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Abstract

How can one distinguish the adjacent vertices of a graph through an edge-
weighting? In the last decades, this question has been attracting increasing
attention, which resulted in the active field of distinguishing labellings.

One of its most popular problems is the one where neighbours must
be distinguishable via their incident sums of weights. An edge-weighting
verifying this is said neighbour-sum-distinguishing. The popularity of this
notion arises from two reasons. A first one is that designing a neighbour-
sum-distinguishing edge-weighting showed up to be equivalent to turning a
simple graph into a locally irregular (i.e., without neighbours with the same
degree) multigraph by adding parallel edges, which is motivated by the con-
cept of irregularity in graphs. Another source of popularity is probably the
influence of the famous 1-2-3 Conjecture, which claims that such weightings
with weights in {1, 2, 3} exist for graphs with no isolated edge.

The 1-2-3 Conjecture has recently been investigated from a decomposi-
tional angle, via so-called locally irregular decompositions, which are edge-
partitions into locally irregular subgraphs. Through several recent studies,
it was shown that this concept is quite related to the 1-2-3 Conjecture.
However, the full connexion between all those concepts was not clear.

In this work, we propose an approach that generalizes all concepts above,
involving coloured weights and sums. As a consequence, we get another
interpretation of several existing results related to the 1-2-3 Conjecture. We
also come up with new related conjectures, to which we give some support.
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1. Introduction

The current work is mainly related to the well-known 1-2-3 Conjecture,
which is defined accordingly to the upcoming notions. Let G be a graph,
and let ω be an edge-weighting (assigning weights among {1, . . . , k}) of G.
From ω, one can design the vertex-colouring σ of G where each vertex v gets
assigned, as its colour σ(v), the sum of weights (called its weighted degree)
assigned to its incident edges. That is, for every vertex v of G we have

σ(v) :=
∑

u∈N(v)

ω(uv),

where N(v) denotes the set of neighbours of v. In case σ is actually a proper
vertex-colouring of G, i.e., we have σ(u) 6= σ(v) for every two adjacent
vertices u and v, then we call ω neighbour-sum-distinguishing.

For any two graphs G and H, we say that G has no isolated H if no
connected component of G is isomorphic to H. Note that all graphs with no
isolated edge admit neighbour-sum-distinguishing edge-weightings (consider
e.g. an inductive argument). Graphs with no such connected components
are thus called nice, with respect to this edge-weighting notion. The 1-2-
3 Conjecture, posed in 2004 by Karoński,  Luczak and Thomason [9], asks
whether, for every nice graph, we can design neighbour-sum-distinguishing
3-edge-weightings, i.e., using weights 1, 2, 3 only. More precisely, if we denote
by χΣ(G) the least k such that a nice graph G admits a neighbour-sum-
distinguishing k-edge-weighting, then it is believed that χΣ(G) ≤ 3 should
always hold.

1-2-3 Conjecture (Karoński,  Luczak, Thomason [9]). For every nice graph
G, we have χΣ(G) ≤ 3.

Despite many active investigations in the last decade, the 1-2-3 Conjecture
is still wide open to date. These investigations have been mainly focused on
1) proving the 1-2-3 Conjecture for new classes of nice graphs, 2) proving
general constant upper bounds on χΣ, and 3) studying side aspects of the
1-2-3 Conjecture. As the literature on this topic is vast, a brief summary of
some of these investigations is deferred to the next section.

The current work is also related to locally irregular decompositions,
which were considered as a decompositional approach towards understanding
some aspects behind the 1-2-3 Conjecture. In general, by a decomposition of
a graph, we mean an edge-colouring where each colour class yields a graph
with particular properties. A locally irregular graph is a graph in which
every two adjacent vertices have distinct degrees. By a locally irregular de-
composition of a graph, we thus mean a decomposition into locally irregular
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graphs. Sticking to the edge-colouring point of view, we will also sometimes
instead speak of a locally irregular edge-colouring.

Locally irregular decompositions relate to the 1-2-3 Conjecture through,
notably, the following arguments. In a sense, the graphs G that are the
“most convenient” for the 1-2-3 Conjecture are those which verify χΣ(G) =
1. Those graphs are precisely the locally irregular ones. Also, in particular
contexts, locally irregular decompositions can be turned into neighbour-sum-
distinguishing edge-weightings. Perhaps the best illustration of that claim is
the fact that, in any regular graph, a neighbour-sum-distinguishing 2-edge-
weighting yields a decomposition into two locally irregular graphs, and vice
versa.

Similarly as for neighbour-sum-distinguishing edge-weightings, there ex-
ist graphs which do not admit any locally irregular decomposition; but, this
time, the class of exceptional graphs is much wider (consider e.g. any path
of odd length). An exceptional graph (with respect to locally irregular de-
compositions) is also called an exception, for short. Conversely, a graph that
is not exceptional is said decomposable. For a decomposable graph G, we
denote by χ′irr(G) the least k such that G admits a locally irregular k-edge-
colouring. Similarly as in the case of the 1-2-3 Conjecture, it is believed
that every decomposable graph should decompose into at most three locally
irregular graphs, as conjectured by some of the authors of the present paper:

Conjecture 1.1 (Baudon, Bensmail, Przyby lo, Woźniak [3]). For every
decomposable graph G, we have χ′irr(G) ≤ 3.

Conjecture 1.1 was first verified for a few graph classes. Also, general con-
stant upper bounds on χ′irr were recently exhibited. For the sake of keeping
the introduction short, we again refer the reader to the next section for a
survey of some of these results.

In this work, we aim at introducing a general decompositional theory
enclosing neighbour-sum-distinguishing edge-weightings and locally irregu-
lar decompositions. This theory is based on the following observations. A
locally irregular `-edge-colouring of a graph G is, put differently, a decom-
position of G into graphs G1, . . . , G` verifying χΣ(G1), . . . , χΣ(G`) = 1. The
other way around, a neighbour-sum-distinguishing k-edge-weighting of G
can be seen as a 1-edge-colouring where the only colour class induces a
graph, that is precisely G, whose value of χΣ is k.

These observations lead us to combine the notions of neighbour-sum-
distinguishing edge-weightings and locally irregular edge-colourings, in the
following way. Let `, k ≥ 1 be two integers, and G be a graph. To each edge
of G, we assign, via a colouring ω, a pair (α, β), where α ∈ {1, . . . , `} and
β ∈ {1, . . . , k}, which can be regarded as a coloured weight (with value β and
colour α). Now, for every vertex v of G, and every colour α ∈ {1, . . . , `},
one can compute the weighted α-degree σα(v), being the sum of weights
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Figure 1: Three (2, 2)-colourings of K4.

with colour α incident to v. So, to every vertex v is associated a palette
(σ1(v), . . . , σ`(v)) of ` coloured weighted degrees.

When working on variants of the 1-2-3 Conjecture, the intent is to design
edge-weightings ω that allow to distinguish the adjacent vertices, accordingly
to some distinction condition. When dealing with the notions introduced in
the last paragraph, there are many ways for asking for distinction, as several
coloured sums are available; in this work, we will focus on the following three
distinction variants, which sound the most natural to us:

• Weak distinction: two adjacent vertices u and v of G are considered
distinguished if there is an α ∈ {1, . . . , `} such that σα(u) 6= σα(v).

• Standard distinction: two adjacent vertices u and v of G are considered
distinguished if, assuming ω(uv) = (α, β), we have σα(u) 6= σα(v).

• Strong distinction: two adjacent vertices u and v of G are considered
distinguished if, for every α ∈ {1, . . . , `}, we have σα(u) = σα(v) = 0,
or σα(u) 6= σα(v).

Assuming ω verifies one of the weak, standard or strong distinction condition
for every pair of adjacent vertices, we say that ω is a weak, standard or
strong (`, k)-edge-colouring, and that G is weakly, standardly or strongly
(`, k)-coloured. We also say that G is weakly, standardly or strongly (`, k)-
colourable, if there are `′, k′ ≥ 1 with `′ ≤ ` and k′ ≤ k such that G can be
weakly, standardly or strongly (`′, k′)-coloured, respectively.

