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MAXIMIZATION OF THE SECOND NON-TRIVIAL NEUMANN

EIGENVALUE

DORIN BUCUR, ANTOINE HENROT

Abstract. In this paper we prove that the second (non-trivial) Neumann eigenvalue of
the Laplace operator on smooth domains of RN with prescribed measure m attains its
maximum on the union of two disjoint balls of measure m

2
. As a consequence, the Pólya

conjecture for the Neumann eigenvalues holds for the second eigenvalue and for arbitrary
domains. We moreover prove that a relaxed form of the same inequality holds in the
context of non-smooth domains and densities.

1. Introduction and Statement of the results

Let N ≥ 2 and Ω ⊆ RN be a bounded open set such that the Sobolev space H1(Ω) is
compactly embedded in L2(Ω) (for instance Ω Lipschitz). Those sets are called regular
throughout the paper. On such domains, the spectrum of the Laplace operator with
Neumann boundary conditions consists only on eigenvalues that we denote (counting their
multiplicities)

0 = µ0(Ω) ≤ µ1(Ω) ≤ µ2(Ω) ≤ . . .→ +∞.
For every k ≥ 1, we have

µk(Ω) = min
S∈Sk

max
u∈S

∫
Ω |∇u|

2dx∫
Ω u

2dx
,

where Sk is the family of all subspaces of dimension k in

H1(Ω)/R := {u ∈ H1(Ω) :

∫
Ω
udx = 0}.

If Ω is connected, then µ1(Ω) > 0.
In 1954 Szegö proved that among simply connected, two dimensional, smooth sets

Ω ⊆ R2 the ball maximizes µ1 (see [20] and [4, 5])), i.e.1

|Ω|µ1(Ω) ≤ |B|µ1(B).

Two years later, Weinberger [21] removed the topological constraint and the dimension
restriction and he proved that for every N ≥ 2 and Ω ⊆ RN regular, the following
inequality holds

|Ω|
2
N µ1(Ω) ≤ µ∗1,

where µ∗1 = |B|
2
N µ1(B).
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+ 1
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Maximizing the Neumann eigenvalues under volume constraint is also related to the
celebrated conjecture of Pólya [18] asserting that the principal term of the Weyl law
provides in fact a bound for the eigenvalues. This conjecture reads, in N dimensions,

∀k ≥ 1, µk(Ω) ≤ 4π2
( k

ωN |Ω|)

) 2
N
,

where ωN is the volume of the unit ball in RN . The conjecture was proved to hold only
for particular classes of domains, for instance tiling domains in R2 (see [16]). For general
regular domains, the conjecture holds true in the case k = 1, as a consequence of the
Szegö-Weinberger inequality, but continues to remain open for arbitrary k. Kröger found
in [15] a series of bounds, which are larger than the conjectured ones. For instance, if
k = 2 he proved µ2(Ω) ≤ 16π

|Ω| for two dimensional domains. The value 16π
|Ω| is the double

of the conjectured one. A natural, related, question is to find the geometry of the domain
which maximizes the k-th Neumann eigenvalue. This question turns out to be difficult
for k = 2 and probably impossible to answer analytically for k ≥ 3. We refer to [2, 1, 6]
for numerical approximations of the (presumably) optimal sets for k ≤ 10, but there is no
proof of the existence of those sets.

We refer the reader to the result of Girouard, Nadirashvili and Polterovich [11] where the
authors prove that in R2 the union of two equal (and disjoint) disks gives a larger second
eigenvalue than any smooth simply connected open set of the same measure. Moreover,
this value is asymptotically attained by two disks with vanishing intersection. Their proof
is based on a combination of topological and analytical arguments and relies on a folding
and rearrangement technique introduced by Nadirashvili in [17], taking advantage on the
use of conformal mappings. This method can not be adapted to non simply connected
sets. The authors left the case of arbitrary (regular) domains of R2 as an open problem.

Several independent numerical computations [2, 1, 6] in R2,R3 brought support in favor
of the maximality of the union of the two discs without the simply connectedness constraint
in R2 and, moreover, lead to a similar conjecture in three dimensions of the space.

The purpose of this paper is to prove that, in general, the second Neumann eigenvalue
attains its maximum on a union of two disjoint, equal balls in the class of arbitrary domains
of prescribed measure of RN . As a consequence, we prove that the Pólya conjecture for
Neumann eigenvalues holds for k = 2, without any restriction on the dimension, geometry
or topology of the domains.

Let us denote the scale invariant quantity µ∗2 = 2
2
N |B|

2
N µ1(B), where B is any ball. On

the union of two disjoint balls B1, B2, each of mass 1
2 , we have µ0(B1 ∪ B2) = 0, µ1(B1 ∪

B2) = 0, µ2(B1 ∪B2) = µ∗2. The main result of the paper is the following.

Theorem 1. Let Ω ⊆ RN be a regular set. Then

|Ω|
2
N µ2(Ω) ≤ µ∗2.

If equality occurs, then Ω coincides a.e. with the union of two disjoint, equal balls.

As a consequence, we get the following.

Corollary 2. The Pólya conjecture for the Neumann eigenvalues, holds for k = 2 in any
dimension of the space.

In fact, we shall prove a more general result than Theorem 1. Specifically, we shall
prove that the result of Theorem 1 holds true on arbitrary open sets (even non regular)
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and, moreover, on L1 ∩ L∞-densities in RN , provided the classical eigenvalues, seen as
variational quotients, receive a suitable relaxed definition (see [10, Chapter 7] and [7]).

Precisely, let ρ ∈ L1(RN , [0, 1]). For every k ≥ 1, we define

µ̃k(ρ) := inf
S∈Lk

max
u∈S

∫
RN ρ|∇u|

2dx∫
RN ρu

2dx
,

where Lk is the family of all subspaces of dimension k in

(1) {u · 1{ρ(x)>0} : u ∈ C∞c (RN ),

∫
RN

ρudx = 0}.

We have the following.

Theorem 3. Let ρ ∈ L1(RN , [0, 1]) be non identically zero. Then

• (k = 1, extension of the Szegö-Weinberger inequality)

(2)

(∫
RN

ρdx

) 2
N

µ̃1(ρ) ≤ µ∗1,

with equality if and only if ρ = 1B a.e., for some ball B of RN .
• (k = 2)

(3)

(∫
RN

ρdx

) 2
N

µ̃2(ρ) ≤ µ∗2,

with equality if and only if ρ = 1B] +1B∗ a.e., where B], B∗ are two disjoint (open)
balls of equal measure.

