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Introduction

The current work is mainly related to the well-known 1-2-3 Conjecture, which is defined accordingly to the upcoming notions. Let G be a graph, and let ω be an edge-weighting (assigning weights among {1, . . . , k}) of G. From ω, one can design the vertex-colouring σ of G where each vertex v gets assigned, as its colour σ(v), the sum of weights (called its weighted degree) assigned to its incident edges. That is, for every vertex v of G we have σ(v) :=

u∈N (v) ω(uv),
where N (v) denotes the set of neighbours of v. In case σ is actually a proper vertex-colouring of G, i.e., we have σ(u) = σ(v) for every two adjacent vertices u and v, then we call ω neighbour-sum-distinguishing.

For any two graphs G and H, we say that G has no isolated H if no connected component of G is isomorphic to H. Note that all graphs with no isolated edge admit neighbour-sum-distinguishing edgeweightings (consider e.g. an inductive argument). Graphs with no such connected components are thus called nice, with respect to this edge-weighting notion. The 1-2-3 Conjecture, posed in 2004 by Karoński, Łuczak and Thomason [START_REF] Karoński | Edge weights and vertex colours[END_REF], asks whether, for every nice graph, we can design neighbour-sum-distinguishing 3-edge-weightings, i.e., using weights 1, 2, 3 only. More precisely, if we denote by χ Σ (G) the least k such that a nice graph G admits a neighbour-sum-distinguishing k-edge-weighting, then it is believed that χ Σ (G) ≤ 3 should always hold.

1-2-3 Conjecture (Karoński, Łuczak, Thomason [START_REF] Karoński | Edge weights and vertex colours[END_REF]). For every nice graph G, we have χ Σ (G) ≤ 3.

Despite many active investigations in the last decade, the 1-2-3 Conjecture is still wide open to date. These investigations have been mainly focused on 1) proving the 1-2-3 Conjecture for new classes of nice graphs, 2) proving general constant upper bounds on χ Σ , and 3) studying side aspects of the 1-2-3 Conjecture. As the literature on this topic is vast, a brief summary of some of these investigations is deferred to the next section.

The current work is also related to locally irregular decompositions, which were considered as a decompositional approach towards understanding some aspects behind the 1-2-3 Conjecture. In general, by a decomposition of a graph, we mean an edge-colouring where each colour class yields a graph with particular properties. A locally irregular graph is a graph in which every two adjacent vertices have distinct degrees. By a locally irregular decomposition of a graph, we thus mean a decomposition into locally irregular graphs. Sticking to the edge-colouring point of view, we will also sometimes instead speak of a locally irregular edge-colouring.

Locally irregular decompositions relate to the 1-2-3 Conjecture through, notably, the following arguments. In a sense, the graphs G that are the "most convenient" for the 1-2-3 Conjecture are those which verify χ Σ (G) = 1. Those graphs are precisely the locally irregular ones. Also, in particular contexts, locally irregular decompositions can be turned into neighbour-sum-distinguishing edge-weightings. Perhaps the best illustration of that claim is the fact that, in any regular graph, a neighbour-sum-distinguishing 2-edge-weighting yields a decomposition into two locally irregular graphs, and vice versa.

Similarly as for neighbour-sum-distinguishing edge-weightings, there exist graphs which do not admit any locally irregular decomposition; but, this time, the class of exceptional graphs is much wider (consider e.g. any path of odd length). An exceptional graph (with respect to locally irregular decompositions) is also called an exception, for short. Conversely, a graph that is not exceptional is said decomposable. For a decomposable graph G, we denote by χ irr (G) the least k such that G admits a locally irregular k-edgecolouring. Similarly as in the case of the 1-2-3 Conjecture, it is believed that every decomposable graph should decompose into at most three locally irregular graphs, as conjectured by some of the authors of the present paper: Conjecture 1.1 (Baudon, Bensmail, Przybyło, Woźniak [START_REF] Baudon | On decomposing regular graphs into locally irregular subgraphs[END_REF]). For every decomposable graph G, we have χ irr (G) ≤ 3.

Conjecture 1.1 was first verified for a few graph classes. Also, general constant upper bounds on χ irr were recently exhibited. For the sake of keeping the introduction short, we again refer the reader to the next section for a survey of some of these results.

In this work, we aim at introducing a general decompositional theory enclosing neighbour-sum-distinguishing edge-weightings and locally irregular decompositions. This theory is mainly based on the observation that a locally irregular -edge-colouring of a graph G is, put differently, a decomposition of G into graphs G 1 , . . . , G verifying χ Σ (G 1 ), . . . , χ Σ (G ) = 1. This leads us to combine the notions of neighbour-sumdistinguishing edge-weightings and locally irregular edge-colourings, in the following way. Let , k ≥ 1 be two integers, and G be a graph. To each edge of G, we assign, via a colouring ω, a pair (α, β), where α ∈ {1, . . . , } and β ∈ {1, . . . , k}, which can be regarded as a coloured weight (with value β and colour α). Now, for every vertex v of G, and every colour α ∈ {1, . . . , }, one can compute the weighted α-degree σ α (v), being the sum of weights with colour α incident to v. So, to every vertex v is associated a palette (σ 1 (v), . . . , σ (v)) of coloured weighted degrees.

When working on variants of the 1-2-3 Conjecture, the intent is to design edge-weightings ω that allow to distinguish the adjacent vertices, accordingly to some distinction condition. When dealing with the notions introduced in the last paragraph, there are many ways for asking for distinction, as several coloured sums are available; in this work, we will focus on the following three distinction variants, which sound the most natural to us:

• Weak distinction: two adjacent vertices u and v of G are considered distinguished if there is an α ∈ {1, . . . , } such that σ α (u) = σ α (v).

• Standard distinction: two adjacent vertices u and v of G are considered distinguished if, assuming ω(uv) = (α, β), we have σ α (u) = σ α (v).