We provide, in Figure 1, an illustration of these concepts on K4, the
complete graph on four vertices, where the two colours are represented by
solid and dashed edges. By the “incident solid sum” of a vertex, we here
mean the sum of weights assigned to its incident solid edges. It can be
checked that, in Figure 1.(a), the depicted (2, 2)-colouring is a weak colour-
ing. It is however not a standard (2, 2)-colouring as vertices c and d are
joined by a solid edge but their incident solid sums equal 3. The colouring
in Figure 1.(b) is a standard (2, 2)-colouring which is not a strong colouring,
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in particular because vertices a and c both have incident solid sum 2. The
colouring in Figure 1.(c) is a strong (2, 2)-colouring.

This paper is organized as follows. As already mentioned, the notions
of weak, standard and strong (`, k)-colourings can be employed to general-
ize neighbour-sum-distinguishing edge-weightings and locally irregular edge-
colourings. In Section 2, we explore these connexions. In particular, we
recall known results and translate them in our new terminology.

Playing with the parameters ` and k and the distinction conditions, we
also come up with new problems, some of which we believe are of indepen-
dent interest. In particular, we wonder whether almost all graphs can be
weakly, standardly, or even strongly (2, 2)-coloured. If true, this would im-
ply side decomposition results related to the 1-2-3 Conjecture. The strong,
standard and weak versions of that question are formally introduced in Sec-
tion 3. They are then studied in Sections 4, 5 and 6, respectively.

2. Previous results and connexions to (`, k)-colourings

As a warm up, we start, in Section 2.1, by making first observations
and remarks on weak, standard and strong colourings. We then survey, in
Section 2.2, some of the results from literature that are directly connected to
these notions. More precisely, we explain which notions in the literature are
encompassed by weak, standard and strong colourings, and, by rephrasing
known results under that new terminology, we exhibit first results.

2.1. Early observations

First of all, we note that, according to the definitions, every result hold-
ing for some version of (`, k)-colourings also holds for the weaker versions.
This is why, throughout Sections 4 to 6, we start by considering strong
colourings, then standard colourings, and, finally, weak colourings.

Observation 2.1. A strong (`, k)-colouring is also a standard (`, k)-colouring.
Analogously, a standard (`, k)-colouring is also a weak (`, k)-colouring.

In general, though, it can be observed that the converse direction is not
true, i.e., that a given (`, k)-colouring does not necessarily fulfil stronger
distinction conditions. A good illustration for that is the fact that K3 can
be weakly (2, 2)-coloured but not standardly (2, 2)-coloured. There are sit-
uations, though, where all distinction conditions behave similarly. We state
a few of them below.

First of all, we recall that, for some values of ` and k, some versions of
(`, k)-colourings are equivalent to other kinds of distinguishing colourings
and weightings. Most of these observations are straightforward, and thus do
not need a formal proof. In particular, it can easily be checked that some
of these results do not hold for stronger or weaker versions of our colouring
variants.
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Observation 2.2. Weak, standard and strong (1, k)-colourings and neighbour-
sum-distinguishing k-edge-weightings are equivalent notions.

Observation 2.3. Standard (k, 1)-colourings and locally irregular k-edge-
colourings are equivalent notions.

Let G be a graph, and ω be an edge-weighting of G. For each vertex
v of G, one can compute its multiset µ(v) of incident weights induced by
ω. We say that ω is neighbour-multiset-distinguishing if no two adjacent
vertices of G get the same multiset of incident weights. Note that having
σ(u) 6= σ(v) for an edge uv of G implies that µ(u) 6= µ(v) (but the converse
is not necessarily true). For this reason, neighbour-multiset-distinguishing
edge-weightings have been studied as a weaker form of neighbour-sum-
distinguishing edge-weightings.

The point for mentioning neighbour-multiset-distinguishing edge-weightings
is that they relate to our notion of weak colourings.

Observation 2.4. Weak (k, 1)-colourings and neighbour-multiset-distinguishing
k-edge-weightings are equivalent notions.

In Observation 2.2, we noticed that, for (1, k)-colourings, all three dis-
tinction conditions are equivalent. In the following result, we point out
another context where the three colouring variants coincide.

Observation 2.5. In regular graphs, weak, standard and strong (2, 1)-colourings
are equivalent notions.

2.2. Previous results

In this section, we restate, in our terminology, several results from the
literature on distinguishing weightings and colourings to derive the existence
of particular (1, k)- or (`, 1)-colourings. In other words, we here point out
how our colouring concepts encapsulate existing distinguishing weightings
and colourings.

This section is not intended to be a full survey on variants of the 1-2-3
Conjecture. Hence, we voluntarily focus on those existing results that are
closely related to our investigations; for more details, please refer to the
survey [12] by Seamone.

2.2.1. Neighbour-sum-distinguishing edge-weightings

Recall that, according to Observation 2.2, being strongly (1, k)-colourable
is equivalent to being neighbour-sum-distinguishing k-edge-weightable. Thus,
all general constant upper bounds on χΣ yield results on strong colourability
(hence on the weaker variants as well, recall Observation 2.1).

In the context of neighbour-sum-distinguishing edge-weightings, the lead-
ing conjecture is the 1-2-3 Conjecture. If true, that conjecture would imply
that every nice graph is strongly (1, 3)-colourable. Recall that nice graphs
are exactly those graphs with no isolated edges.
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Conjecture 2.6. Every nice graph is strongly (1, 3)-colourable.

To date, the best result towards the 1-2-3 Conjecture was given by
Kalkowski, Karoński and Pfender [8], who proved that χΣ(G) ≤ 5 holds
for every nice graph G. As said above, this result can be stated as follows,
using our terminology.

Theorem 2.7. Every nice graph is strongly (1, 5)-colourable.

The 1-2-3 Conjecture was shown to hold for several common classes of
nice graphs, such as complete graphs and 3-colourable graphs. There exist
graphs G verifying χΣ(G) = 3, such as complete graphs of order at least 3.
One natural question is thus whether such graphs are easy to characterize.
Dudek and Wajc settled the question in the negative [6], by showing that
determining the exact value of χΣ(G) is an NP-complete problem. Later
on, Ahadi, Dehghan and Sadeghi [2] proved that this remains true when
restricted to regular (cubic) graphs. This result is of prime interest, as all
distinguishing weighing and colouring notions considered in this paper tend
to be equivalent when 1) only two weights or colours are considered, and 2)
the graph is regular (recall Observation 2.5). This result, by itself, directly
establishes the general hardness of weak, standard and strong colourings.

It took some time to settle this complexity question for bipartite graphs.
In a first work [7], Chang, Lu, Wu and Yu provided several sufficient con-
ditions for a nice bipartite graph G to verify χΣ(G) ≤ 2. In particular,
they showed that being connected and having one of the two partite sets of
even cardinality is a sufficient condition, and, from this result, they easily
proved that nice trees always admit neighbour-sum-distinguishing 2-edge-
weightings. Later on, the full characterization of connected bipartite graphs
G with χΣ(G) = 3 was given by Thomassen, Wu and Zhang [13], who proved
that they are exactly the odd multicacti. These graphs can be constructed
as follows. Start from m ≥ 1 cycles C1, . . . , Cm whose lengths are at least 6
and congruent to 2 modulo 4, and colour the edges of the Ci’s using colours
red and green alternately. Then, an odd multicactus is any connected graph
obtained from the Ci’s via repeated applications of the following operation:
pick two connected components G1 and G2, and identify a green edge of G1

with a green edge of G2. Said differently, an odd multicactus is obtained
by identifying edges of particular cycles in a tree-like fashion. In particular,
every cycle with length congruent to 2 modulo 4 is an odd multicactus.

Theorem 2.8 (Thomassen, Wu, Zhang [13]). A connected bipartite graph
G verifies χΣ(G) = 3 if and only if G is an odd multicactus.

2.2.2. Locally irregular edge-colourings

By Observation 2.3, we get that locally irregular k-edge-colourings are
precisely standard (k, 1)-colourings. We thus survey some of the research
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on locally irregular edge-colourings, as they transfer to standard (k, 1)-
colourings.