For k = 1, Theorem 3 above is a generalization of the Szegö-Weinberger inequality, and
for k = 2 is a generalization of Theorem 1.

We notice the following.

• If Ω is a bounded, open Lipschitz set, then taking ρ = 1Ω, one gets µ̃k(ρ) = µk(Ω).
• Let us remove a smooth manifold Γ from Ω, such that H1(Ω \ Γ) is compactly

embedded in L2(Ω \ Γ). This is for example the case when Ω is Lipschitz and
the crack Γ is itself Lipschitz. Then for ρ = 1Ω one has µ̃k(ρ) ≥ µk(Ω \ Γ) since
C∞c (RN )|Ω\Γ ⊆ H1(Ω\Γ). From this perspective, Theorem 3 covers the inequality
proved in Theorem 1 even in this less regular case.
• If the set Ω = {ρ > 0} is smooth and there exists α > 0 such that ρ ≥ α1{ρ>0}

(i.e. ρ is not degenerating on its support and preserves ellipticity), then µ̃k(ρ) are
the eigenvalues associated to the well posed problem

−div(ρ∇u) = µkρu in Ω,
∂u

∂n
= 0 on ∂Ω.

• If Ω is just a bounded open set, without any smoothness, the spectrum of the
Neumann Laplacian on Ω may be continuous. Theorem 3 still applies to ρ = 1Ω,
but we do not have any spectral interpretation of µ̃k(1Ω). The same occurs if
either ρ is degenerating loosing ellipticity on its support, and/or if its support is
not smooth enough.

Concerning the ideas of the proof, it is worth to recall what happens for the Dirichlet
Laplacian. The Faber-Krahn inequality for the first Dirichlet eigenvalue of the Laplacian

λ1(Ω) asserts that the minimum of |Ω|
2
N λ1(Ω) is attained on balls. A simple argument

analysing the positive and negative parts of a second eigenfunction, leads to the conclusion
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that the minimum of |Ω|
2
N λ2(Ω) is achieved on a set consisting on two equal and disjoint

balls. We refer to [8] for a detailed description of the history of the result, which is
attributed to Krahn [14], Hong [13] and Szegö [19].

A similar argument for the Neumann Laplacian is not valid. The proof of Theorem
1 (and of Theorem 3) is based on a suitable construction of a set of N test functions
which are simultaneously orthogonal to the constant function and to the first Neumann
eigenfunction on a regular set Ω. The structure of these N -functions is inspired by the
functions built by Weinberger, that we briefly describe below (see, for instance, [12], [21]
for more details).

We denote throughout the paper RΩ the radius of a ball of the same volume as Ω, by

rΩ the radius of a ball of volume |Ω|2 , by BR a ball centered at the origin of radius R,
and by BA,R the ball centered at point A of radius R. We denote by g a non negative,
strictly increasing solution2 of the following differential equation on (0, R) (see the paper
of Weinberger [21], or [12, Section 7.1.2] for details)

(4) g′′(r) +
N − 1

r
g′(r) + (µ1(BR)− N − 1

r2
)g(r) = 0, g(0) = 0, g′(R) = 0.

Given a point A ∈ RN and a value R > 0, Weinberger introduced the function

(5) gA : RN → RN gA(x) =
GR(dA(x))

dA(x)

−→
Ax,

where GR : [0,+∞)→ R,

(6) GR(r) := g(r)1[0,R] + g(R)1[R,+∞).

By dA(x) we denoted the distance from x to A.
Using Brouwer’s fixed point theorem, Weinberger proved for R = RΩ the existence of a

point A such that the set of functions

x 7→ gA(x) · ei, i = 1, . . . , N

are orthogonal to the constants in L2(Ω). Here (ei)i are the vectors of an orthonormal
basis. As a consequence, those functions can be taken as tests in the Rayleigh quotient
for µ1(Ω). By summation this lead to

(7) µ1(Ω) ≤

∫
ΩG

′2
RΩ

(dA(x)) + (N − 1)
G2
RΩ

(dA(x))

d2
A(x)

dx∫
ΩG

2
RΩ

(dA(x))dx
.

The function r 7→ GRΩ
(r) is strictly increasing on [0, RΩ] (and then constant), while

r 7→ G′2RΩ
(r) + (N − 1)

G2
RΩ

r2

is decreasing. Consequently, the right hand side of (7) is not larger than

(8) µ1(BA,RΩ
) =

∫
BA,RΩ

G′2RΩ
(dA(x)) + (N − 1)

G2
RΩ

(dA(x))

d2
A(x)

dx∫
BA,RΩ

G2
RΩ

(dA(x))dx
.

In order to observe that µ1(Ω) ≤ µ1(BA,RΩ
), one has formally to move, one to one, the

points of Ω \ BA,RΩ
toward the points of the BA,RΩ

\ Ω pushing forward the measure

2The function g is explicitly given by g(r) = r1−N/2JN/2(kr/R) where k =
√
µ1(BR) is the first positive

zero of r 7→ [r1−N/2JN/2(r)]′ sometimes denoted pN/2,1 as in [3] and JN/2 is the standard Bessel function.
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1Ω\BA,RΩ
dx to 1BA,RΩ

\Ωdx. Throughout the paper, we call this procedure a mass displace-
ment argument.

In order to prove Theorem 1, we shall use a somehow similar strategy, searching a
set of N suitable test functions. The new difficulty is that the set of functions that we
have to build, should be orthogonal to both the constant function and to a first Neumann
eigenfunction on Ω (which is unknown). In the same time, the associated Rayleigh quotient
should not exceed µ∗2.

Given two different points A,B ∈ RN , we introduce the linear part of the symmetry
operator with respect to the mediator hyperplane HAB of the segment AB

TAB : RN → RN , TAB(v) = v − 2(
−→
ab · v)

−→
ab,

where
−→
ab =

−→
AB
‖AB‖ . Denoting HA, HB the half spaces determined by HAB and containing

A and B, respectively, we build the function

(9) gAB : RN → RN , gAB(x) = 1HA(x)gA(x) + 1HB (x)TAB(gB(x)).

The functions gA, gB are the functions of Weinberger introduced in (5), associated to
GrΩ . Roughly speaking, gAB is a suitable gluing along HAB of two Weinberger functions
corresponding to different points.

Figure 1. The geometry of the test functions gAB.