• Strong distinction: two adjacent vertices u and v of G are considered distinguished if, for every α ∈ {1, . . . , }, we have

σ α (u) = σ α (v) = 0, or σ α (u) = σ α (v).
Assuming ω verifies one of the weak, standard or strong distinction condition for every pair of adjacent vertices, we say that ω is a weak, standard or strong ( , k)-edge-colouring, and that G is weakly, standardly or strongly ( , k)-coloured. We also say that G is weakly, standardly or strongly ( , k)-colourable, if there are , k ≥ 1 with ≤ and k ≤ k such that G can be weakly, standardly or strongly ( , k )-coloured, respectively. We provide, in Figure 1, an illustration of these concepts on K 4 , the complete graph on four vertices, where the two colours are represented by solid and dashed edges. By the "incident solid sum" of a vertex, we here mean the sum of weights assigned to its incident solid edges. It can be checked that, in Figure 1.(a), the depicted (2, 2)-colouring is a weak colouring. It is however not a standard (2, 2)-colouring as vertices c and d are joined by a solid edge but their incident solid sums equal 3. The colouring in Figure 1.(b) is a standard (2, 2)-colouring which is not a strong colouring, in particular because vertices a and c both have incident solid sum 2. The colouring in Figure 1.(c) is a strong (2, 2)-colouring. This paper is organized as follows. As already mentioned, the notions of weak, standard and strong ( , k)-colourings can be employed to generalize neighbour-sum-distinguishing edge-weightings and locally irregular edge-colourings. In Section 2, we explore these connexions. In particular, we recall known results and translate them in our new terminology.

Playing with the parameters and k and the distinction conditions, we also come up with new problems, some of which we believe are of independent interest. In particular, we wonder whether almost all graphs can be weakly, standardly, or even strongly (2, 2)-coloured. If true, this would imply side decomposition results related to the 1-2-3 Conjecture. The strong, standard and weak versions of that question are formally introduced in Section 3. They are then studied in Sections 4, 5 and 6, respectively.

Previous results and connexions to ( , k)-colourings

As a warm up, we start, in Section 2.1, by making first observations and remarks on weak, standard and strong colourings. We then survey, in Section 2.2, some of the results from literature that are directly connected to these notions. More precisely, we explain which notions in the literature are encompassed by weak, standard and strong colourings, and, by rephrasing known results under that new terminology, we exhibit first results.

Early observations

First of all, we note that, according to the definitions, every result holding for some version of ( , k)colourings also holds for the weaker versions. This is why, throughout Sections 4 to 6, we start by considering strong colourings, then standard colourings, and, finally, weak colourings. Observation 2.1. A strong ( , k)-colouring is also a standard ( , k)-colouring. Analogously, a standard ( , k)-colouring is also a weak ( , k)-colouring.

In general, though, it can be observed that the converse direction is not true, i.e., that a given ( , k)colouring does not necessarily fulfil stronger distinction conditions. A good illustration for that is the fact that K 3 can be weakly (2, 2)-coloured but not standardly (2, 2)-coloured. There are situations, though, where all distinction conditions behave similarly. We state a few of them below.

First of all, we recall that, for some values of and k, some versions of ( , k)-colourings are equivalent to other kinds of distinguishing colourings and weightings. Most of these observations are straightforward, and thus do not need a formal proof. In particular, it can easily be checked that some of these results do not hold for stronger or weaker versions of our colouring variants. Let G be a graph, and ω be an edge-weighting of G. For each vertex v of G, one can compute its multiset µ(v) of incident weights induced by ω. We say that ω is neighbour-multiset-distinguishing if no two adjacent vertices of G get the same multiset of incident weights. Note that having σ(u) = σ(v) for an edge uv of G implies that µ(u) = µ(v) (but the converse is not necessarily true). For this reason, neighbour-multiset-distinguishing edge-weightings have been studied as a weaker form of neighbour-sumdistinguishing edge-weightings.

The point for mentioning neighbour-multiset-distinguishing edge-weightings is that they relate to our notion of weak colourings.

Observation 2.4. Weak (k, 1)-colourings and neighbour-multiset-distinguishing k-edge-weightings are equivalent notions.

In Observation 2.2, we noticed that, for (1, k)-colourings, all three distinction conditions are equivalent. In the following result, we point out another context where the three colouring variants coincide.

Observation 2.5. In regular graphs, weak, standard and strong (2, 1)-colourings are equivalent notions.

Previous results

In this section, we restate, in our terminology, several results from the literature on distinguishing weightings and colourings to derive the existence of particular (1, k)or ( , 1)-colourings. In other words, we here point out how our colouring concepts encapsulate existing distinguishing weightings and colourings.

This section is not intended to be a full survey on variants of the 1-2-3 Conjecture. Hence, we voluntarily focus on those existing results that are closely related to our investigations; for more details, please refer to the survey [START_REF] Seamone | The 1-2-3 Conjecture and related problems: a survey[END_REF] by Seamone.

Neighbour-sum-distinguishing edge-weightings

Recall that, according to Observation 2.2, being strongly (1, k)-colourable is equivalent to being neighboursum-distinguishing k-edge-weightable. Thus, all general constant upper bounds on χ Σ yield results on strong colourability (hence on the weaker variants as well, recall Observation 2.1).

In the context of neighbour-sum-distinguishing edge-weightings, the leading conjecture is the 1-2-3 Conjecture. If true, that conjecture would imply that every nice graph is strongly (1, 3)-colourable. Recall that nice graphs are exactly those graphs without isolated edges.

Conjecture 2.6. Every nice graph is strongly (1, 3)-colourable.

To date, the best result towards the 1-2-3 Conjecture was given by Kalkowski, Karoński and Pfender [START_REF] Kalkowski | Vertex-coloring edge-weightings: towards the 1-2-3 Conjecture[END_REF], who proved χ Σ (G) ≤ 5 for every nice graph G. As said above, this result can be stated as follows, using our terminology.

Theorem 2.7. Every nice graph is strongly (1, 5)-colourable.

The 1-2-3 Conjecture was shown to hold for several common classes of nice graphs, such as complete graphs and 3-colourable graphs. There exist graphs G verifying χ Σ (G) = 3, such as complete graphs of order at least 3. One natural question is thus whether such graphs are easy to characterize. Dudek and Wajc settled the question in the negative [START_REF] Dudek | On the complexity of vertex-coloring edge-weightings[END_REF], by showing that determining the exact value of χ Σ (G) is an NPcomplete problem. Later on, Ahadi, Dehghan and Sadeghi [START_REF] Ahadi | Algorithmic complexity of proper labeling problems[END_REF] proved that this remains true when restricted to regular (cubic) graphs. This result is of prime interest, as all distinguishing weighing and colouring notions considered in this paper tend to be equivalent when 1) only two weights or colours are considered, and 2) the graph is regular (recall Observation 2.5). This result, by itself, directly establishes the general hardness of weak, standard and strong colourings.