As mentioned in Section 1, not all graphs decompose into locally irreg-
ular graphs, so one has to deal with so-called exceptions. In their first work
on this topic [3], Baudon, Bensmail, Przyby lo and Woźniak completely char-
acterized all connected exceptions. Namely, connected exceptions include 1)
odd-length paths, 2) odd-length cycles, and 3) the family T defined recur-
sively as follows:

• The triangle K3 belongs to T.

• Every other graph in T can be constructed by 1) taking an auxiliary
graph F being either a path of even length or a path of odd length
with a triangle glued to one of its ends, then 2) choosing a graph G ∈ T
containing a triangle with at least one vertex, say v, of degree 2 in G,
and finally 3) identifying v with a vertex of degree 1 of F .

Note that all connected exceptions have maximum degree at most 3.
Thus, a graph is decomposable if and only if it has no exception as

a connected component. Once the set of exceptions was characterized,
Baudon, Bensmail, Przyby lo and Woźniak conjectured that every decompos-
able graph G should decompose into at most three locally irregular graphs,
i.e., χ′irr(G) ≤ 3. Due to Observation 2.3, this conjecture can be restated as
follows:

Conjecture 2.9. Every decomposable graph is standardly (3, 1)-colourable.

The first constant upper bound on χ′irr is due to Bensmail, Merker and
Thomassen [5], who proved that we have χ′irr(G) ≤ 328 for every decompos-
able graph G. This bound was recently improved down to 220 by Lužar,
Przyby lo and Soták [10]. We can thus state the following:

Theorem 2.10. Every decomposable graph is standardly (220, 1)-colourable.

Baudon, Bensmail, Przyby lo and Woźniak verified Conjecture 2.9 for
several decomposable graph classes [3], including complete graphs, some
bipartite graphs, some Cartesian products, and regular graphs with degree
at least 107. Later on, Przyby lo [11] verified the conjecture for graphs with
minimum degree at least 1010. The complexity aspects were considered by
Baudon, Bensmail and Sopena [4], who proved that, for a given graph G,
deciding whether χ′irr(G) = 2 is NP-complete in general, while determining
χ′irr(G) can be done in polynomial time when G is a tree.

2.2.3. Neighbour-multiset-distinguishing edge-weightings

As mentioned in the previous section, all neighbour-sum-distinguishing
edge-weightings are neighbour-multiset-distinguishing, but the converse is
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not always true. The connexion between these two notions was first consid-
ered by Karoński,  Luczak and Thomason in the paper introducing the 1-2-3
Conjecture [9]. The first formal study of neighbour-multiset-distinguishing
edge-weightings may be attributed to Addario-Berry, Aldred, Dalal and
Reed, who, later on, gave improved results towards a “multiset version”
of the 1-2-3 Conjecture [1]. In our terminology, this conjecture reads as
follows:

Conjecture 2.11. Every nice graph is weakly (3, 1)-colourable.

So far, the best result towards Conjecture 2.11 is hence due to Addario-
Berry, Aldred, Dalal and Reed, who proved that all nice graphs admit
neighbour-multiset-distinguishing 4-edge-weightings [1].

Theorem 2.12. Every nice graph is weakly (4, 1)-colourable.

All graph classes verifying the 1-2-3 Conjecture also verify Conjecture 2.11.
Additionally, the latter conjecture was also verified for graphs with minimum
degree at least 1000, see [1].

3. New problems

As seen in Section 2, some of the (1, k)-colouring and (`, 1)-colouring
variants correspond to distinguishing weighting and colouring notions al-
ready considered in the literature. In particular, for such values of ` and k,
there is still some gap between the corresponding conjectures and the best
results we know to date. One way to get some sort of side progress, could
be to prove the existence of (`, k)-colourings (for some distinction condition)
where `+ k or max{`, k} is as small as possible.

In particular, the main problem we consider in the rest of this paper,
which corresponds to minimizing max{`, k}, and to which we could not find
any obvious counterexample, reads as follows. By a nicer graph, we mean a
graph with no isolated edges and triangles.

Conjecture 3.1. Every nicer graph is strongly (2, 2)-colourable.

The main reason for suspecting that K2 and K3 might be the only con-
nected graphs admitting no strong (2, 2)-colourings is that they are the only
connected exceptional graphs (recall the exact characterization in Subsec-
tion 2.2.2) admitting no neighbour-sum-distinguishing 2-edge-weightings.

Observation 3.2. Every connected exception different from K2 and K3

verifies Conjecture 3.1.

Proof. Let G be a connected exception different from K2 and K3. We con-
sider several cases corresponding to the three families of connected excep-
tions given by the definition:

9



(a) An exception. (b) Its decomposition into extended tri-
angles (gray) and maximal paths (black).

Figure 2: Decomposing an exception as described in the proof of Observation 3.2.

• If G is an odd-length path, then G is a connected bipartite graph
different from an odd multicactus, thus verifies χΣ(G) ≤ 2 according
to Theorem 2.8, and hence admits strong (1, 2)-colourings.

• If G is an odd-length cycle with length at least 5, then G can be
decomposed into two paths Pr, Pb with length at least 2. In particular,
the end-vertices of Pr (and similarly Pb) are not adjacent in G, and
we have χΣ(Pr), χΣ(Pb) ≤ 2. By considering a strong (1, 2)-colouring
of Pr (with red weights) and a strong (1, 2)-colouring of Pb (with blue
weights), we eventually get a strong (2, 2)-colouring of G.

• Finally assume that G ∈ T\{K3}. By contracting the triangles (there
is at least one such) of G to vertices, we obtain a tree R(G) with
maximum degree 3, whose some nodes (triangle nodes) correspond to
triangles of G, while some nodes (normal nodes) correspond to real
vertices. Furthermore, by definition, any path of R(G) joining two
triangle nodes has odd length, and any path joining a triangle node
and a pendant normal node has even length.

We can consider G as a collection of triangles with at most three
pendant edges attached (extended triangles), and paths with one or
two ends attached to a triangle (maximal paths) (see Figure 2 for an
example). The pendant edges attached to the extended triangles, as
well as the end-edges incident to triangles of the maximal paths, are
called attachment edges. According to these definitions, G can be
constructed from extended triangles and maximal paths by glueing
their attachment edges. In particular, every attachment edge belongs
to one extended triangle and one maximal path.

Necessarily R(G) has a degree-1 node r, being either a triangle node
(pendant triangle in G) or a normal node (pendant vertex in G). Con-
sider the (virtual) orientation of the edges of R(G) from r towards
the leaves. We construct a strong (2, 2)-colouring (assigning weights
coloured red and blue) iteratively, by extending a colouring along ex-
tended triangles and maximal paths following the ordering given by
the orientation of the attachment edges. Since R(G) is a tree, note
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that once an attachment edge is coloured, this provides a pre-colouring
of the next extended triangle or maximal path to be coloured.

We start constructing the colouring from r. In G, node r corresponds
either to an end-vertex of a maximal path P (normal node), or to a
triangle T (triangle node). In the first case, let P := v1 . . . v2k; then
we just assign red weights 1, 2, 2, 1, 1, . . . along P . In the second case,
let T := v1v2v3v1, and let v′1 denote, without loss of generality, the
neighbour of v1 outside T ; we here assign red weight 1 to v3v2 and red
weight 2 to v2v1, and blue weight 1 to v3v1 and blue weight 2 to v1v

′
1.

In any case, it can be checked that the colouring is correct so far.

We now proceed to the general case, i.e., we consider a maximal path
P or extended triangle T whose one attachment edge is coloured, and
we extend the colouring to all its other attachment edges in G. Con-
sider first a maximal path P := v1 . . . vk whose attachment edge v1v2

was assigned, say, a red weight. We here extend the colouring to all
edges of P by assigning red weights (with value 1 or 2) to its edges
v2v3, . . . , vk−1vk successively. Note that this can be done correctly, as,
when a red weight is being assigned to an edge vivi+1, we just have to
make sure that the red sum of vi avoids the red sum of vi−1, which is
possible since we have two red weights to play with.

