fractional Brownian Motion[END_REF] holds. This, together with (13) and Lemma 1.2.3 in [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF] implies that

R t,x (u) ∈ D 1,2 for every t ∈ [0, T ],
and the sequence of derivatives (DR [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] holds true.

(n) t,x (u)) n≥0 is convergent in L 2 (Ω × [0, T ]) to DR t,x (u), hence

4.2.

The density of the solution. Let Y s,t (x) be the inverse flow given by ( 7), with 0 ≤ s ≤ t ≤ T and x ∈ R. Recall the notation R t,x (u) = Y t-u,t (x) if u < t, and the hypothesis on the noise Z.

From ( 9) and Proposition 2, it follows that Y s,t (x) is Malliavin differentiable. Our next step is to find the expression of its Malliavin derivative. Proposition 3. Assume that b satisfies [START_REF] Kunita | First order stochastic partial differential equations[END_REF], Z satisfies [START_REF] Kunita | Stochastic Flows and Stochastic Differential Equations[END_REF] and let Y be given by [START_REF] Flandoli | Well-posedness of the transport equation by stochastic perturbation[END_REF]. Then for every s ≤ t, α ≤ t and x ∈ R, we have

D α Y s,t (x) =1 (0,T ) (α)e -t s b ′ (u,Yu,t(x))du t s b ′ (u, Y u,t (x))D α (Z u,t )e t u b ′ (r,Yr,t(x))dr du + D α Z s,t . Proof. First we notice that, if α > t, D α Y s,t (x) = 0, because Y s,t (x) is F t -measurable. Now, let's observe that D α R t,x (s) = s 0 B ′ t (u, R t,x (u))D α R t,x (u)du + D α Z s,t ,
where we recall the notation Z s,t = -(Z t -Z t-s ) for 0 ≤ s ≤ t ≤ T . Considering the previous relation as an integral equation of functions depending on the variable s, regularizing Z by standard mollifiers, applying the method of variations of parameters and then integration by parts, we obtain

D α R t,x (s) =D α Z s,t + e s 0 B ′ t (u,Rt,x(u))du s 0 B ′ t (u, R t,x (u))D α (Z u,t )e -u 0 B ′ t (r,Rt,x(r))dr du
Writting this in terms of the inverse flow Y ,

D α Y t-s,t (x) =D α Z s,t + e -s 0 b ′ (t-u,Yt-u,x(u))du • s 0 b ′ (t -u, Y t-u,x (u))D α (Z u,t )e u 0 b ′ (t-r,Yt-r,t(r))dr du.
Using the changes of variables u ′ = t -u, r ′ = t -r and the notation s ′ = t -s we obtain the desired result.

Let us prove that the random variable Y s,t admits a density, for every 0 ≤ s ≤ t ≤ T . Proposition 4. Fix 0 ≤ s ≤ t ≤ T . Assume [START_REF] Kunita | First order stochastic partial differential equations[END_REF] and [START_REF] Kunita | Stochastic Flows and Stochastic Differential Equations[END_REF]. In addition we will suppose that for every 0

< s < t ≤ T DZ t 2 L 2 ([t-s,T ]) = T t-s (D α Z t ) 2 dα > 0, almost surely. (16) 
Then the law of Y s,t (x) is absolutely continuous with respect to the Lebesgue measure.

Proof. By Theorem 2.1.3 in [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF], we need to prove that

DY s,t 2 
L 2 ([0,T ]) = T 0 (D α Y s,t ) 2 dα > 0 almost surely.
We will use the inequality

T 0 (D α Y s,t ) 2 dα ≥ T t-s (D α Y s,t ) 2 dα
and the fact that, for α ∈ (t -s, T ) and u ∈ (s, t), we have 