It took some time to settle this complexity question for bipartite graphs. In a first work [START_REF] Chang | Vertex-coloring edge-weightings of graphs[END_REF], Chang, Lu, Wu and Yu provided several sufficient conditions for a nice bipartite graph G to verify χ Σ (G) ≤ 2. In particular, they showed that being connected and having one of the two partite sets of even cardinality is a sufficient condition, and, from this result, they easily proved that nice trees always admit neighboursum-distinguishing 2-edge-weightings. Later on, the full characterization of connected bipartite graphs G with χ Σ (G) = 3 was given by Thomassen, Wu and Zhang [START_REF] Thomassen | The 3-flow conjecture, factors modulo k, and the 1-2-3conjecture[END_REF], who proved that they are exactly the odd multicacti. These graphs can be constructed as follows. Start from m ≥ 1 cycles C 1 , . . . , C m whose lengths are at least 6 and congruent to 2 modulo 4, and colour the edges of the C i 's using colours red and green alternately. Then, an odd multicactus is any connected graph obtained from the C i 's via repeated applications of the following operation: pick two connected components G 1 and G 2 , and identify a green edge of G 1 with a green edge of G 2 . Said differently, an odd multicactus is obtained by identifying edges of particular cycles in a tree-like fashion. In particular, every cycle with length congruent to 2 modulo 4 is an odd multicactus.

Theorem 2.8 (Thomassen, Wu, Zhang [START_REF] Thomassen | The 3-flow conjecture, factors modulo k, and the 1-2-3conjecture[END_REF]). A connected bipartite graph G verifies χ Σ (G) = 3 if and only if G is an odd multicactus.

Locally irregular edge-colourings

By Observation 2.3, we get that locally irregular k-edge-colourings are precisely standard (k, 1)-colourings. We thus survey some of the research on locally irregular edge-colourings, as they transfer to standard (k, 1)colourings.

As mentioned in Section 1, not all graphs decompose into locally irregular graphs, so one has to deal with so-called exceptions. In their first work on this topic [START_REF] Baudon | On decomposing regular graphs into locally irregular subgraphs[END_REF], Baudon, Bensmail, Przybyło and Woźniak completely characterized all connected exceptions. Namely, connected exceptions include 1) odd-length paths, 2) odd-length cycles, and 3) the family T defined recursively as follows:

• The triangle K 3 belongs to T.

• Every other graph in T can be constructed by 1) taking an auxiliary graph F being either a path of even length or a path of odd length with a triangle glued to one of its ends, then 2) choosing a graph G ∈ T containing a triangle with at least one vertex, say v, of degree 2 in G, and finally 3) identifying v with a vertex of degree 1 of F .

Note that all connected exceptions have maximum degree at most 3. Thus, a graph is decomposable if and only if it has no exception as a connected component. Once the set of exceptions was characterized, Baudon, Bensmail, Przybyło and Woźniak conjectured that every decomposable graph G should decompose into at most three locally irregular graphs, i.e., χ irr (G) ≤ 3. Due to Observation 2.3, this conjecture can be restated as follows: Conjecture 2.9. Every decomposable graph is standardly (3, 1)-colourable.

The first constant upper bound on χ irr is due to Bensmail, Merker and Thomassen [START_REF] Bensmail | Decomposing graphs into a constant number of locally irregular subgraphs[END_REF], who proved that we have χ irr (G) ≤ 328 for every decomposable graph G. This bound was recently improved down to 220 by Lužar, Przybyło and Soták [START_REF] Lužar | New bounds for locally irregular chromatic index of bipartite and subcubic graphs[END_REF]. We can thus state the following: Theorem 2.10. Every decomposable graph is standardly (220, 1)-colourable.

Baudon, Bensmail, Przybyło and Woźniak verified Conjecture 2.9 for several decomposable graph classes [START_REF] Baudon | On decomposing regular graphs into locally irregular subgraphs[END_REF], including complete graphs, some bipartite graphs, some Cartesian products, and regular graphs with degree at least 10 7 . Later on, Przybyło [START_REF] Przybyło | On decomposing graphs of large minimum degree into locally irregular subgraphs[END_REF] verified the conjecture for graphs with minimum degree at least 10 10 . The complexity aspects were considered by Baudon, Bensmail and Sopena [START_REF] Baudon | On the complexity of determining the irregular chromatic index of a graph[END_REF], who proved that, for a given graph G, deciding whether χ irr (G) = 2 is NP-complete in general, while determining χ irr (G) can be done in polynomial time when G is a tree.

Neighbour-multiset-distinguishing edge-weightings

As mentioned in the previous section, all neighbour-sum-distinguishing edge-weightings are neighbourmultiset-distinguishing, but the converse is not always true. The connexion between these two notions was first considered by Karoński, Łuczak and Thomason in the paper introducing the 1-2-3 Conjecture [START_REF] Karoński | Edge weights and vertex colours[END_REF]. The first formal study of neighbour-multiset-distinguishing edge-weightings may be attributed to Addario-Berry, Aldred, Dalal and Reed, who, later on, gave improved results towards a "multiset version" of the 1-2-3 Conjecture [START_REF] Addario-Berry | Vertex colouring edge partitions[END_REF]. In our terminology, this conjecture reads as follows:

Conjecture 2.11. Every nice graph is weakly (3, 1)-colourable.

So far, the best result towards Conjecture 2.11 is hence due to Addario-Berry, Aldred, Dalal and Reed, who proved that all nice graphs admit neighbour-multiset-distinguishing 4-edge-weightings [START_REF] Addario-Berry | Vertex colouring edge partitions[END_REF].

Theorem 2.12. Every nice graph is weakly (4, 1)-colourable.

All graph classes verifying the 1-2-3 Conjecture also verify Conjecture 2.11. Additionally, the latter conjecture was also verified for graphs with minimum degree at least 1000, see [START_REF] Addario-Berry | Vertex colouring edge partitions[END_REF].

New problems

As seen in Section 2, some of the (1, k)-colouring and ( , 1)-colouring variants correspond to distinguishing weighting and colouring notions already considered in the literature. In particular, for such values of and k, there is still some gap between the corresponding conjectures and the best results we know to date. One way to get some sort of side progress, could be to prove the existence of ( , k)-colourings (for some distinction condition) where + k or max{ , k} is as small as possible.