We are left with the case where the colouring must be extended to an
extended triangle T := v1v2v3v1 whose one attachment edge, say v1v

′
1,

was previously assigned, say, a red weight. We here consider cases
depending on the number of additional attachment edges:

– If v1v
′
1 is the only attachment edge of T , then we assign a red

weight to v1v2 so that the red sum of v1 does not get equal to the
red sum of v′1. We then assign blue weights 1, 2 or 2, 1 to v1v3

and v3v2 in such a way that the blue sum of v1 does not get equal
to the blue sum of v′1.

– Assume v2v
′
2 is the only other attachment edge of T . We here

assign a red weight to v1v3 in such a way that the red sum of
v1 does not get equal to the red sum of v′1. We then assign blue
weights 1, 2, 1 or 2, 1, 1 to v2v1, v2v3 and v2v

′
2 in such a way that

the blue sum of v1 does not get equal to the blue sum of v′1.

– Lastly, assume v2v
′
2 and v3v

′
3 are attachment edges. First, we

assign blue weight 1 to v1v2 and blue weight 2 to v1v3. We now
assign red weight 1 to v′2v2, red weight α to v2v3 and red weight 2
to v3v

′
3, where α is the red weight of v′1v1.

In any of these cases, it can be checked that the colouring extension
is correct. So this covers all cases of the proof.
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The rest of this paper is dedicated to providing evidences towards Con-
jecture 3.1. We do it gradually, by first considering, in Section 4, Con-
jecture 3.1 in its literal form. We then consider its standard version (in
Section 5), before finally considering its weak version (in Section 6).

4. Strong (`, k)-colouring

In this section, we consider Conjecture 3.1 in its literal form, namely:

Strong Conjecture. Every nicer graph is strongly (2, 2)-colourable.

We verify the Strong Conjecture for nice complete graphs and bipartite
graphs. Recall that every result on strong (2, 2)-colourings directly transfers
to standard and weak (2, 2)-colourings.

We start off with complete graphs. For every n ≥ 1, we denote by Kn

the complete graph with order n.

Theorem 4.1. For every n ≥ 4, the graph Kn is strongly (2, 2)-colourable.

Proof. We prove the claim by induction on n. To ease the proof, we prove a
stronger statement, namely that every complete graph Kn admits a strong
(2, 2)-colouring with red and blue weights such that either there is no vertex
incident to red edges only, or there is no vertex incident to blue edges only.

As a base step, consider K = K4. Note that K can be decomposed
into two paths Pr and Pb of length 3. To get a strong (2, 2)-colouring, we
proceed as follows. Consider first the edges of Pr from one end to the other,
and assign them red weights 1, 2, 2, respectively. Similarly, then consider
the edges of Pb from one end to the other, and assign them blue weights
1, 2, 2, respectively. Since Pr and Pb span all vertices of K, each vertex gets
a non-zero red sum and a non-zero blue sum. This, by itself, guarantees
that the additional requirement is fulfilled (i.e., there is no monochromatic
vertex). Now, due to how the red weights were assigned, it can easily be
seen that the obtained red sums are 1, 2, 3, 4; hence no two vertices get the
same red sums. As this is also the case for the blue sums, we have thus
constructed a strong (2, 2)-colouring of K.

We now prove the general case. Let K = Kn (where n ≥ 5), and remove
one vertex v from K. We end up with a graph isomorphic to Kn−1, which,
by the induction hypothesis, admits a strong (2, 2)-colouring with colours
red and blue. Furthermore, we may, without loss of generality, assume that,
by this colouring, there is no vertex incident to red edges only. We extend
this colouring to K, i.e., to the edges incident to v, by assigning red weight 2
to all those edges. As a result, all red sums of the vertices of V (K) \ {v}
rise by 2, and since every two of them were different, they still are after the
extension. Now, note that the red sum of v is precisely 2(n − 1), which is
strictly greater than all the other red sums since all vertices of V (K) \ {v}
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are incident to blue edges. Furthermore, the blue sums of the vertices of
V (K) \ {v} have not been altered, while v has blue sum 0 – so no two non-
zero blue sums are the same. We thus get a strong (2, 2)-colouring of K, and
it can be noted that no vertex is incident to blue edges only, as additionally
required.

We now prove the Strong Conjecture for bipartite graphs. Recall that a
connected bipartite graph G verifies χΣ(G) = 3 if and only if it is an odd
multicactus (Theorem 2.8).

Theorem 4.2. Every nice bipartite graph G is strongly (2, 2)-colourable.

Proof. We can assume that G is connected. If G is not an odd multicactus,
then χΣ(G) ≤ 2, and, equivalently, G is strongly (1, 2)-colourable. So let
us now assume that G is an odd multicactus. By construction, note that G
necessarily has a degree-2 vertex v. Furthermore, G is 2-connected, so the
graph G′ := G − {v} is connected. Also, G′ is not an odd multicactus (to
be convinced of this, note that it has degree-1 vertices and that one of its
partite sets if of even cardinality). So G′ is strongly (1, 2)-colourable.

Consider thus a strong (1, 2)-colouring of G′ assigning red weights. We
extend this colouring to a strong (2, 2)-colouring of G, i.e., to the edges u1v
and vu2 incident to v, by just assigning blue weights 1 and 2 to u1v and
vu2, respectively. As no new edge was assigned a red weight, the adjacent
red sums are still different in G. Furthermore, the only three non-zero blue
sums are all different, as they are equal to 1, 2 and 3.

In the rest of this section, we confirm that odd multicacti are a peculiar
class of nice bipartite graphs for the distinguishing colouring notions we
consider, in the following sense.

Theorem 4.3. The connected nice bipartite graphs that cannot be strongly
(1, 1)-, (1, 2)- or (2, 1)-coloured are exactly the odd multicacti.

The proof of Theorem 4.3 relies on the following result on locally irreg-
ular decompositions of odd multicacti, which we believe is of independent
interest, as there is still no known characterization of bipartite graphs G
verifying χ′irr(G) ≤ 2.

Lemma 4.4. For every odd multicactus G, we have χ′irr(G) = 3.

Proof. Let G be an odd multicactus. As such (recall the description in
Subsection 2.2.1), G has edges coloured red and green “alternatively”. To
avoid any confusion with the colours, in the rest of the proof we refer to the
green edges of G as its attachment edges, while we refer to the red edges as
its support edges.

Since G is an odd multicactus, by construction there has to be an at-
tachment edge uv such that u and v are joined by several disjoint non-trivial
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paths P1, . . . , Pk of length congruent to 1 modulo 4, whose removal does not
disconnect the graph. In some sense, the Pi’s are leaves in the tree represen-
tation of the construction of G. It is easy to see that, in a locally irregular
2-edge-colouring of G, necessarily every two subsequent support edges of
the Pi’s must have different colours. Since the Pi’s have length congruent
to 1 modulo 4, this means that, from the point of view of uv, colouring
the Pi’s is similar to colouring k parallel edges joining uv. Said differently,
if the multigraph G′, obtained by replacing the Pi’s by k parallel (attach-
ment) edges joining u and v, admits no locally irregular 2-edge-colouring, so
neither does G. This operation, consisting in contracting non-trivial paths
joining a “leaf” attachment edge, is called a contraction below.

By repeatedly applying contractions (note that the argument above
works even if the non-trivial paths have parallel attachment edges), we get a
series of multigraphs G = G0, G1, . . . , Gm = G′ such that 1) if Gi+1 admits
no locally irregular 2-edge-colourings, then so does not Gi, and 2) G′ con-
sists of two vertices joined by several parallel (attachment) edges. Now, it
should be clear that G′ admits no locally irregular 2-edge-colourings, which
gives our conclusion for G.

We can now prove Theorem 4.3:

Proof of Theorem 4.3. Let G be a connected nice bipartite graph. If G is
not an odd multicactus, then χΣ(G) ≤ 2 (Theorem 2.8), and hence G is
strongly (1, 2)-colourable. So we may assume that G is an odd multicactus,
and thus that G is not strongly (1, 2)-colourable. In that case, according to
Lemma 4.4, G admits no locally irregular 2-edge-colourings, hence no strong
(2, 1)-colourings.

5. Standard (`, k)-colouring

We here consider the standard weakening of Conjecture 3.1:

Standard Conjecture. Every nicer graph is standardly (2, 2)-colourable.