Our main purpose will be to justify the existence of two points A,B such that the set
of N scalar functions

x 7→ gAB(x) · ei, i = 1, . . . , N,

are simultaneously orthogonal in L2(Ω) on the constant function and on a first eigenfunc-
tion u1 of the Neumann Laplacian on Ω, i.e.

(10) ∀i = 1, · · · , N,
∫

Ω
gAB · eidx =

∫
Ω
gAB · eiu1dx = 0.
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The proof of existence of A and B with such properties relies on a topological degree
argument and requires the most of the attention (it is worth mentioning that every result
on maximization for Neumann eigenvalues in the literature relies on a strong topological
argument).

Once the points A and B are found, the proof of Theorem 1 follows in its main lines the
one of Weinberger, being based on the mass displacement argument. In fact, on each of the
half spaces HA, HB, the restriction of gAB acts like a Weinberger function (5) associated
to a ball of half measure.

Structure of the paper.

• In the next section we prove Theorem 1 for regular sets. We give the detailed
construction of the function gAB, prove the existence of a couple of points A and
B making gAB · ei suitable as test functions for µ2(Ω), and prove the inequality.
The equality case will be a direct consequence.
• In section 3, we give the proof of Theorem 3. We start by proving that the

classical Szegö-Weinberger inequality holds true as well for densities and arbitrary
domains. Concerning the second eigenvalue, we rely on the main ideas introduced
in Section 2 and focus on the new difficulties raised by the possible absence of a
first eigenfunction and by the possible unboundedness of the support.

Although it would have been more natural to prove first the general case and deduce the in-
equality for regular domains as a consequence, we have chosen to start by giving a detailed
proof of Theorem 1 in the classical framework, as most of readers are presumably interested
in this case. The new difficulties raised by the proof of Theorem 3 are exclusively related
to the ill-posedness of the eigenvalue problem in the non-smooth/degenerate/unbounded
setting. The fact that we deal with a density instead of a geometric domain does not raise
any supplementary difficulty, being handled by mass displacement.

2. Proof of Theorem 1

In this section we prove Theorem 1. Let Ω ⊆ RN be regular. We split the proof in
several parts.

The validity of the test functions. Recall that rΩ is the radius of the ball of volume
|Ω|
2 . A set of eigenfunctions associated to the first non-zero eigenvalue µ1(BrΩ) on the ball

BrΩ are {g(r)r xi : i = 1, . . . , N}, where g solves the differential equation (4) for R = rΩ.

Let A,B be two distinct points in RN . We recall the function gAB introduced in (9),

gAB(x) = 1HA(x)gA(x) + 1HB (x)gB(x)− 2 · 1HB (x)(gB(x) ·
−→
ab)
−→
ab.

The function gAB is well defined, and continuous across HAB. Indeed, it is enough to
observe that for x0 ∈ ∂HA ∩ ∂HB = HAB we have

gA(x0) = TAB(gB(x0)),

which comes from direct computation.
We notice that ∀x ∈ RN ,

‖gAB(x)‖ ≤ g(rΩ)

(11) ‖∇gAB(x)‖ ≤ 2N2
(

sup
r∈(0,+∞)

GrΩ(r)

r
+ sup
r∈(0,+∞)

G′rΩ(r)
)
< +∞.
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As a conclusion, we get gAB ∈ W 1,∞(RN ,RN ), with a uniform bound on their norm,
independent on A and B. The functions gAB ·ei are therefore admissible as test functions
on Ω.

The use of the test functions. Assume for a moment that we have found two different
points A,B ∈ RN such that the orthogonality relations (10) hold. Let us show that we
can prove Theorem 1.

For some i ∈ {1, . . . , N}, let us take in the definition of µ2(Ω) the subspace S =
span{u1,g

AB · ei}. We can write

∀i = 1, . . . , N, µ2(Ω) ≤
∫

Ω |∇(gAB · ei)|2dx∫
Ω |gAB · ei|2dx

.

As a consequence,

µ2(Ω) ≤
∑N

i=1

∫
Ω |∇(gAB · ei)|2dx∑N

i=1

∫
Ω |gAB · ei|2dx

.

Decomposing the sums over Ω ∩ HA and Ω ∩ HB, we get using (9) (the computation is
similar with the one in Weinberger’s proof, see [12]))

µ2(Ω) ≤

∫
HA∩ΩG

′2
rΩ

(dA(x)) + (N − 1)
G2
rΩ

(dA(x))

d2
A(x)

dx+
∫
HB∩ΩG

′2
rΩ

(dB(x)) + (N − 1)
G2
rΩ

(dB(x))

d2
B(x)

dx∫
HA∩ΩG

2
rΩ

(dA(x))dx+
∫
HB∩ΩG

2
rΩ

(dB(x))dx
.

We displace the mass as follows: we split Ω \ (BA,rΩ ∪BB,rΩ) in two sets ΩA and ΩB, such

that |ΩA|+ |Ω ∩BA,rΩ | =
|Ω|
2 . By monotonicity of r 7→ GrΩ(r) and of r 7→ G′2rΩ(r) + (N −

1)
G2
rΩ

(r)

r2 , for any couple of points x ∈ ΩA and y ∈ BA,rΩ \Ω the following inequalities hold

G′2rΩ(dA(x)) + (N − 1)
G2
rΩ

(dA(x))

d2
A(x)

d2
A(x)

<
G′2rΩ(dA(y)) + (N − 1)

G2
rΩ

(dA(y))

d2
A(y)

d2
A(y)

G2
rΩ

(dA(x)) > G2
rΩ

(dA(y)).

We then formally displace the mass from ΩA to BA,rΩ \ Ω, and increase the Rayleigh
quotient. We use the same argument for ΩB and BB,rΩ \ Ω, finally getting that∫

HA∩ΩG
′2
rΩ

(dA(x)) + (N − 1)
G2
rΩ

(dA(x))

d2
A(x)

dx+
∫
HB∩ΩG

′2
rΩ

(dB(x)) + (N − 1)
G2
rΩ

(dB(x))

d2
B(x)

dx∫
HA∩ΩG

2
rΩ

(dA(x))dx+
∫
HB∩ΩG

2
rΩ

(dB(x))dx

≤
2
∫
BrΩ

(
G′2rΩ(r) + (N − 1)

G2
rΩ
r2

)
dx

2
∫
BrΩ

G2
rΩ

(r)dr
= µ1(BrΩ).

Since µ1(BrΩ) is the second eigenvalue of the union of two disjoint balls of mass |Ω|2 , the
inequality in Theorem 1 follows.