In particular, the main problem we consider in the rest of this paper, which corresponds to minimizing max{ , k}, and to which we could not find any obvious counterexample, reads as follows. By a nicer graph, we mean a graph with no isolated edges and triangles. Conjecture 3.1. Every nicer graph is strongly (2, 2)-colourable.

The main reason for suspecting that K 2 and K 3 might be the only connected graphs admitting no strong (2, 2)-colourings is that they are the only connected exceptional graphs (recall the exact characterization in Subsection 2.2.2) admitting no neighbour-sum-distinguishing 2-edge-weightings. Proof: Let G be a connected exception different from K 2 and K 3 . We consider several cases corresponding to the three families of connected exceptions given by the definition:

• If G is an odd-length path, then G is a connected bipartite graph different from an odd multicactus, thus verifies χ Σ (G) ≤ 2 according to Theorem 2.8, and hence admits strong (1, 2)-colourings.

• If G is an odd-length cycle with length at least 5, then G can be decomposed into two paths P r , P b with length at least 2. In particular, the end-vertices of P r (and similarly P b ) are not adjacent in G, and we have χ Σ (P r ), χ Σ (P b ) ≤ 2. By considering a strong (1, 2)-colouring of P r (with red weights) and a strong (1, 2)-colouring of P b (with blue weights), we eventually get a strong (2, 2)-colouring of G.

• Finally assume that G ∈ T \ {K 3 }. By contracting the triangles (there is at least one such) of G to vertices, we obtain a tree R(G) with maximum degree 3, whose some nodes (triangle nodes) correspond to triangles of G, while some nodes (normal nodes) correspond to real vertices. Furthermore, by definition, any path of R(G) joining two triangle nodes has odd length, and any path joining a triangle node and a pendant normal node has even length.

We can consider G as a collection of triangles with at most three pendant edges attached (extended triangles), and paths with one or two ends attached to a triangle (maximal paths) (see Figure 2 for an example). The pendant edges attached to the extended triangles, as well as the end-edges incident to triangles of the maximal paths, are called attachment edges. According to these definitions, G can be constructed from extended triangles and maximal paths by glueing their attachment edges. In particular, every attachment edge belongs to one extended triangle and one maximal path. Necessarily R(G) has a degree-1 node r, being either a triangle node (pendant triangle in G) or a normal node (pendant vertex in G). Consider the (virtual) orientation of the edges of R(G) from r towards the leaves. We construct a strong (2, 2)-colouring (assigning weights coloured red and blue) iteratively, by extending a colouring along extended triangles and maximal paths following the ordering given by the orientation of the attachment edges. Since R(G) is a tree, note that once an attachment edge is coloured, this provides a pre-colouring of the next extended triangle or maximal path to be coloured.

We start constructing the colouring from r. In G, node r corresponds either to an end-vertex of a maximal path P (normal node), or to a triangle T (triangle node). In the first case, let P := v 1 . . . v 2k ; then we just assign red weights 1, 2, 2, 1, 1, . . . along P . In the second case, let T := v 1 v 2 v 3 v 1 , and let v 1 denote, without loss of generality, the neighbour of v 1 outside T ; we here assign red weight 1 to v 3 v 2 and red weight 2 to v 2 v 1 , and blue weight 1 to v 3 v 1 and blue weight 2 to v 1 v 1 . In any case, it can be checked that the colouring is correct so far.

We now proceed to the general case, i.e., we consider a maximal path P or extended triangle T whose one attachment edge is coloured, and we extend the colouring to all its other attachment edges in G.

Consider first a maximal path P := v 1 . . . v k whose attachment edge v 1 v 2 was assigned, say, a red weight. We here extend the colouring to all edges of P by assigning red weights (with value 1 or 2) to its edges v 2 v 3 , . . . , v k-1 v k successively. Note that this can be done correctly, as, when a red weight is being assigned to an edge v i v i+1 , we just have to make sure that the red sum of v i avoids the red sum of v i-1 , which is possible since we have two red weights to play with.

We are left with the case where the colouring must be extended to an extended triangle T := v 1 v 2 v 3 v 1 whose one attachment edge, say v 1 v 1 , was previously assigned, say, a red weight. We here consider cases depending on the number of additional attachment edges:

-If v 1 v 1 is the only attachment edge of T , then we assign a red weight to v 1 v 2 so that the red sum of v 1 does not get equal to the red sum of v 1 . We then assign blue weights 1, 2 or 2, 1 to v 1 v 3 and v 3 v 2 in such a way that the blue sum of v 1 does not get equal to the blue sum of v 1 .

-Assume v 2 v 2 is the only other attachment edge of T . We here assign a red weight to v 1 v 3 in such a way that the red sum of v 1 does not get equal to the red sum of v 1 . We then assign blue weights 1, 2, 1 or 2, 1, 1 to v 2 v 1 , v 2 v 3 and v 2 v 2 in such a way that the blue sum of v 1 does not get equal to the blue sum of v 1 .

-Lastly, assume v 2 v 2 and v 3 v 3 are attachment edges. First, we assign blue weight 1 to v 1 v 2 and blue weight 2 to v 1 v 3 . We now assign red weight 1 to v 2 v 2 , red weight α to v 2 v 3 and red weight 2 to v 3 v 3 , where α is the red weight of v 1 v 1 .

In any of these cases, it can be checked that the colouring extension is correct. So this covers all cases of the proof.

The rest of this paper is dedicated to providing evidences towards Conjecture 3.1. We do it gradually, by first considering, in Section 4, Conjecture 3.1 in its literal form. We then consider its standard version (in Section 5), before finally considering its weak version (in Section 6).

Strong ( , k)-colouring

In this section, we consider Conjecture 3.1 in its literal form, namely:

Strong Conjecture. Every nicer graph is strongly (2, 2)-colourable.

We verify the Strong Conjecture for nicer complete graphs and bipartite graphs. Recall that every result on strong (2, 2)-colourings directly transfers to standard and weak (2, 2)-colourings.

We start off with complete graphs. For every n ≥ 1, we denote by K n the complete graph with order n.

Theorem 4.1. For every n ≥ 4, the graph K n is strongly (2, 2)-colourable.