Note that a standard (`, k)-colouring is nothing but a decomposition
into ` graphs admitting neighbour-sum-distinguishing k-edge-weightings. From
that perspective, it could be interesting to wonder whether graphs, in gen-
eral, decompose into a constant number of graphs verifying the 1-2-3 Con-
jecture. We believe this is an interesting aspect to consider, as not many
graphs are known to verify the 1-2-3 Conjecture.

Towards the Standard Conjecture, we thus also raise the following related
conjecture, which is, in a sense, a weakening of the 1-2-3 Conjecture:

Conjecture 5.1. Every nice graph decomposes into two graphs verifying the
1-2-3 Conjecture.
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In this section, towards the Standard Conjecture, we first improve Theo-
rem 2.10 by showing that all nice graphs admit standard (40, 3)-colourings.
We then prove the Standard Conjecture 5.1 for nicer 2-degenerate graphs
and subcubic graphs, before proving Conjecture 5.1 for nice 9-colourable
graphs.

5.1. Standard (40, 3)-colourability

The proof of the following result follows the lines of one in [5], where
Bensmail, Merker and Thomassen proved that decomposable graphs can be
decomposed into at most 328 locally irregular graphs.

Theorem 5.2. Every decomposable graph G is standardly (40, 3)-colourable.

Proof. In G, we can find a locally irregular subgraph H1 such that G−E(H1)
has all of its connected components being of even size ([5], Lemma 2.1). If G
already had even size, then H1 is empty. Still calling G the remaining graph,
we can decompose G into a graph H2 with minimum degree at least 1010

and a (2 · 1010 + 2)-degenerate graph H3 whose all connected components
are of even size ([5], Lemma 4.5). On the one hand, according to a result
of Przyby lo [11], we can decompose H2 into three (possibly empty) locally
irregular graphs H2,1, H2,2, H2,3. On the other hand, H3 can be decomposed
into 36 bipartite graphs H3,1, . . . ,H3,36 whose all connected components are
of even size ([5], Theorem 4.3).

Recall that every locally irregular graph H verifies χΣ(H) = 1. Fur-
thermore, all nice bipartite graphs verify the 1-2-3 Conjecture. From these
arguments, using a set of 40 coloured weights 1, 2, 3 to independently weight
the edges of each of the Hi’s and the Hi,j ’s, we eventually get a standard
(40, 3)-colouring of G.

Since all connected nice exceptional graphs are 3-colourable, they verify
the 1-2-3 Conjecture (see [12]), and are thus standardly (1, 3)-colourable.
Together with Theorem 5.2, this yields the following:

Theorem 5.3. Every nice graph G is standardly (40, 3)-colourable.

5.2. The Standard Conjecture for 2-degenerate graphs and subcubic graphs

Recall that a graph is 2-degenerate if every of its subgraphs has a vertex
with degree at most 2. A subcubic graph is a graph G with maximum degree
at most 3. If all vertices of G have degree precisely 3, then we call G cubic.
Furthermore, if G is connected and not cubic, i.e., G has vertices with
degree 1 or 2, then we say that G is strictly subcubic.

We first prove the Standard Conjecture for 2-degenerate graphs (with a
few exceptions). More precisely, we prove:

Theorem 5.4. Every nicer 2-degenerate graph G is standardly (2, 2)-colourable.
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Our proof of Theorem 5.4 relies on the following lemma, which is proved
later in this section.

Lemma 5.5. Every nicer 2-degenerate graph G decomposes into two nice
forests.

Proof of Theorem 5.4. According to Lemma 5.5, we can decompose G into
two forests Fr and Fb none of which has an isolated edge. Since every nice
tree T verifies χΣ(T ) ≤ 2 (i.e., admits standard (1, 2)-colourings), each of
Fr and Fb, independently, admits a standard (1, 2)-colouring; let ωr and ωb
be any such for Fr and Fb, respectively. To get a standard (2, 2)-colouring
of G, we consider all weights assigned by ωr and ωb, and colour red those
weights originating from ωr, while we colour blue those weights originating
from ωb.

We are left with proving Lemma 5.5.

Proof of Lemma 5.5. Throughout the proof, which is by induction on |V (G)|+
|E(G)|, we assume that G is connected. As a base case, it can be checked
that the claim is true whenever |V (G)| ≤ 4. In particular, under all condi-
tions, G is either 1) a nice tree (in which case the claim holds trivially), 2) a
triangle with a pendant vertex attached (which decomposes into two paths
of length 2), 3) two triangles glued along an edge (which decomposes into
a path of length 2 and a star with three leaves), or 4) a cycle of length 4
(which decomposes into two paths of length 2).

Let us thus proceed to the proof of the general case (in particular,
|V (G)| ≥ 5). First assume that G has a degree-1 vertex v. Denote by
u the neighbour of v in G, and let G′ := G − {v}. Since |V (G)| ≥ 5, note
that G′ cannot be K2 or K3. So, by the induction hypothesis, G′ decom-
poses into a red nice forest and a blue nice forest. Assuming u belongs to
the red forest, we extend that decomposition to G by adding vu to the red
forest.

Thus, we may assume that G has a degree-2 vertex v, with neighbours
u1, u2. We distinguish two cases:

• First case: v is a cut-vertex. Let H1 and H2 be the two connected
components of G − {v}, where ui belongs to Hi for i = 1, 2, and set
G1 := H1 + {u1v} and G2 := H2 + {u2v}. Since G has no degree-1
vertex, note that none of G1 and G2 is isomorphic to K2. Also, v has
degree 1 in both G1 and G2, so none of G1 and G2 is isomorphic to
K3. By the induction hypothesis, G1 and G2 decompose into two nice
forests. Note that these two decompositions, when combined in G,
altogether form a decomposition of G into two nice forests.

• Second case: v is not a cut-vertex. Thus none of vu1 and vu2 is a
cut-edge. Thus, G′ := G− {vu1} is not isomorphic to K2 or K3, and,
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by the induction hypothesis, G′ decomposes into two nice forests, say
red and blue. Assume vu2 belongs to the red forest. If u1 belongs to
the blue forest, then we obtain a decomposition of G by adding vu1

to the blue forest. So assume u1 belongs to the red forest only. If u1

and u2 belong to different trees of the red forest, then we can directly
add vu1 to the red forest.

Thus, lastly suppose that u1 and u2 belong to the same tree of the red
forest. Note that when moving vu2 from the red to the blue forest,
and adding vu1 to the blue forest, then the obtained blue subgraph
remains a forest, and cannot have any tree isomorphic to K2. The
only problem, here, is that the red forest might now include a tree
isomorphic to K2. Since u1 and u2 belonged to the same tree of the
red forest, this means that vu2u1, a path of length 2, was exactly a
tree of the red forest. In that situation, u2 is a cut-vertex of G, and
u1 also has degree 2 - its neighbours are v and u2. Said differently,
vu1u2v is a pendant triangle of G attached at u2.

Now, since G is not K3, then u2 belongs to the blue forest in the
decomposition of G′. To obtain the desired decomposition of G, we
can here just add vu2 to the blue forest (which indeed remains a forest),
and add vu1 and u1u2 to the red forest (to which we add a path of
length 2).

This concludes the proof.

We now extend the previous results to nicer subcubic graphs.

Lemma 5.6. Every nicer subcubic graph G decomposes into two nice forests.

Proof. Throughout the proof, which is by induction on |V (G)|+ |E(G)|, it
is assumed that G is connected. As the claim is true whenever |V (G)| ≤ 4
(G is either strictly subcubic and the result follows from Lemma 5.5, or
isomorphic to K4, which decomposes into two paths of length 3), we proceed
to the proof of the general case.

We now consider the general case |V (G)| ≥ 5. If G is strictly subcubic,
then G is 2-degenerate, in which case the result follows from Lemma 5.5.
So let us assume that G is cubic. Let v be a (degree-3) vertex of G, with
neighbours u1, u2, u3. Note that if all edges among the ui’s exist, then
G is K4 while |V (G)| ≥ 5, a contradiction. Hence, assume without loss
of generality that u1u2 is not an edge of G. Consider the graph G′ :=
G − {v} + {u1u2}. Note that, although G′ might consist of up to two
connected components, none of them is isomorphic to K2 or K3 as G is
cubic. So all connected components are subcubic, and they decompose into
two nice forests, say red and blue.