If equality occurs, then HA ∩ Ω and HB ∩ Ω have to be balls of mass |Ω|2 up to a set of
zero Lebesgue measure. Indeed, if there is mass displacement on a set of positive measure,
the inequality has to be strict. So, if equality occurs, Ω is a.e. identical to the union of

two disjoint balls of mass |Ω|2 .
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Remark 4. If, for instance Ω is Lipschitz and equality occurs, then Ω has to coincide with
the union of the two balls. If we work only with regular sets without further geometric
assumption, it might be possible that one removes from one ball a set of capacity zero and,
from the other ball, a (small) set of positive capacity but of zero measure (say a piece of a
smooth manifold of dimension N−1). The removed set, should be small enough such that
the second non-trivial eigenvalue of the slitted ball is not smaller than the first eigenvalue
of the genuine ball. In R2, this situation could occur if one removes a small segment from
a diameter.

Existence of the family of test functions. In order to complete the proof, it remains
to justify the existence of two points A,B such that the orthogonality relations (10) hold
true. We shall do this below, but we point out from the beginning that the proof works
in an identical way provided 1Ω is replaced by a measurable function ρ : RN → [0, 1] with
bounded support, and the first eigenfunction u1 is replaced by any measurable function u
such that u1{ρ=0} = 0 and

∫
RN ρu

2dx < +∞ and
∫
RN ρudx = 0.

We give the following.

Lemma 5. Let A 6= B two points of RN . Then, for all x ∈ RN

gA(x) ·
−→
ab > gB(x) ·

−→
ab.

Proof. The proof is immediate, by direct comparison.
�

Lemma 6. Assume that A,B are two points of RN such that

∀i = 1, . . . , N,

∫
Ω
gA(x) · eidx =

∫
Ω
gB(x) · eidx.

Then for all v ∈ RN we have∫
Ω
gA(x) · vdx =

∫
Ω
gB(x) · vdx,

and A = B.

Proof. The first assertion is trivial and the second is a consequence of Lemma 5 for v =−→
ab. �

In the sequel, we shall use a deformation argument in the framework of the topological
degree theory (see for instance [9, Theorem 1]), in order to prove the following.

Proposition 7. There exist two different points A,B such that the orthogonality relations
(10) hold true.

Proof. By rescaling, we may assume that Ω ⊆ B1, the ball centered at the origin of radius
equal to 1. Let M ≥ 20 be fixed (the value 20 is chosen to be large enough with respect
to the radius of B1). Denote

D = {(X,Y ) : X,Y ∈ RN , X = Y } ⊆ R2N .

We introduce the function

F : [−M,M ]2N \ D → R2N ,

by

F (A,B) :=
( ∫

Ω
gAB · eidx,

∫
Ω
gAB · eiu1dx

)
.
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We want to prove that there exists a couple of points (A,B) ∈ [−M,M ]2N \D which make
F vanish. So we assume for contradiction that F does not vanish on its definition domain.
We first observe that there exists δ > 0 such that if (A,B) ∈ [−M,M ]2N \ D and

dR2N ((A,B),D) ≤ δ,
then F can not vanish at (A,B). Indeed, assume for contradiction that (An, Bn) ∈
[−M,M ]2N \ D is such that

∀i = 1, . . . , N

∫
Ω
gAnBn · eidx = 0,

and dR2N ((An, Bn),D) → 0. Extracting a subsequence, we can assume that An → A,

Bn → A,
−−−−→
AnBn
‖AnBn‖ → v ∈ SN−1. Then the a.e. limit of the sequence of functions (gAnBn ·

vn)n, denoted for convenience gAA · v, has a constant sign, vanishing only on a zero
measure set. This contradicts

∫
Ω gAnBn · vndx = 0.

So, let us denote

V = {(A,B) ∈ RN × RN : dR2N ((A,B),D) ≤ δ},
and restrict the function F to [−M,M ]2N \ V .

Let BX∗,R be a ball of some radius 0 < R ≤ 1 (the choice is free, but we should have
in mind rΩ), with a center X∗ carefully chosen, that will be specified in the proof. For
simplicity of the notation, we denote this ball B∗.

First deformation. We introduce for t ∈ [0, 1] the following family of functions

Ft : [−M,M ]2N \ V → R2N ,

by

Ft(A,B) =
( ∫

Ω
gAB · eidx, (1− t)

∫
Ω
gAB · eiu1dx+ t

∫
B∗

gAB · eidx
)
.

Clearly, this family is continuous in t, and F0 ≡ F . We shall prove that for a specific
position of the center X∗ of the ball B∗, for every t ∈ [0, 1] the function Ft can not vanish
on ∂([−M,M ]2N \ V ).

Assume that for some (A,B) ∈ ∂([−M,M ]2N\V ) and some t ∈ (0, 1] we have Ft(A,B) =
0. We shall focus first only on the first N coordinates of Ft(A,B) which depend neither on
t nor on B∗. This will give important information on the possible positions of the points
(A,B).

Indeed, we start observing that (A,B) 6∈ ∂V . This is a consequence of the choice of δ,
above. It remains that (A,B) ∈ ∂([−M,M ]2N ). In other words, at least one of the points
A or B is at distance at least M from the origin (hence at least M − 1 from Ω).

Case 1. Assume the point B is at distance at least M − 1 from Ω. Let C be the
cone with vertex B, tangent to the ball B1. If the point A does not belong to the cone C,
then denoting O′ the projection of O on the line AB, we can not have∫

Ω
gAB ·

−−→
O′Odx = 0

since the function gAB ·
−−→
O′O has constant sign on Ω. So A has to belong to the cone.

Moreover, in this situation, the point A has to belong as well to the annulus BB,M+1 \
BB,M−1. Indeed, if A does not belong to this annulus we can not have∫

Ω
gAB ·

−−→
BOdx = 0



10

since, this time, the function gAB ·
−−→
BO has constant sign on Ω (positive if A is between

the ball B1 and B, negative if the ball B1 is between A and B. This means that A ∈
C ∩ (BB,M+1 \BB,M−1), which by simple computation leads to A ∈ B√2.

The main consequence is that the distance from A to O is not larger than
√

2 hence,
by the construction of the function gAB, its action on the domain Ω is entirely given by A
since Ω is covered by HA only. In other words, the point B does not influence the integrals
in (10) and gAB = gA on Ω. Moreover, from Lemma 6, we get that the position of A
satisfying Ft(A,B) = 0 is uniquely determined, for every B far away from Ω.