Proof: We prove the claim by induction on n. To ease the proof, we prove a stronger statement, namely that every complete graph K n admits a strong (2, 2)-colouring with red and blue weights such that either there is no vertex incident to red edges only, or there is no vertex incident to blue edges only. As a base step, consider K = K 4 . Note that K can be decomposed into two paths P r and P b of length 3. To get a strong (2, 2)-colouring, we proceed as follows (see Figure 1.(c), where P r , P b are the paths with solid and dashed edges, respectively). Consider first the edges of P r from one end to the other, and assign them red weights 1, 2, 2, respectively. Similarly, then consider the edges of P b from one end to the other, and assign them blue weights 1, 2, 2, respectively. Since P r and P b span all vertices of K, each vertex gets a non-zero red sum and a non-zero blue sum. This, by itself, guarantees that the additional requirement is fulfilled (i.e., there is no monochromatic vertex). Now, due to how the red weights were assigned, it can easily be seen that the obtained red sums are 1, 2, 3, 4; hence no two vertices get the same red sums. As this is also the case for the blue sums, we have thus constructed a strong (2, 2)-colouring of K.

We now prove the general case. Let K = K n (where n ≥ 5), and remove one vertex v from K. We end up with a graph isomorphic to K n-1 , which, by the induction hypothesis, admits a strong (2, 2)-colouring with colours red and blue. Furthermore, we may, without loss of generality, assume that, by this colouring, there is no vertex incident to red edges only. We extend this colouring to K, i.e., to the edges incident to v, by assigning red weight 2 to all those edges. As a result, all red sums of the vertices of V (K)\{v} rise by 2, and since every two of them were different, they still are after the extension. Now, note that the red sum of v is precisely 2(n -1), which is strictly greater than all the other red sums since all vertices of V (K) \ {v} are incident to blue edges. Furthermore, the blue sums of the vertices of V (K) \ {v} have not been altered, while v has blue sum 0 -so no two non-zero blue sums are the same. We thus get a strong (2, 2)-colouring of K, and it can be noted that no vertex is incident to blue edges only, as additionally required.

We now prove the Strong Conjecture for bipartite graphs. Recall that a connected bipartite graph G verifies χ Σ (G) = 3 if and only if it is an odd multicactus (Theorem 2.8).

Theorem 4.2. Every nice bipartite graph G is strongly (2, 2)-colourable.

Proof: We can assume that G is connected. If G is not an odd multicactus, then χ Σ (G) ≤ 2, and, equivalently, G is strongly (1, 2)-colourable. So let us now assume that G is an odd multicactus. By construction, note that G necessarily has a degree-2 vertex v. Furthermore, G is 2-connected, so the graph G := G -{v} is connected. Also, G is not an odd multicactus (to be convinced of this, note that it has degree-1 vertices and that one of its partite sets if of even cardinality). So G is strongly (1, 2)-colourable.

Consider thus a strong (1, 2)-colouring of G assigning red weights. We extend this colouring to a strong (2, 2)-colouring of G, i.e., to the edges u 1 v and vu 2 incident to v, by just assigning blue weights 1 and 2 to u 1 v and vu 2 , respectively. As no new edge was assigned a red weight, the adjacent red sums are still different in G. Also, v has red degree 0. Furthermore, the only three non-zero blue sums are all different, as they are equal to 1, 2 and 3.

In the rest of this section, we confirm that odd multicacti are a peculiar class of nice bipartite graphs for the distinguishing colouring notions we consider, in the following sense. Theorem 4.3. A connected nice bipartite graph cannot be strongly (2, 2)-coloured if and only if it is an odd multicactus.

The proof of Theorem 4.3 relies on the following result on locally irregular decompositions of odd multicacti, which we believe is of independent interest, as there is still no known characterization of bipartite graphs G verifying χ irr (G) ≤ 2.

Lemma 4.4. For every odd multicactus G, we have χ irr (G) = 3.

Proof: Let G be an odd multicactus. As such (recall the description in Subsection 2.2.1), G has edges coloured red and green "alternatively". To avoid any confusion with the colours, in the rest of the proof we refer to the green edges of G as its attachment edges, while we refer to the red edges as its support edges.

Since G is an odd multicactus, by construction there has to be an attachment edge uv such that u and v are joined by several disjoint non-trivial paths P 1 , . . . , P k of length congruent to 1 modulo 4, whose removal does not disconnect the graph. In some sense, the P i 's are leaves in the tree representation of the construction of G. Along such a path P i , if wx and yz are two edges at distance 2 (thus xy is an edge, and x, y have degree 2), then wx and yz must have different colours in any locally irregular 2-edge-colouring of G, as otherwise x and y would be adjacent and have the same degree in the subgraph induced by the colour assigned to xy. Since every P i has length congruent to 1 modulo 4, this means that, in every locally irregular 2-edge-colouring of G, the first and last edges of each P i must be assigned a same colour. Thus, from the point of view of uv, colouring the P i 's is similar to colouring k parallel edges joining uv. Said differently, if the multigraph G , obtained by replacing the P i 's by k parallel (attachment) edges joining u and v, admits no locally irregular 2-edge-colouring, so neither does G. This operation, consisting in contracting non-trivial paths joining a "leaf" attachment edge, is called a contraction below.

By repeatedly applying contractions (note that the argument above works even if the non-trivial paths have parallel attachment edges), we get a series of multigraphs G = G 0 , G 1 , . . . , G m = G such that 1) if G i+1 admits no locally irregular 2-edge-colourings, then so does not G i , and 2) G consists of two vertices joined by several parallel (attachment) edges. Since G admits no locally irregular 2-edge-colouring (its two vertices are necessarily adjacent and have the same degree in every colour assigned to some edges), this gives the conclusion for G.

We can now prove Theorem 4.3:

Proof of Theorem 4.3: Let G be a connected nice bipartite graph. If G is not an odd multicactus, then χ Σ (G) ≤ 2 (Theorem 2.8), and hence G is strongly (1, 2)-colourable. So we may assume that G is an odd multicactus, and thus that G is not strongly (1, 2)-colourable. In that case, according to Lemma 4.4, G admits no locally irregular 2-edge-colourings, hence no strong (2, 1)-colourings.

Standard ( , k)-colouring

We here consider the standard weakening of Conjecture 3.1:

Standard Conjecture. Every nicer graph is standardly (2, 2)-colourable.

Note that a standard ( , k)-colouring is nothing but a decomposition into graphs admitting neighboursum-distinguishing k-edge-weightings. From that perspective, it could be interesting to wonder whether graphs, in general, decompose into a constant number of graphs verifying the 1-2-3 Conjecture. We believe this is an interesting aspect to consider, as not many graphs are known to verify the 1-2-3 Conjecture.