Consider the decomposition of G′. Suppose that u1u2 belongs to the red
forest. We consider the same decomposition in G, except that, since G does
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not contain the edge u1u2, we replace it, in the red forest, by the two edges
u1v and vu2. Note that, in G, the red subgraph remains a nice forest. It
thus remains to add vu3 to either the red or blue forest. If u3 belongs to
the blue forest, then we are done when adding vu3 to the blue forest. So
assume that the two edges, different from vu3, incident to u3 belong to the
red forest. If v and u3 belong to different trees of the red forest, then we
can freely add vu3 to the red forest. So lastly suppose that we are not in
that case.

All of u1, u2, u3 belong to the same tree, say T , of the red forest. In T ,
let us assume that u3 is closer to u2 than it is closer to u1. In other words,
in T , the only path from u3 to u1 passes through u2. Let us remove vu2

from T . In the red forest, T is disconnected into two trees T ′ and T ′′, where
T ′ contains u2 and u3, while T ′′ contains v and u1. Note that T ′ is not
isomorphic to K2, since u3 remains of degree 2 in that tree. If T ′′ also has
this property, then we get a desired decomposition of G when adding vu2

and vu3 to the blue forest (recall that u3 originally did not belong to the
blue forest). So we may assume that T ′′ is actually isomorphic to K2, which
means that u1 had degree 1 in T . In this situation, we obtain the desired
decomposition of G by adding vu1 and vu3 to the blue forest.

A similar proof as that used to prove Theorem 5.4, but using Lemma 5.6
instead of Lemma 5.5, now yields the following.

Theorem 5.7. Every nicer subcubic graph is standardly (2, 2)-colourable.

5.3. Conjecture 5.1 for 9-colourable graphs

To prove Conjecture 5.1 for all nicer 9-colourable graphs, we essen-
tially prove that 9-colourable graphs, in general, decompose into two nice
3-colourable graphs. With such a result in hand, we can then use the fact
that nice 3-colourable graphs verify the 1-2-3 Conjecture.

Lemma 5.8. Assume that a nicer graph G can be 2-edge-coloured with red
and blue so that the induced red subgraph GR and blue subgraph GB satisfy
χ(GR) = r and χ(GB) = b with r, b ≥ 2. Then G can be 2-edge-coloured in
such a way that χ(GR) ≤ r, χ(GB) ≤ b, and GR and GB are nice.

Proof. The edges of G will be coloured or recoloured during the proof.
Changing the colour of an edge actually means that that edge is added
to one of GR and GB, and, conversely, removed from the second subgraph.

Let us start by raising a few comments on how edge additions and re-
movals affect the parameters and structure of the subgraph we are interested
in:

• Adding an edge to a graph can, in general, increase its chromatic
number; however, the addition of a pendant edge, or, more generally,
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of pendant paths does not increase the chromatic number (unless when
the graph is edgeless). The addition of an edge such that at least one
of its ends was not isolated in the graph does not increase the number
of isolated edges.

• Removing edges from a graph can, in general, reduce the chromatic
number. It can also produce new isolated edges; but this can only
happen when the removed edge lies on a path and is incident with a
pendant edge of this path.

The proof is by induction on |V (G)|. As it can easily be seen that
the statement is true when |V (G)| ≤ 4, we may consider the general case
|V (G)| ≥ 5. We can assume that G is connected. To show that G can be
2-edge-coloured as claimed, we consider three cases:

Case 1. G has a pendant edge, i.e., δ(G) = 1.
Let uv be a pendant edge of G with d(u) = 1. Any 2-edge-colouring of

G with χ(GR) = r ≥ 2 and χ(GB) = b ≥ 2 induces a 2-edge-colouring of the
graph G′ := G− u with χ(G′R) = r ≥ 2 and χ(G′B) = b ≥ 2, or G′ becomes
monochromatic. In the first case, since G′ has at least four vertices, we may
assume that the graphs G′R and G′B have no isolated edges. At least one
colour, say red, is present at vertex v. Then we colour the edge uv red. In
the second case, i.e., when G′ is monochromatic, say red, we colour the edge
uv red. In both cases we do not increase the chromatic number of G′R.

Case 2. δ(G) = 2.
Let u be a vertex with d(u) = 2. Denote by v, w its neighbours and let

G′ := G− u. As above, any 2-edge-colouring of G with χ(GR) = r ≥ 2 and
χ(GB) = b ≥ 2 induces a 2-edge-colouring of the graph G′ with χ(G′R) =
r ≥ 2 and χ(G′B) = b ≥ 2, or G′ becomes monochromatic. Suppose first
that G′ is connected. Then the lemma holds for G′ and we may suppose
that the graphs G′R and G′B have no isolated edges, or G′ is monochromatic,
say red, with χ(G′R) = r′ ≥ 2. If we are able to find in G′ two edges of
different colours incident with v (say red) and w (say blue), respectively,
then we colour the edge uv red and the edge uw blue. Note that this adds
pendant edges to G′R and G′B, so we do not increase the chromatic number
of these graphs and we do not create isolated edges. If the vertices v, w are
incident with edges of one colour only, say red, or G′ is monochromatic, say
red, then we colour both edges uv, uw blue. Again, we do not increase the
chromatic number of the graphs G′R and G′B and we do not create isolated
edges.

Consider now the case where G − u has two connected components G1

and G2. If neither G1 nor G2 is isomorphic to K3, then we apply induction
hypothesis to G1 and G2 and proceed as above, that is:
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v u w

Figure 3: A decomposition into two nice bipartite graphs mentioned in the proof of
Lemma 5.8. Solid edges stand for red edges. Dashed edges stand for blue edges.

• if we are able to find in G1 and G2 two edges of different colours
incident with v (say red) and w (say blue), respectively, then we colour
the edge uv red and the edge uw blue; and

• if the vertices v, w are incident with edges of one colour only, say red,
then we colour both edges uv, uw blue.

Suppose now that only one of these connected components, say G1, is
isomorphic to K3 and denote its vertices by v, v1, v2. Now, we apply the
induction hypothesis to G2 and if we are able to find an edge coloured, say,
blue, incident with w, then we colour the edge uw blue. Next, we colour red
the edges uv and vv1 and we colour blue the edges uv2 and v2v1.

If both connected components G1 and G2 are isomorphic to K3, then
one possible 2-edge-colouring without isolated edges is given in Figure 3.

Case 3. δ(G) ≥ 3.
We start from a 2-edge-colouring of G with χ(GR) = r ≥ 2 and χ(GB) =

b ≥ 2 which minimizes the number of isolated edges in GR and GB. We will
show that if the number of these is still positive, then we can get rid of
any given such isolated edge, without creating a new one, and thus get a
contradiction.

Let us suppose that uv is an isolated edge of GB. Since d(u) ≥ 3 and
d(v) ≥ 3, neither u nor v is isolated in GR. If the vertices u, v belong to two
different connected components of GR, then we recolour the edge uv red.
Such an operation cannot increase the chromatic number of GR.

Hence, the vertices u, v belong to one connected component of GR. Then
there is a red path P (containing only red edges) joining u and v in GR.
Denote this path by uw1 . . . wlv, where l ≥ 1. Since the vertices u and v
are of degree at least 3 in G and of degree 1 in the blue graph, they are of
degree at least 2 in the red graph. Denote by u1, . . . , up the neighbours of
u in GR and by v1, . . . , vq the neighbours of v in GR, different from w1, wl,
respectively. We have p, q ≥ 1.

If p ≥ 2, then we recolour uw1, the first edge of the red path P , blue.
From the point of view of the blue graph, we add to a connected component
of GB a pendant path w1uv of length 2. Since b ≥ 2, this operation does
not increase the chromatic number of GB. From the point of view of the
red graph, we delete an edge w1u but we do not create a new isolated edge.
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Indeed, none of the red edges incident with u becomes isolated, because
there remain p ≥ 2 of them. On the other hand, none of the edges incident
with w1 becomes isolated because they are incident with the edge w1w2

which lies on the path joining w1 with v and is not isolated even in the case
w2 = v because of the edge vv1.