For B far away and A fixed as above, let us look now to the linear form

v
L7→
∫

Ω
gAB · vu1dx.

This form is not identically vanishing, otherwise for the couple (A,B) the function F
vanishes. Consequently, the kernel of this form is an hyperplane, denoted K. Let ξ ∈ SN−1

be orthogonal to K such that
∫

Ω gA · ξu1dx > 0. We choose the center of the ball X∗ to

be given by A + 3
√

2ξ. With this choice, the ball B∗ does not intersect B1 and is fully
covered by HA (recall that M ≥ 20). Consequently,

v 7→
∫
B∗

GR(dA(x))

dA(x)

−→
Ax · vdx

has the same kernel K and has the same sign as L. In other words, for every t ∈ [0, 1]

v 7→ (1− t)
∫

Ω
gAB · vu1dx+ t

∫
B∗

GR(dA(x))

dA(x)

−→
Ax · vdx

vanishes only for v ∈ K.
At least one of the vectors e1, . . . , eN does not belong to K. Consequently, among the

N terms

i = 1, . . . , N, (1− t)
∫

Ω
gAB · eiu1dx+ t

∫
B∗

GR(dA(x))

dA(x)

−→
Ax · eidx,

at least one is not vanishing.
The conclusion is that for every t ∈ [0, 1] the function Ft can not vanish on ∂([−M,M ]2N \
V ).

Case 2. Assume the point A is at distance at least M − 1 from Ω. In this case,
only the point B acts on Ω, as in the previous case, and B ∈ B√2. The only thing which
differs, is the expression of the function Ft, which becomes

Ft(A,B) =
( ∫

Ω
gB · ei − 2(gB ·

−→
ab)(
−→
ab · ei)dx,

(1− t)
∫

Ω
gB · eiu1− 2(gB ·

−→
ab)(
−→
ab · ei)u1dx+ t

∫
B∗

gB · ei− 2(gB ·
−→
ab)(
−→
ab · ei)

)
.

In other words, we have

Ft(A,B) =
( ∫

Ω
gB · TAB(ei)dx, (1− t)

∫
Ω
gB · TAB(ei)u1dx+ t

∫
B∗

gB · TAB(ei)
)
.

Again, as in Case 1, if Ft(A,B) = 0, then B has to coincide with the same point A, in the
preceding case.
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For the point X∗ introduced in Case 1, we can not have for all ei

(1− t)
∫

Ω
gB · TAB(ei)u1dx+ t

∫
B∗

gB · TAB(ei) = 0

since the range of TAB is of dimension N . �

At that stage, we have proved that the topological degrees of F0 and F1 coincide:
d(F0, [−M,M ]2N \V, 0) = d(F1, [−M,M ]2N \V, 0). We are now going to consider a second
continuous deformation which will further simplify the functional.

Second deformation. Let B] the ball obtained by symmetry of B∗ with respect to the
origin. We define the following continuous deformation

G : [0, 1]× R2N → R2N ,

Gt(A,B) =
(
(1− t)

∫
Ω
gAB · eidx+ t

∫
B]

gAB · eidx,
∫
B∗

gAB · eidx
)
.

Similarly to Case 1, we do not vary the last N coordinates of Gt, which are of the same
nature as the first N coordinates of Ft. Consequently, if Gt(A,B) = 0 for some t and
one of the point (A,B) ∈ ∂([−M,M ]2N \ V ) then the other one has to be the center of
B∗ which is the only point which satisfies ∀v,

∫
B∗ g

AB · vdx = 0. Note that we possibly
decrease the value δ in the computation of V , such that V is also suitable for B∗. Taking
v a unit vector parallel with the line X∗O, one can notice that

(1− t)
∫

Ω
gX∗ · vdx+ t

∫
B]

gX∗ · vdx

can not vanish since both integrals have the same sign.
As G0 = F1, we can glue the two continuous deformations and notice that they do not

vanish on ∂([−M,M ]2N \ V ), so in view of [9, Theorem 1] they have the same topological
degree:

d(F, [−M,M ]2N \ V, 0) = d(F1, [−M,M ]2N \ V, 0) = d(G1, [−M,M ]2N \ V, 0).

We shall compute in the sequel the topological degree of G1 and we shall prove that it
equals to 2. As a consequence F has at least one zero, so we conclude the proof.

Computation of the topological degree of G1 at 0. There are two steps.

Step 1.The zeros of the function G1. We can assume without loosing generality that
the center of B∗ is X∗ = (3

√
2, 0, . . . , 0) and the center of B] is X] = (−3

√
2, 0, . . . , 0).

We claim that the only zeros of the function G1 are the couples (X∗, X]) and (X],X∗).
Assume A and B are such that G1(A,B) = 0. Then

∀v ∈ RN
∫
B]

gAB · vdx =

∫
B∗

gAB · vdx = 0.

Assume for contradiction that X∗ 6∈ AB. Denoting X ′ the projection of X∗ on the line

AB, and taking v =
−−−→
X ′X∗ then ∫

B∗
gAB · vdx 6= 0,

as a consequence of the structure of the function gAB and the symmetry of the ball.
Indeed, the function gAB ·v is odd with respect to the hyperplane containing the line AB
and orthogonal to v and has constant sign on each half space defined by this hyperplane.
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As this hyperplane does not cut the ball into two half balls, the integral
∫
B∗ g

AB ·vdx can

not vanish. Consequently X∗ ∈ AB, and similarly X] ∈ AB.
Let us denote by xA and xB the abscissa of points A and B and xM = (xA +xB)/2 the

abscissa of the middle. We discuss with respect to the possible values of xM .

• If xM ∈ [−3
√

2 +R, 3
√

2−R] each ball is completely contained in one of the two
half-spaces, consequently using the uniqueness given by Lemma 6 we get that the
two points have to coincide with the two centres of the balls.
• Let us prove that it is not possible that xM ∈]− inf,−3

√
2 +R[∪]3

√
2−R,+∞[.

Indeed, in that case the two balls would be in the same half-space and the unique-
ness result of Lemma 6 would imply that the same point A or B should be the
center of each ball.
• At last if xM ∈ [−3

√
2−R,−3

√
2 +R]∪ [3

√
2−R, 3

√
2 +R], one of the two balls

is completely contained in the half-space HA or HB which fixes its center at A or

B. Taking now v =
−−→
AB, and since the other ball is between A and B, we see that

the function gAB ·
−−→
AB has a constant sign on this ball which prevents the integral

to be zero and make this case impossible.