D α Z s,t = -D α Z t and D α Z u,t = -D α Z t since D α Z t-s = D α Z t-u = 0. Therefore T 0 (D α Y s,t ) 2 dα ≥ T t-s (D α Y s,t ) 2 dα = T t-s -e -t s b ′ (u,Yu,t(x))du t s b ′ (u, Y u,t (x))D α Z t e t u b ′ (r,Yr,t(x))dr du -D α Z t 2 dα = T t-s (D α Z t ) 2 e -t s b ′ (u,Yu,t(x))du t s b ′ (u, Y u,t (x))e
Indeed, considering the boundedness of b ′ , and the inequalities

e -(t-s) b ′ ∞ ≤ e ± t s b ′ (a,Ya,t(x))da ≤ e (t-s) b ′ ∞ , (18) 
we may note that

e -t s b ′ (u,Yu,t(x))du t s b ′ (u, Y u,t (x))e t u b ′ (r,Yr,t(x))dr du ≥ inf u∈(s,t);x∈R b ′ (u, x) • (t -s) • e -2(t-s) b ′ ∞ ≥ -b ′ ∞ • (t -s) • e -2(t-s) b ′ ∞ = f ( b ′ ∞ • (t -s)), with f (x) = -x exp(-2x
). The function f attains its minimum at x = 1/2, with f (1/2) = -1/2 exp(-1) > -1, this prove our claim. The conclusion follows from condition [START_REF] Nourdin | Density formula and concentration inequalities with Malliavin calculus[END_REF].

Condition [START_REF] Nourdin | Density formula and concentration inequalities with Malliavin calculus[END_REF] ensures the existence of the density of the noise Z t for each t. This property is then transfered to the solution.

Let us conclude the existence of the density of the solution to the transport equation.

Theorem 4.2. Let u(t, x) be the solution to the transport equation [START_REF] Chow | Stochastic Partial Differential Equations[END_REF]. Assume that u 0 ∈ C 1 (R) such that there exists C > 0 with (u ′ 0 (x)) 2 ≥ C for every x ∈ R. Then, for every t ∈ [0, T ] and for every x ∈ R, the random variable u(t, x) is Malliavin differentiable. Moreover u(t, x) admits a density with respect to the Lebesgue measure.

Proof. By formula [START_REF] Ferrante | Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1 2[END_REF], u(t, x) = u 0 (Y 0,t (x)) and then we get the Malliavin differentiability of u(t, x) from Proposition 2. The chain rule for the Malliavin derivative (4) implies D α u(t, x) = u ′ 0 (Y 0,t (x))D α Y 0,t (x) and then, from the above result and the condition imposed on the initial value u 0 T 0 (D α u(t, x)) 2 dα > 0 almost surely for every t ∈ [0, T ], x ∈ R. This implies that the random variables u(t, x) admits a density.

5. An example: The Hermite process. In this section we will give an example of a class of stochastic processes that satisfies the conditions required for the noise Z in [START_REF] Chow | Stochastic Partial Differential Equations[END_REF]. Recall that we assumed that the noise Z is an adapted square integrable process, with zero quadratic variation in the Russo-Vallois sense, Malliavin differentiable, and satisfies [START_REF] Kunita | Stochastic Flows and Stochastic Differential Equations[END_REF] and [START_REF] Nourdin | Density formula and concentration inequalities with Malliavin calculus[END_REF].

The class of processes we consider is those of Hermite processes. The Hermite process of order q ≥ 1 lives in the Wiener chaos of order q, and it is defined as a multiple stochastic integral with respect to the standard Brownian motion. Its representation is related to the Wiener integral representation of the fractional Brownian motion. We recall that the fractional Brownian process (B H t ) t∈[0,1] with Hurst parameter H ∈ (0, 1) can be written as

B H t = t 0 K H (t, s) dW s , t ∈ [0, 1] (19) 
where (W t , t ∈ [0, T ]) is a standard Wiener process, and if H > 1 2 , the kernel K H (t, s) has the expression

K H (t, s) = c H s 1/2-H t s (u -s) H-3/2 u H-1/2 du where t > s and c H = H(2H-1) β(2-2H,H-1/2) 1/2
and β(•, •) is the Beta function. For t > s, the kernel's derivative is

∂K H ∂t (t, s) = c H s t 1/2-H (t -s) H-3/2 .
We denote by (Z (q,H) t

) t∈[0,T ] the Hermite process with self-similarity parameter H ∈ (1/2, 1). For t ∈ [0, T ] it is given by

Z (q,H) t =d(H) t 0 . . . t 0 dW y1 . . . dW yq • t y1∨...∨yq ∂ 1 K H ′ (u, y 1 ) . . . ∂ 1 K H ′ (u, y q )du , (20) 
where K H ′ is the usual kernel of the fractional Brownian motion that appears in [START_REF]Stochastic Differential Equations[END_REF] and