If p = 1, and by symmetry q = 1, then we can proceed as above except
when the red degree of u1 is 1 i.e., uu1 is a pendant edge in the red graph.
Then we recolour this edge blue. Since b ≥ 2 this operation does not increase
the chromatic number of GB. Again, from the point of view of the blue
graph, we add to a connected component of GB a pendant path u1uv of
length 2, and from the point of view of the red graph, we delete a pendant
edge. Both operations preserve the chromatic numbers of the red and blue
graphs.

We now prove the second key lemma of this section.

Lemma 5.9. Every 9-colourable graph G decomposes into an r-colourable
graph GR and a b-colourable graph GB with r, b ≤ 3.

Proof. Let G be a graph with χ(G) ≤ 9. It is easy to see that it is sufficient
to consider the case where G is a complete graph of order n ≤ 9. So let
G = Kn and let x1, . . . , xn denote the vertices of G. We 2-edge-colour G
with colours red and blue, yielding two subgraphs GR and GB, respectively,
as follows. An edge xixj is coloured red if and only if i = j (mod 3).
Otherwise, i.e., when i 6= j (mod 3), the edge xixj is coloured blue.

Clearly, χ(GR) = 3 for n ≥ 3. Furthermore, since n ≤ 9, there are at
most three numbers congruent to 0 (or to 1, or to 2) modulo 3. Thus, GB
contains either isolated edges or triangles, so χ(GB) ≤ 3.

We are now ready to prove that nice 9-colourable graphs verify Conjec-
ture 5.1.

Theorem 5.10. Every nice 9-colourable graph G is standardly (2, 3)-colourable.

Proof. If G is 3-colourable, then we have χΣ(G) ≤ 3 (see [9]), or, in other
words, G is standardly (1, 3)-colourable. Now assume that G is at least
4-chromatic. By Lemma 5.9, it can be decomposed into two 3-colourable
graphs: an r-colourable graph GR and a b-colourable graph GB with r, b ≤ 3.
Since G is at least 4-chromatic we have also r, b ≥ 2.

We distinguish two cases:

• If G has no isolated triangles, then, by Lemma 5.8, it can be decom-
posed into two nice graphs GR and GB with χ(GR) ≤ r and χ(GB) ≤ b
with r, b ≥ 3. So, both of them verify the 1-2-3 Conjecture, and
thus admit standardly (1, 3)-colourings. Combining standardly (1, 3)-
colourings of GR and GB, we get a standard (2, 3)-colouring of G.
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• If G has isolated triangles, then we remove those from G, apply the
previous point to get a (2, 3)-colouring of what is left, and then give
the same color to all the edges of the isolated triangles. Finally, by
weighting the edges of each isolated triangle with weights 1, 2, 3 (in
any colour), we can extend the (2, 3)-colouring to G.

We note that the approach above can be generalized to show that, in
general, any nice graph G decomposes into a certain number, function of
χ(G), of graphs fulfilling the 1-2-3 Conjecture.

6. Weak (`, k)-colouring

We finally consider the weaker form of Conjecture 3.1:

Weak Conjecture. Every nice graph is weakly (2, 2)-colourable.

Towards the Weak Conjecture, we here first prove that all nice graphs
are weakly (3, 2)- and (2, 4)-colourable. We then prove that graphs with
minimum degree at least 59 are weakly (2, 3)-colourable.

6.1. Weak (3, 2)- and (2, 4)-colourability

We first prove that every nice graph is weakly (3, 2)-colourable.

Theorem 6.1. Every nice graph G is weakly (3, 2)-colourable.

Our proof of Theorem 6.1, relies on the following lemma proved by
Addario-Berry, Aldred, Dalal and Reed in [1].

Lemma 6.2. Every connected graph G with χ(G) > 3 has a tripartition
V0 ∪ V1 ∪ V2 such that, for every vertex v ∈ Vi, we have:

1. dVi+1 (mod 3)
(v) ≥ dVi(v), and

2. dVi+1 (mod 3)
(v) ≥ 1.

We now proceed to the proof of Theorem 6.1.

Proof of Theorem 6.1. If G is 3-colourable, then G admits a neighbour-
multiset-distinguishing 3-edge-weighting (we actually even have χΣ(G) ≤ 3),
which implies that G is weakly (3, 1)-colourable. So assume that χ(G) > 3,
and that G is connected. According to Lemma 6.2, there exists a tripartition
V0 ∪ V1 ∪ V2 of V (G) where each vertex has at least as many neighbours (at
least one) in the next part than it has in its own part. We construct a weak
(3, 2)-colouring, assigning coloured weights red, blue and green, of G in the
following way. We do this in two steps, first assigning colours to the edges,
and then describing what weights should be assigned to them.

For two sets Vi, Vj , we denote by e(Vi, Vj) the edges of G with one end in
Vi and one end in Vj . Also, by e(Vi) we denote the set e(Vi, Vi). We colour
the edges as follows:
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• every edge in e(V0) ∪ e(V0, V1) is coloured red;

• every edge in e(V1) ∪ e(V1, V2) is coloured blue;

• every edge in e(V2) ∪ e(V2, V0) is coloured green.

Note that every edge of G is coloured. We now weight the edges in the
following manner. For the sake of the exposition, we demonstrate the pro-
cedure for V0 and colour red, but it has to be performed in a similar way for
V1 and V2, using colour blue and green, respectively. We assign weight 1 to
all edges in e(V0), and similarly for all edges in e(V0, V1).

We now process all vertices of V0 following an arbitrary ordering. Let us
assume we are now considering vertex v. Our goal is to make sure that the
red sum of v is different from that of its neighbours in V0. For this, let us
denote by u1, . . . , uk the previously-treated neighbours of v in V0. To alter
the red sum of v, we are allowed to consider any neighbour u in V1, and
switch the (red) weight of vu from 1 to 2. Since v has dV0(v) neighbours in
V0, with dV1(v) ≥ dV0(v) ≥ k, by performing weight switches, we can make
the red sum of v increase by any x ∈ {0, . . . , dV1(v)}. So there are up to k
forbidden values as the red sum of v, while we have at least k + 1 distinct
ways to modify it. Hence, there is a way to switch 1’s to 2’s on the red
edges going from v to V1, so that no red sum conflict involving v and its
neighbours in V0 remains.

Once this process has been applied for all vertices in V0, V1, V2, we claim
that we have obtained a weak (3, 2)-colouring of G. First, due to the process
we have run, for every two adjacent vertices in V0 (resp. V1, V2), we have
distinct red (resp. blue, green) sums. Now, for every edge uv where u ∈ V0

and v ∈ V1, we have that v has non-zero blue sum (because dV2(v) ≥ 1),
while v has zero blue sum. So u and v are distinguished via their blue sums.
Similarly, it can be noted that any two adjacent vertices in consecutive Vi’s
are distinguished via a non-zero coloured sum and a zero coloured sum.

We now prove that every nice graph can be weakly (2, 4)-coloured. This
time, the proof is inspired by that in [8].

Theorem 6.3. Every nice graph G is weakly (2, 4)-colourable.

Proof. Assume that G is connected. Choose as vn a vertex with degree at
least 2 in G. Applying a depth-first search algorithm from vn, we deduce an
ordering v1, . . . , vn of the vertices of G where each vi (but vn) has a forward
neighbour, i.e., there is a j with j > i such that vivj is an edge. Conversely,
we call vi a backward neighbour of vj . An edge vivj with i < j is a forward
edge for vi and a backward edge for vj . By our choice of vn, it has at least
two backward neighbours.