Thus, we are always in the first case: this gives the conclusion.

Computation of the sign of the Jacobian of G1 at its zeros. The partial derivatives
of the function G1, as function of A,B, can be computed explicitly.

We have the following general formula. Let h : [0,+∞)→ R∗+ be of class C1 and BO,R
the ball centred at O of radius R. For every i = 1, . . . , N we denote

fO,Ri (A) =

∫
BO,R

h(dA(Y ))(yi − xi)dy,

where A = (xi)i and Y = (yi)i. Then, we compute the derivatives at the center of the ball
A = O,

∂fO,Ri

∂xj

∣∣∣
A=O

=

∫
BO,R

h′(dO(Y ))
(xj − yj)(yi − xi)

dO(Y )
+ h(dO(Y ))(−δij)dy.

For i 6= j, we get
∂fO,Ri
∂xj

(O) = 0. For i = j, we get

∂fO,Ri

∂xi

∣∣∣
A=O

= −
∫
BO,R

h′(dO(Y ))
(yi − xi)2

dO(Y )
+ h(dO(Y ))dy

= −
∫
BO,R

∂

∂yi
[h(dO(Y ))(yi − xi)]dy = −

∫
∂BR

h(dO(Y ))(yi − xi)nidσY

= −Rh(R)

∫
∂BO,R

n2
i dσY = −Rh(R)P (B(0, R))

N
= −ωNRNh(R).

In a similar manner, for a fixed point A = (xAi ), and for variable points B = (xi)i, we
consider the generic function

fA,O,Ri (B) =

∫
BO,R

h(dB(Y ))
(xi − xAi )(

−−→
AB ·

−−→
BY )

‖AB‖2
dy,
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We assume that A and O are both on the first axis, so that
−→
AO = βe1, for some β ∈ R∗.

Denoting Oε = (xO1 + ε, xO2 , . . . , x
O
N ), we have

∂fA,O,R1

∂x1

∣∣∣
B=O

=
d

dε

∣∣∣
ε=0

∫
BO,R

h(dOε(Y ))
(β + ε)((β + ε)e1 ·

−−→
OεY )

(β + ε)2
dy = −R

N

∫
∂BO,R

h(dO(Y ))dσY .

For i ≥ 2, we have
−−→
AOε = ~AO + εei, and plugging in the definition of f1, we get

∂fA,O,R1

∂xi

∣∣∣
B=O

=

∫
BO,R

h′(dO(Y ))
(−yi)
dO(Y )

(y1 − xO1 )dy +

∫
BO,R

h(dO(Y ))
yi
β
dy = 0.

In order to compute
∂fA,O,R2
∂x1

∣∣∣
B=O

we consider the perturbation Oε = (xO1 + ε, xO2 , . . . , x
O
N ),

and notice that
fA,O,R2 (Oε) = 0.

In order to compute
∂fA,O,R2
∂x2

∣∣∣
B=O

, we consider the perturbation Oε = (xO1 , x
O
2 + ε, . . . , xON )

and notice that

fA,O,R2 (Oε) =

∫
BO,R

h(dOε(Y ))
ε(β(y1 − xO1 ) + ε(y2 − ε))

β2 + ε2
,

and

∂fA,O,R2

∂x2

∣∣∣
B=O

=

∫
BO,R

h′(dO(Y ))
−y2

dO(Y )
· 0dy +

∫
BO,R

h(dO(Y ))
y1 − xO1

β
dy = 0.

In order to compute
∂fA,O,R2
∂xi

∣∣∣
B=O

, i ≥ 3 we consider the perturbation
−−→
AOε = βe1 + εei,

and notice that
fA,O,R2 (Oε) = 0.

For the computation of the Jacobian of G1 at the points (X], X∗) and (X∗, X]) we recall
that

G1(A,B) =
( ∫

B]
gAB · eidx,

∫
B∗

gAB · eidx
)
, i = 1, . . . , N.

Around the zero (X], X∗), the expression of G1 is( ∫
B]

gA · eidx,
∫
B∗

gB · eidx− 2gB ·
−−→
AB

−−→
AB · ei
‖AB‖2

)
, i = 1, . . . , N,

or, in terms of our notations

G1(A,B) = (fX
],R

i (A), fA,X
∗,R

i (B)), i = 1, . . . , N,

with h(r) = GR(r)
r . Then, the Jacobian matrix at (X], X∗) is diagonal, with all elements

on the diagonal equal to −ωNRNh(R), except the one on position (N + 1, N + 1) which
equals ωNR

Nh(R). Its determinant equals

−
(
ωNR

Nh(R)
)2N

,

which is a negative number.
The same value is obtained at the point (X∗, X]) as the sign of β does not influence

the value of the derivatives.
As conclusion, the topological degree of F at 0 is equal to 2 which leads to the existence

of (at least) two solutions of F (A,B) = 0 in [−M,M ]2N \ V .
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3. Proof of Theorem 3

In this section we shall prove Theorem 3. We start with the following observation. In
(1), one can replace C∞c (RN ) with W 1,∞(RN ). Indeed, for a function u ∈W 1,∞(RN ) such
that

∫
RN ρudx = 0, both terms

∫
RN ρu

2dx and
∫
RN ρ|∇u|

2dx are well defined. Moreover,

there exists a sequence of functions ϕn ∈ C∞c (RN ) such that∫
RN

ρϕndx = 0, lim
n→+∞

∫
RN

ρ
(
|∇ϕn −∇u|2 + |ϕn − u|2

)
dx = 0.

The construction is standard by cut-off and convolution, one has to be careful only to the
orthogonality on ρ. Let ϕ ∈ C∞c (RN , [0, 1]) such that ϕ = 1 on B1 and ϕ = 0 on RN \B2.
We introduce for every δ > 0, ϕδ(x) := ϕ(δx) and the constant cδ such that∫

RN
ρϕδ(u− cδ)dx = 0.

We observe that

cδ

∫
RN

ρϕδdx =

∫
RN

ρϕδudx,

and for δ → 0 we get cδ → 0. This is a consequence of

lim
δ→0

∫
RN

ρ
(
|∇(ϕδu)−∇u|2 + |ϕδu− u|2

)
dx = 0.

Now, for fixed δ > 0, we consider a convolution kernel (ξε)ε and a constant cδ,ε such that∫
RN

ρξε ∗ (ϕδ(u− cδ,ε))dx = 0.