H ′ = 1 + H -1 q ⇐⇒ (2H ′ -2)q = 2H -2.
The covariance of Z (q,H) is identical to that of fBm, namely

E Z (q,H) s Z (q,H) t = 1 2 (t 2H + s 2H -|t -s| 2H ). (21) 
The constant d(H) is chosen to have variance equal to 1. The Hermite process Z (q,H) is H-self-similar and it has stationary increments, the mean square of the increment is given by

E Z (q,H) t -Z (q,H) s 2 = |t -s| 2H ; (22) 
as a consequence, using the self-similarity and the stationarity of the increments of Z H , it follows from Kolmogorov's continuity criterion (see theorem 2.2.3 in [START_REF]Stochastic Differential Equations[END_REF]) that Z (q,H) has Hölder-continuous paths of any exponent δ < H. For q = 1, Z (1,H) is standard fBm with Hurst parameter H, while for q ≥ 2 the Hermite process is not Gaussian. In the case q = 2 this stochastic process is known as the Rosenblatt process.

We will use the notation Z H := Z (q,H) . Also, denote by L H the kernel of the Hermite process L H t (y 1 , . . . , y q ) = 1 (y1∨...∨yq≤t) t y1∨...∨yq ∂ 1 K H ′ (u, y 1 ) . . . ∂ 1 K H ′ (u, y q )du. [START_REF] Pipiras | Integration questions related to the fractional Brownian motion[END_REF] We can write Z H t = I q (L H ) with I q being the multiple integral of order q with respect to the Wiener process W . We refer the reader to the manuscript [START_REF] Tudor | Analysis of Variations for Self-similar Processes[END_REF] and references there in for a deeper discussion on Hermite processes and other self-similar processes.

It is immediate to see that Z H has zero quadratic variation as defined in Section 2.

Lemma 5.1. Z H is a zero quadratic variation process.

Proof. Indeed, from [START_REF] Perthame | Transport Equations in Biology[END_REF],

1 ε E t 0 (Z H s+ε -Z H s ) 2 ds = tε 2H-1 → ε→0 0.
We will show that the process Z H satisfies the assumptions imposed throughout the paper for the noise Z appearing in [START_REF] Chow | Stochastic Partial Differential Equations[END_REF]. Since it is defined as a multiple integral, the random variable Z H t is clearly Malliavin differentiable for every t ∈ [0, T ]. Lemma 5.2. The Hermite process satisfies [START_REF] Kunita | Stochastic Flows and Stochastic Differential Equations[END_REF] and [START_REF] Nourdin | Density formula and concentration inequalities with Malliavin calculus[END_REF].

Proof. Clearly, using ( 21)

sup t∈[0,T ] E|Z H t | 2 = T 2H < ∞.
Also, with L H given by ( 23), D α Z H t = qI q-1 (L H t (•, α)), the properties of multiple Wiener-Itô integrals gives

E T 0 (D α Z H t ) 2 dα = qE[I q (L H t )] 2 = qE(Z H t ) 2 = qt 2H .
This implies

sup t∈[0,T ] E T 0 (D α Z H t ) 2 dα < ∞.
The condition ( 16) is satisfied because Z H t is a multiple integral of order q. A classical result by Shikegawa [START_REF] Shigekawa | Derivatives of Wiener functionals and absolute continuity of induced measures[END_REF] (see also [START_REF] Nourdin | Selected Aspects of Fractional Brownian Motion[END_REF], Corollary 5.2) says that, if q ≥ 1 is an integer, and f a of L 2 (R q ) with f L 2 (R q ) = 0 , then the q-multiple Wiener-Itô integral of f has a density and satisfies [START_REF] Nourdin | Density formula and concentration inequalities with Malliavin calculus[END_REF].

Remark 2. In the case q = 1, that is, Z H is a fractional Brownian motion, a deeper analysis of the density of the solution to (2) can be done. In particular, it is possible to prove Gaussian bounds for the density, see [START_REF] Olivera | The density of the solution to the transport equation with fractional noise[END_REF].

4. 1 .

 1 Malliavin differentiability of the inverse flow. Throughout this section we assume that b

tu 2 dα

 2 b ′ (r,Yr,t(x))dr du + 1 We claim that e -t s b ′ (u,Yu,t(x))du t s b ′ (u, Y u,t (x))e t u b ′ (r,Yr,t(x))dr du + 1 > C > 0.
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