Towards the Standard Conjecture, we thus also raise the following related conjecture, which is, in a sense, a weakening of the 1-2-3 Conjecture: Conjecture 5.1. Every nice graph is standardly (2, 3)-colourable. That is, every nice graph decomposes into two graphs verifying the 1-2-3 Conjecture.

In this section, towards the Standard Conjecture, we first improve Theorem 2.10 by showing that all nice graphs admit standard (40, 3)-colourings. We then prove the Standard Conjecture 5.1 for nicer 2-degenerate graphs and subcubic graphs, before proving Conjecture 5.1 for nice 9-colourable graphs.

Standard (40, 3)-colourability

The proof of the following result follows the lines of one in [START_REF] Bensmail | Decomposing graphs into a constant number of locally irregular subgraphs[END_REF], where Bensmail, Merker and Thomassen proved that decomposable graphs can be decomposed into at most 328 locally irregular graphs. Theorem 5.2. Every decomposable graph G is standardly (40, 3)-colourable.

Proof: In G, we can find a locally irregular subgraph H 1 such that G -E(H 1 ) has all of its connected components being of even size ([5], Lemma 2.1). If G already had even size, then H 1 is empty. Still calling G the remaining graph, we can decompose G into a graph H 2 with minimum degree at least 10 10 and a (2 • 10 10 + 2)-degenerate graph H 3 whose all connected components are of even size ( [START_REF] Bensmail | Decomposing graphs into a constant number of locally irregular subgraphs[END_REF], Lemma 4.5). On the one hand, according to a result of Przybyło [START_REF] Przybyło | On decomposing graphs of large minimum degree into locally irregular subgraphs[END_REF], we can decompose H 2 into three (possibly empty) locally irregular graphs H 2,1 , H 2,2 , H 2,3 . On the other hand, H 3 can be decomposed into 36 bipartite graphs H 3,1 , . . . , H 3,36 whose all connected components are of even size ( [START_REF] Bensmail | Decomposing graphs into a constant number of locally irregular subgraphs[END_REF], Theorem 4.3).

Recall that every locally irregular graph H verifies χ Σ (H) = 1. Furthermore, all nice bipartite graphs verify the 1-2-3 Conjecture. From these arguments, using a set of 40 coloured weights 1, 2, 3 to independently weight the edges of each of the H i 's and the H i,j 's, we eventually get a standard (40, 3)-colouring of G.

Since all connected nice exceptional graphs are 3-colourable, they verify the 1-2-3 Conjecture (see [START_REF] Seamone | The 1-2-3 Conjecture and related problems: a survey[END_REF]), and are thus standardly (1, 3)-colourable. Together with Theorem 5.2, this yields the following: Theorem 5.3. Every nice graph G is standardly (40, 3)-colourable.

The Standard Conjecture for 2-degenerate graphs and subcubic graphs

Recall that a graph is 2-degenerate if every of its subgraphs has a vertex with degree at most 2. A subcubic graph is a graph G with maximum degree at most 3. If all vertices of G have degree precisely 3, then we call G cubic. Furthermore, if G is connected and not cubic, i.e., G has vertices with degree 1 or 2, then we say that G is strictly subcubic.

We first prove the Standard Conjecture for 2-degenerate graphs (with a few exceptions). More precisely, we prove: Theorem 5.4. Every nicer 2-degenerate graph G is standardly (2, 2)-colourable.

Our proof of Theorem 5.4 relies on the following lemma, which is proved later in this section.

Lemma 5.5. Every nicer 2-degenerate graph G decomposes into two nice forests.

Proof of Theorem 5.4: According to Lemma 5.5, we can decompose G into two forests F r and F b none of which has an isolated edge. Since every nice tree T verifies χ Σ (T ) ≤ 2 (i.e., admits standard (1, 2)colourings), each of F r and F b , independently, admits a standard (1, 2)-colouring; let ω r and ω b be any such for F r and F b , respectively. To get a standard (2, 2)-colouring of G, we consider all weights assigned by ω r and ω b , and colour red those weights originating from ω r , while we colour blue those weights originating from ω b .

We are left with proving Lemma 5.5.

Proof of Lemma 5.5: Throughout the proof, which is by induction on |V (G)| + |E(G)|, we assume that G is connected. As a base case, it can be checked that the claim is true whenever |V (G)| ≤ 4. In particular, under all conditions, G is either 1) a nice tree (in which case the claim holds trivially), 2) a triangle with a pendant vertex attached (which decomposes into two paths of length 2), 3) two triangles glued along an edge (which decomposes into a path of length 2 and a star with three leaves), or 4) a cycle of length 4 (which decomposes into two paths of length 2).

Let us thus proceed to the proof of the general case (in particular, |V (G)| ≥ 5). First assume that G has a degree-1 vertex v. Denote by u the neighbour of v in G, and let G := G -{v}. Since |V (G)| ≥ 5, note that G cannot be K 2 or K 3 . So, by the induction hypothesis, G decomposes into a red nice forest and a blue nice forest. Assuming u belongs to the red forest, we extend that decomposition to G by adding vu to the red forest.

Thus, we may assume that G has a degree-2 vertex v, with neighbours u 1 , u 2 . We distinguish two cases:

• First case: v is a cut-vertex. Let H 1 and H 2 be the two connected components of G -{v}, where u i belongs to H i for i = 1, 2, and set G 1 := H 1 + {u 1 v} and G 2 := H 2 + {u 2 v}. Since G has no degree-1 vertex, note that none of G 1 and G 2 is isomorphic to K 2 . Also, v has degree 1 in both G 1 and G 2 , so none of G 1 and G 2 is isomorphic to K 3 . By the induction hypothesis, G 1 and G 2 decompose into two nice forests. Note that these two decompositions, when combined in G, altogether form a decomposition of G into two nice forests.

• Second case: v is not a cut-vertex. Note that G := G -{v} is nicer, as it is a connected graph with |V (G )| ≥ 4. By the induction hypothesis, G thus decomposes into two nice forests, say red and blue. If u 1 belongs to the blue forest while u 2 belongs to the red forest, then we extend this decomposition to G by assigning colour blue to vu 1 and colour red to vu 2 . So we may assume that u 1 does not belong to the blue forest, in which case we extend the decomposition to G by assigning colour blue to both vu 1 , vu 2 . This way, either a pendant path of length 2 is attached to a blue tree (if u 2 belongs to the blue forest), or a path of length 2 is added to the blue forest (otherwise). As all remaining cases are symmetrical to those two ones, these arguments cover all cases.