On the one hand

cδ,ε

∫
RN

ρξε ∗ ϕδdx =

∫
RN

ρξε ∗ (ϕδu)dx,

hence for ε→ 0 we get cδ,ε → cδ. On the other hand

lim
ε→0

∫
RN

ρ
(
|∇(ξε ∗ (ϕδu))−∇(ϕδu)|2 + |ξε ∗ (ϕδu)− ϕδu|2

)
dx = 0,

which concludes the proof by a diagonal argument.

The case k = 1 (extension of the Szegö-Weinberger result). Since inequality (2)
that we want to prove is scale invariant, we can assume that

∫
RN ρdx = 1. Let r1 be the

radius of the ball of volume equal to 1.
If ρ has bounded support, the proof follows step by step the geometric case. The

existence of a point A such that

(12) ∀i = 1, . . . , N

∫
RN

ρgA(x) · eidx = 0

is done using the same fixed point argument used by Weinberger (see [12, Lemma 6.2.2]).
The function G = Gr1 , which enters in the definition of gA above, is associated to r1.

Then, the proof follows step by step, the final argument being the displacement of the
mass of ρ towards 1Br1 .

If ρ has unbounded support, the existence of a point A satisfying (12) can be done
by approximation. Note that for every i the function gA(x) · ei belongs to W 1,∞(RN ).
Let Rn → +∞ and consider An a point satisfying the orthogonality relations (12) for the
density ρ1BRn (which has bounded support) and for the g-functions defined with r1. If,
for a sub-sequence, (An)n remains bounded, then by compactness we find a limit A such
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that An → A. It can be easily observed that the orthogonality relations (12) pass to the
limit, since ‖gAn · ei‖∞ ≤ G(r1). Hence A satisfies (12) for ρ.

Assume for contradiction that dO(An)→ +∞. We fix a radius R such that∫
BR

ρdx =
2

3
.

For n large enough such that rn ≥ R, we denote vn = 1

‖
−−−→
AnO‖

−−→
AnO. By the choice of An,

we have ∫
BRn

gAn · vndx = 0,

which gets in contradiction with

lim
n→+∞

∫
BR

gAn · vndx =
2

3
G(r1), and

∫
BRn\BR

|gAn · vn|dx ≤
1

3
G(r1).

Hence, (An)n remains bounded and we can build the functions of (12). The proof ends
using a mass displacement argument, pushing forward the measure ρdx on 1Br1dx.

The case k = 2. Assume that
∫
RN ρdx = 1 and that µ̃2(ρ) > µ∗2. Let us denote r 1

2
the

radius of the ball of volume 1
2 .

There are two difficulties. Along with the fact that the support of ρ may be unbounded,
there is a new difficulty: there is no necessarily existence of an eigenfunction associated to
µ̃1(ρ), by eigenfunction understanding a function for which the infimum is attained in the
definition of µ̃1(ρ). The orthogonality on the first eigenfunction, both in L2 and H1, was
an important point of the proof in the geometric case. Indeed, in the Rayleigh quotient
estimating the second eigenfunction, the scalar product

∫
RN ρ∇u1∇gidx was not present,

being equal to 0.
Let us fix ε > 0 and consider u1 ∈W 1,∞(RN ) such that

∫
RN ρu1dx = 0,

∫
RN ρu

2
1dx = 1

and

(13) µ̃1(ρ) ≤
∫
RN

ρ|∇u1|2dx < µ̃1(ρ) + ε.

Let us prove the existence of two points A 6= B (one of them being possibly at infinite
distance from the origin) such that

(14) ∀i = 1, · · · , N,
∫
RN

ρgAB · eidx =

∫
RN

ρgAB · eiu1dx = 0.

Above, we abuse of the notation gAB even if one of the points A and B is formally at
infinite distance from the origin. The exact meaning is given below.

Let Rn → +∞. We apply step by step the method of Section 2 to the functions

1BRnρ, 1BRnρu1,

and find a couple of points (An, Bn) such that

(15) ∀i = 1, · · · , N,
∫
BRn

ρgAnBn · eidx =

∫
BRn

ρgAnBn · eiu1dx = 0.

If both sequences (An)n, (Bn)n stay bounded, we can assume (up to extracting a sub-
sequence) that An → A, Bn → B. If A 6= B, then all equalities in (15) pass to the limit
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to (14). If A = B, then taking a further sub-sequence such that
−−−→
AnBn
‖AnBn‖

→ v ∈ SN−1

we would get in the limit that ∫
RN

ρgAA · vdx = 0,

where gAA is the pointwise limit of the sequence gAnBn . This is is not possible since gAA ·v
is a negative function.

If (An)n stays bounded, and dO(Bn) → +∞, we can assume that An → A and obtain
that the limit of gAnBn equals gA := gA∞. Then, the functions (gA · ei)i satisfy (14). A

similar assertion holds if Bn → B, dO(An)→ +∞ and
−−−−→
AnBn
‖AnBn‖ → v ∈ SN−1, in which case

the limit is described by

gB · ei − 2gB · v(v · ei) := g∞B · ei, i = 1, . . . , N

satisfy the orthogonality relations (14).
We prove now that both sequences (An)n, (Bn)n can not go unbounded simultaneously,

since the orthogonality on constants (in relations (15)) would be contradicted. Indeed,
denote On the projection of O on the line AnBn. Fix R large enough such that∫

BR

ρdx =
3

4
.

We can assume (possibly exchanging the notations and extracting further sub-sequences)
that ‖AnOn‖ ≤ ‖BnOn‖.

If for an infinite number of indices we have

ÔnOAn ≤
π

4
,

then taking vn =
−−−→
OnO
‖OnO‖ , we get

lim inf
n→+∞

∫
BR

ρgAnBn · vndx ≥
1√
2

3

4
G(r 1

2
) >

1

2
G(r 1

2
),

contradicting the hypotheses (15), as it is not possible that
∫
BRn

ρgAnBn · vndx = 0.

If for an infinite number of indices we have

ÔnOAn ≥
π

4
⇔ ÔAnOn ≤

π

4
,

we take vn =
−−−−→
AnBn
‖AnBn‖ and arrive to the same conclusion.

We finally conclude with the validity of (14). By abuse of notation, we continue to
denote the set of such functions (gAB · ei)i, even though, one of the points is at ∞ (i.e.
the functions gA∞ · ei = gA · ei and g∞B · ei = gB · ei − 2gB · v(v · ei)). Let us denote by

G = {(gi)i=1,...,N : ∃A,B, gi =
gAB · ei

(
∫
RN ρ(gAB · ei)2dx)

1
2

,∀i = 1, . . . , N,

∫
RN

ρgAB ·eidx = 0}.