This concludes the proof.

We now extend the previous results to nicer subcubic graphs.

Lemma 5.6. Every nicer subcubic graph G decomposes into two nice forests.

Proof: Throughout the proof, which is by induction on |V (G)| + |E(G)|, it is assumed that G is connected. As the claim is true whenever |V (G)| ≤ 4 (G is either strictly subcubic and the result follows from Lemma 5.5, or isomorphic to K 4 , which decomposes into two paths of length 3), we proceed to the proof of the general case. We now consider the general case |V (G)| ≥ 5. If G is strictly subcubic, then G is 2-degenerate, in which case the result follows from Lemma 5.5. So let us assume that G is cubic. Let v be a (degree-3) vertex of G, with neighbours u 1 , u 2 , u 3 . Note that if all edges among the u i 's exist, then G is K 4 while |V (G)| ≥ 5, a contradiction. Hence, assume without loss of generality that u 1 u 2 is not an edge of G. Consider the graph G := G -{v} + {u 1 u 2 }. Note that, although G might consist of up to two connected components, none of them is isomorphic to K 2 or K 3 as G is cubic. So all connected components are subcubic, and they decompose into two nice forests, say red and blue.

Consider the decomposition of G . Suppose that u 1 u 2 belongs to the red forest. We consider the same decomposition in G, except that, since G does not contain the edge u 1 u 2 , we replace it, in the red forest, by the two edges u 1 v and vu 2 . Note that, in G, the red subgraph remains a nice forest. It thus remains to add vu 3 to either the red or blue forest. If u 3 belongs to the blue forest, then we are done when adding vu 3 to the blue forest. So assume that the two edges, different from vu 3 , incident to u 3 belong to the red forest. If v and u 3 belong to different trees of the red forest, then we can freely add vu 3 to the red forest. So lastly suppose that we are not in that case.

All of u 1 , u 2 , u 3 belong to the same tree, say T , of the red forest. In T , let us assume that u 3 is closer to u 2 than it is closer to u 1 . In other words, in T , the only path from u 3 to u 1 passes through u 2 . Let us remove vu 2 from T . In the red forest, T is disconnected into two trees T and T , where T contains u 2 and u 3 , while T contains v and u 1 . Note that T is not isomorphic to K 2 , since u 3 remains of degree 2 in that tree. If T also has this property, then we get a desired decomposition of G when adding vu 2 and vu 3 to the blue forest (recall that u 3 originally did not belong to the blue forest). So we may assume that T is actually isomorphic to K 2 , which means that u 1 had degree 1 in T . In this situation, we obtain the desired decomposition of G by adding vu 1 and vu 3 to the blue forest.

A similar proof as that used to prove Theorem 5.4, but using Lemma 5.6 instead of Lemma 5.5, now yields the following.

Theorem 5.7. Every nicer subcubic graph is standardly (2, 2)-colourable.

Conjecture 5.1 for 9-colourable graphs

To prove Conjecture 5.1 for all nicer 9-colourable graphs, we essentially prove that 9-colourable graphs, in general, decompose into two nice 3-colourable graphs. With such a result in hand, we can then use the fact that nice 3-colourable graphs verify the 1-2-3 Conjecture. Proof: Consider a 2-edge-colouring of G with red and blue yielding a red subgraph G R and a blue subgraph G B . Among all possible such colourings, we consider one where χ(G R ) ≤ r ≥ 3 and χ(G B ) ≤ b ≥ 3 that minimizes the number of monochromatic K 2 's. Note that if G has isolated triangles, then, by the latter requirement, they are monochromatic. Our goal is to show that we can modify the colouring so that the number of monochromatic K 2 's is reduced, while retaining the 3-colourability of G R , G B .

Assume uv is isolated in the blue subgraph G B . We note that u, v must belong to the same component of G R , as otherwise we could just recolour uv red, and get our conclusion (as joining two disjoint 3colourable graphs via an edge yields a 3-colourable graph). Also, if uw is a red edge adjacent to uv, then, when recolouring uw blue, we must create a new isolated edge in the red subgraph, as otherwise our conclusion would be reached (because attaching a pendant path of length 2 to a 3-colourable graph yields a 3-colourable graph). Thus, we may assume that, for every red edge uw (resp. vw), the size of the component of G R -{uw} (resp. G R -{vw}) that contains w is exactly 1.

Proof: Slight modifications of the proof of Kalkowski, Karoński and Pfender [START_REF] Kalkowski | Vertex-coloring edge-weightings: towards the 1-2-3 Conjecture[END_REF] allow to show that every nice graph even admits a neighbour-sum-distinguishing {s -2, s -1, s, s + 1, s + 2}-edge-weighting, for any integer s. Let thus ω be a neighbour-sum-distinguishing {-2, -1, 0, 1, 2}-edge-weighting of G. We deduce a weak (3, 2)-colouring of G by modifying and colouring the weights of ω, as follows:

• we colour red every edge with value in {1, 2};

• we colour blue every edge with value in {-2, -1}, and multiply its value by -1;

• we colour green every edge with value 0, and change its value to 1.

The key point is that, through ω, every two adjacent vertices u and v are only distinguished via their incident edges with weight in {-2, -1, 1, 2}. Said differently the edges with weight 0 are useless for distinguishing u and v. This implies that, in the obtained (3, 2)-colouring, it is not possible that both the red and blue sums of u and v are equal. From this reasoning, we get that the resulting (3, 2)-colouring is indeed a weak (3, 2)-colouring. Theorem 6.2. Every nice graph G is weakly (2, 3)-colourable.

Proof: The proof of Kalkowski, Karoński and Pfender [START_REF] Kalkowski | Vertex-coloring edge-weightings: towards the 1-2-3 Conjecture[END_REF] that every nice graph G admits a neighboursum-distinguishing 5-edge-weighting can be modified to prove that every nice graph admits a neighboursum-distinguishing {1, 2, 3, 4, 6}-edge-weighting. We voluntarily do not give the full proof of this claim in details, as the proof would be identical to the original one. Instead, we point out the main differences with the original proof (employing the same terminology as in [START_REF] Kalkowski | Vertex-coloring edge-weightings: towards the 1-2-3 Conjecture[END_REF]):

• At the beginning of the algorithm, all edges v i v j are assigned weight f (v i v j ) = 4.