The family G is not empty, and moreover there exist at least one package of N functions
(gi)i such that

∫
RN ρgiu1 = 0, as we have proved above. We have, in particular,

∀i = 1, . . . , N,

∫
RN

ρg2
i dx = 1.
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We observe that the set G is sequentially compact as if (gAnBn · ei)i ∈ G, at least one of
the sequences (An)n or (Bn)n has to stay bounded.

We split the discussion in two cases.

Case 1. Assume that there exists some function u1 ∈W 1,∞(RN ) such that
∫
RN ρu1dx = 0,∫

RN ρu
2
1dx = 1 and

(16) µ̃1(ρ) =

∫
RN

ρ|∇u1|2dx.

Since we get ∫
RN

ρgidx =

∫
RN

ρgiu1dx =

∫
RN

ρ∇gi∇u1dx = 0,

the proof follows step by step the geometric case, by the mass displacement argument.

Case 2. Assume that there does not exists a function u1 ∈ W 1,∞(RN ) such that (16)
holds. In this case, u1 will satisfy only inequality (13). We introduce the following numbers
independent on the choice of u1.

m := inf{
∫
RN ρ|∇gk|

2dx∫
RN ρ|gk|2dx

: k = 1, . . . , N, (gi)i ∈ G}.

M := sup{
∫
RN ρ|∇gk|

2dx∫
RN ρ|gk|2dx

: k = 1, . . . , N, (gi)i ∈ G}.

The values m and M are attained as a consequence of the same compactness argument
described above. Therefore, we have the strict inequality

µ̃1(ρ) < m.

We give the following.

Lemma 8. There exists C > 0 such that ∀ε ∈ (0, m−µ̃1(ρ)
2 ) and for every (gi)i ∈ G

satisfying
∫
RN ρgiu1dx = 0 we have

(17) ∀i = 1, . . . , N, µ̃2(ρ) ≤
∫
RN

ρ|∇gi|2dx+ Cε.

Proof. Assume the set of functions (gi)i satisfies (14). We write, for some i ∈ {1, . . . , N},

∀t ∈ R, µ̃1(ρ) ≤
∫
RN ρ|∇u1 + t∇gi|2dx∫

RN ρ|u1 + tgi|2dx
=

∫
RN ρ|∇u1 + t∇gi|2dx

1 + t2
.

Direct computations and the knowledge of
∫
RN ρ|∇u1|2dx ≤ µ̃1(ρ) + ε, give

∀t ∈ R, 0 ≤ ε+ 2t

∫
RN

ρ∇u1∇gidx+ t2(

∫
RN

ρ|∇gi|2dx− µ̃1(ρ)).

For

t = −
∫
RN ρ∇u1∇gidx∫

RN ρ|∇gi|2dx− µ̃1(ρ)
,

we get

0 ≤ ε−
(
∫
RN ρ∇u1∇gidx)2∫

RN ρ|∇gi|2dx− µ̃1(ρ)
,

or

(18) (

∫
RN

ρ∇u1∇gidx)2 ≤ ε(
∫
RN

ρ|∇gi|2dx− µ̃1(ρ)) ≤ ε(M − µ̃1(ρ))
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where the uniform bound on the gradient of gi has been obtained at (11). This inequality
gives a control of the scalar product

∫
RN ρ∇u1∇gidx by

√
ε.

By definition, we have

µ̃2(ρ) ≤ sup
t∈R

∫
RN ρ|∇u1 + t∇gi|2dx

1 + t2
.

For t→ ±∞, the right hand side converges to the same value
∫
RN ρ|∇gi|

2dx. If this is the
supremum, the lemma is proved. Otherwise, we search the values of t which are critical
for the right hand side above. Performing the derivative in t, those critical values have to
satisfy

−t2(

∫
RN

ρ∇u1∇gidx) + t(

∫
RN

ρ|∇gi|2dx−
∫
RN

ρ|∇u1|2dx) +

∫
RN

ρ∇u1∇gidx = 0.

If
∫
RN ρ∇u1∇gidx = 0, then the only critical point is t = 0 and in this case, this corre-

sponds to a minimum for the Rayleigh quotient, the maximum being achieved for t→ ±∞.
If
∫
RN ρ∇u1∇gidx 6= 0, then the two real roots t1, t2 satisfy

t1t2 = −1, t1 + t2 =

∫
RN ρ|∇gi|

2dx−
∫
RN ρ|∇u1|2dx∫

RN ρ∇u1∇gidx
.

In particular, the second equality leads to

|t1 + t2| ≥
m− (µ̃1(ρ) + ε)

|
∫
RN ρ∇u1∇gidx|

≥ 1

2

m− µ̃1(ρ)

|
∫
RN ρ∇u1∇gidx|

≥ m− µ̃1(ρ)

2
√
ε(M − µ̃1(ρ))

.

We conclude that for some constant C, independent on ε, we have (possibly switching the
indices)

|t1| ≤ C
√
ε, |t2| ≥

1

C

√
ε.

Evaluating the Rayleigh quotient in t1, t2 and taking into account that ε is small and

µ̃2(ρ) ≥ 2
2
N |B|

2
N µ1(B) − |B|

2
N µ1(B), we observe that the maximum is attained in t2,

which leads to

µ̃2(ρ) ≤
∫
RN

ρ|∇gi|2dx+ C2|B|
2
N µ1(B)ε+ 2Cε

√
ε(M − µ̃1(ρ)),

concluding the proof of the lemma. �

Going back to the proof of Theorem 3, we can use inequalities (17) as in the geometric
case (see the subsection The use of test functions), to obtain

µ̃2(ρ) ≤ µ∗2 + Cε.

Making ε→ 0, the inequality is proved.
If equality occurs, then the mass displacement should involve only a set of zero measure,

otherwise the inequality is strict, independent on ε.
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very nice alternative which, for the moment, faces the difficulty of handling the unknown
function u1 and the interpretation of the test function gAB across the diagonal set.
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MR 2150214

[11] A. Girouard, N. Nadirashvili, and I. Polterovich, Maximization of the second positive Neumann
eigenvalue for planar domains, J. Differential Geom. 83 (2009), no. 3, 637–661. MR 2581359

[12] A. Henrot, Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics,
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