• For every backward edge v j v i (j < i), the possible valid moves are the following:

-If f (v j v i ) = 4, then doing either -2 (changing the weight to 2) or +2 (changing the weight to 6) is a valid move, depending on whether the current sum of v j is the biggest or the smallest, respectively, among its two allowed ones.

-If f (v j v i ) = 3, then doing -2 (changing the weight to 1) is a valid move.

-If f (v j v i ) = 1, then doing +2 (changing the weight to 3) is a valid move.

• Whenever it is needed to modify the weight f (v i v j ) of the first forward edge (i < j) incident to v i in order to define the two allowed sums for v i , doing either -1 (changing the weight to 3) or -3 (changing the weight to 1) to f (v i v j ) is a valid move. Furthermore, we can choose the two sums allowed for v i and perform valid moves on edges incident to v i so that:

-If f (v i v j ) is changed to 3, then the current sum of v i is the biggest of the two allowed ones.

-If f (v i v j ) is changed to 1, then the current sum of v i is the smallest of the two allowed ones.

Let us now prove that if G is a nice graph, then it is weakly (2, 3)-colourable. Let ω be a neighbour-sumdistinguishing {1, 2, 3, 4, 6}-edge-weighting of G. We deduce a weak (2, 3)-colouring of G by 2-colouring and (possibly) altering the weights assigned by ω, as follows:

• we colour red every edge with value in {1, 3};

• we colour blue every edge with value in {2, 4, 6}, and halve its value.

Consider an edge uv of G. Note that if the red sums of u and v are equal, then their blue sums cannot be equal too: in such a situation, we would get σ ω (u) = σ ω (v), a contradiction. So we get a weak (2, 3)colouring.
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 1 Figure 1: Three (2, 2)-colourings of K 4 .
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 22 Weak, standard and strong (1, k)-colourings and neighbour-sum-distinguishing k-edgeweightings are equivalent notions. Observation 2.3. Standard (k, 1)-colourings and locally irregular k-edge-colourings are equivalent notions.
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 32 Every connected exception different from K 2 and K 3 verifies Conjecture 3.1.
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 a An exception. (b) Its decomposition into extended triangles (gray) and maximal paths (black).
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 2 Figure 2: Decomposing an exception as described in the proof of Observation 3.2.
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 58 Assume that a nicer graph G can be 2-edge-coloured with red and blue so that the induced red subgraph G R and blue subgraph G B satisfy χ(G R ) = r and χ(G B ) = b with r, b ≥ 2. Then G can be 2-edge-coloured in such a way that χ(G R ) ≤ r, χ(G B ) ≤ b, and G R and G B are nice.
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From the previous arguments, we can deduce that u, v have degree precisely 2 in G, and that the second neighbour of both u, v is a same vertex w. This vertex w cannot have degree 2, as otherwise u, v, w would belong to an isolated triangle of G, which is impossible since all isolated triangles are coloured in a monochromatic way. So w has degree at least 3 in G, and all edges incident to w different from wu, wv are coloured blue. We get here the desired 2-edge-colouring when recolouring wu, wv blue (as attaching a triangle onto a vertex of a 3-colourable graph yields a 3-colourable graph).

We now prove the second key lemma of this section. Lemma 5.9. Every 9-colourable graph G decomposes into an r-colourable graph G R and a b-colourable graph G B with r, b ≤ 3.

Proof: Let G be a graph with χ(G) ≤ 9, and let V 0 , ..., V 8 be a proper 9-vertex-colouring of G. We 2-edgecolour G with colours red and blue, yielding two subgraphs G R and G B , respectively, as follows. Consider any edge uv, where u ∈ V i and v ∈ V j for some i = j ∈ {0, ..., 8}. We colour uv red if and only if i = j (mod 3). Otherwise, i.e., when i = j (mod 3), we colour

We are now ready to prove that nice 9-colourable graphs verify Conjecture 5.1.

Theorem 5.10. Every nice 9-colourable graph G is standardly (2, 3)-colourable.

Proof: If G is 3-colourable, then we have χ Σ (G) ≤ 3 (see [START_REF] Karoński | Edge weights and vertex colours[END_REF]), or, in other words, G is standardly (1, 3)colourable. Now assume that G is at least 4-chromatic. By Lemma 5.9, it can be decomposed into two 3-colourable graphs: an r-colourable graph G R and a b-colourable graph G B with r, b ≤ 3. Since G is at least 4-chromatic we have also r, b ≥ 2.

We distinguish two cases: • If G has isolated triangles, then we remove those from G, apply the previous point to get a (2, 3)colouring of what is left, and then give the same color to all the edges of the isolated triangles. Finally, by weighting the edges of each isolated triangle with weights 1, 2, 3 (in any colour), we can extend the (2, 3)-colouring to G.

This ends up the proof.

We note that the approach above can be generalized to show that, in general, any nice graph G decomposes into at most log 3 χ(G) + 1 graphs fulfilling the 1-2-3 Conjecture. To see this holds, set k = χ(G) and consider a proper k-vertex-colouring of G with parts V 0 , ..., V k-1 . Now, for every i = j ∈ {0, ..., k-1}, assuming x ∈ {1, ..., log 3 χ(G) + 1} is the right-most position at which the ternary representations of i and j differ, we assign colour x to all edges uv of G where u ∈ V i and v ∈ V j . It can be observed that this results in a ( log 3 χ(G) + 1)-edge-colouring of G where each colour class yields a 3-colourable graph. Using Lemma 5.8, we can ensure these 3-colourable graphs are nice, thus that they fulfil the 1-2-3 Conjecture.

Weak ( , k)-colouring

We finally consider the weaker form of Conjecture 3.1 (which would follow from the 1-2-3 Conjecture, if it turned out to be proved):

Weak Conjecture. Every nice graph is weakly (2, 2)-colourable.

Towards the Weak Conjecture, we here prove that all nice graphs are weakly (3, 2)and (2, 3)-colourable. Both proofs are based on the fact that every nice graph admits a neighbour-sum-distinguishing 5-edgeweighing, as proved by Kalkowski, Karoński and Pfender [START_REF] Kalkowski | Vertex-coloring edge-weightings: towards the 1-2-3 Conjecture[END_REF]. Theorem 6.1. Every nice graph G is weakly (3, 2)-colourable.