We produce a weak (2, 4)-colouring (with red and blue weights) of G
where, for every edge vivj , vertices vi and vj are distinguished by their

23



red sums. We start with all edges of G being assigned red weight 2. We
will then process all vi’s in order. At each Step i with i < n, we will 1)
define a set Φ(vi) := {φ(vi), φ(vi) + 2}, with φ(vi) ∈ {0, 1} (mod 4), of two
possible red sums for vi, so that, for every edge vjvi with j < i, we have
Φ(vj) 6= Φ(vi) (so that Φ(vj) ∩ Φ(vi) is empty), and 2) modify (either in
value or colour) some weights incident to vi so that its current red sum lies
in Φ(vi). More precisely, from the moment where Φ(vi) is defined, the red
sum of vi will always belong to that set. Eventually, at Step n, we will
modify some weights incident to vn so that no red sum conflict remains.

There are no backward constraints at Step 1, so we can just set φ(v1) =
2d(v1). Note that all required conditions are met so far. We now consider
the general case, i.e., Step i for some 1 < i < n. For every j < i, the
set Φ(vj) was defined, and the current red sum of vj belongs to that set
(Condition 1). Assume further that all forward edges incident to vi currently
have red weight 2 (Condition 2). Lastly (Condition 3), suppose that, for
every backward edge vjvi, either:

• vjvi has red weight 2 and vi has red sum in Φ(vj) (Condition 3.a);

or, when vi is the first (i.e., with the lowest index) forward neighbour of vj :

• vjvi has red weight 1 and vj has red sum φ(vj) (Condition 3.b); or

• vjvi has red weight 3 and vj has red sum φ(vj) + 2 (Condition 3.c).

For each edge vivj incident to vi, either backward or forward, we will
allow a valid change of its coloured weight, complying with the above Con-
ditions:

• We allow to not alter any of the colour and weight of vjvi.

• If vjvi is a backward edge, we allow to change its colour or weight, as
long as vj complies with Condition 1:

– if vjvi verifies Condition 3.a, we allow to change its red weight
from 2 to 4 (if the red sum of vj is φ(vj)) or to any blue weight
(if the red sum of vj is φ(vj) + 2);

– if vjvi verifies Condition 3.b, we allow to change its red weight
from 1 to 3;

– if vjvi verifies Condition 3.c, we allow to change its red weight
from 3 to 1.

• If vivj is the first forward edge of vi, we allow to change its red weight
to 1 or 3, as long as vi eventually complies with Condition 3.
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Assuming vi has k ≥ 1 backward neighbours, by making valid changes back-
wards, we can make the red sum of vi to reach a range of k + 1 values (all
having the same parity), in such a way that all backward neighbours comply
with Condition 1. Furthermore, note that the valid change forwards makes
the parity of the red sum of vi change.

Hence, we can make the red sum of vi reach any value within some
interval C := {α, . . . , α + 2k + 2} by performing valid moves. We have to
choose this value in such a way that the set Φ(vi) can correctly be defined
from it. Since we need Φ(vi) 6= Φ(vj) for every backward neighbour vj , the
backward neighbours forbid at most 2k red sums from C. Now, if a valid
move forwards is performed, then, in case it is a decrement, we require the
red sum of vi to be φ(vi), while we require it to be φ(vi) + 2 otherwise. This
condition might forbid the values α and α + 2k + 2 of C as the red sum of
vi. So, in total, there is one value in C which is subject to no constraint;
so we make the corresponding valid moves so that the red sum of vi reaches
this value, and define Φ(vi) accordingly. All conditions are met for the next
Steps to be performed then.

We do not need to define a set Φ(vn): at Step n, we just need to per-
form valid changes backwards so that the red sum of vn gets different from
that of its k ≥ 2 backward neighbours (though the notion of valid change
was not defined for vn, note that for every backward edge vnvj there is a
way to increase or reduce the red sum of vj by 2 without violating any of
the Conditions). Start by performing all valid changes backwards that are
decrements. By our choice of the φ(vi)’s, all backward red sums have value
in {0, 1} modulo 4. If the red sum of vn has thereby reached a value in {2, 3}
modulo 4, then we are done. So we may assume that the red sum of vn lies
in {0, 1} modulo 4, and that at least one backward neighbour has the same
red sum.

• If there is at least one backward neighbour vi whose red sum is different
to that of vn, then we make a valid change on the edge vnvi; this clearly
yields a correct weighting.

• Now, if all backward neighbours have the same red sum as vn, then
we perform two valid changes backwards so that no red sum conflict
remains.

We eventually get a weak (2, 4)-colouring of G.

6.2. Graphs with δ ≥ 59 are weakly (2, 3)-colourable

Before proceeding to the proof of the main result of this section, we first
need to introduce two observations.

Observation 6.4. Every graph G decomposes into two subgraphs G1 and
G2 such that:
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• for every vertex v of G, we have dG1(v) ∈
{⌊

dG(v)
2

⌋
,
⌊
dG(v)

2

⌋
+ 1

}
, and

• for every even-degree vertex v of G except possibly one, we have dG1(v) =
dG(v)

2 .

Proof. If the subset U ⊆ V of the vertices of odd degree in G is non-empty,
add a new vertex u and join it by a single edge with every vertex in U ;
denote the obtained graph by G′ (if U = ∅, set G′ = G). As the degrees
of all vertices in G′ are even, there exists an Eulerian tour in it. We then
traverse all edges of G′ once along this Eulerian tour, starting at u if it
exists, and colour them alternately red and blue. Then the red edges in G
induce its subgraph G1 consistent with our requirements.

Observation 6.5. Every graph G has an orientation D such that, for every

vertex v, we have d+
D(v) ≥

⌊
dG(v)

2

⌋
.

Proof. Analogously as in the proof of Observation 6.4, if the subset U ⊆ V
of the vertices of odd degree in G is non-empty, then add a new vertex u
and join it by a single edge with every vertex in U ; denote the obtained
graph by G′ (if U = ∅, set G′ = G). As the degrees of all vertices in G′ are
even, there exists an Eulerian tour in it. By traversing it once we obtain an
orientation of G′ with equal in- and out-degrees for all vertices. This yields
the desired orientation D of G.

We now prove the main result:

Theorem 6.6. Every graph G with δ(G) ≥ 59 is weakly (2, 3)-colourable.

Proof. We may suppose that G is connected. Let G1 = (V,E1) and G2 =
(V,E2) be the subgraphs of G obtained by applying Observation 6.4, where

x is a vertex of even degree in G for which dG1(x) 6= dG(x)
2 if it exists (let x

be any fixed vertex of G otherwise). We produce a weak (2, 3)-colouring of
G by colouring and weighting G1 and G2 separately.

We colour red all edges of G1, and blue all edges of G2. Initially we
weight all the edges with 2. Denote by ω1, ω2 the temporary weightings
of G1, G2. In what follows, ω1 and ω2 will be subject to changes, but, for
the sake of the proof, we still call them ω1 and ω2. At every step of our
construction, the colour of any vertex v, denoted c(v), will be understood
as the pair (σω1(v), σω2(v)), where σωi(v) :=

∑
u∈NGi

(v) ωi(uv) for i = 1, 2.

Let D1 and D2 be auxiliary orientations of G1 and G2, respectively,
consistent with Observation 6.5. It is straightforward to verify that for
every v ∈ V r {x} we then must have:

(d+
D1

(v) + 1)(d+
D2

(v) + 1) > 4dG(v). (1)
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Let further Oi(v) := {uv ∈ Ei : u ∈ N+
Di

(v)} denote the set of edges incident
with a given vertex v which correspond to arcs out-going from v in Di. Hence
|Oi(v)| = d+

Di
(v) for i = 1, 2.

Let us define the following family of pairwise disjoint four-element sets
of pairs of integers

B = {{(2p, 2q), (2p, 2q + 1), (2p+ 1, 2q), (2p+ 1, 2q + 1)} : p, q ∈ Z}.

Fix an arbitrary ordering v1, . . . , vn over the vertices in V with v1 = x. We
will analyse the vi’s one after another consistently with this ordering. At
each Step j we will choose some set Bj ∈ B, different from all such sets
already fixed for the neighbours of vj in G, and we will modify weights of
the edges in O1(vj) ∪ O2(vj) so that c(vk) ∈ Bk for every k ≤ j. Note that
if we are able to achieve this using only weights 1, 2, 3 on the edges, after
Step n we will then obtain a desired weighting of G1 and G2.

Step 1 is trivial, so assume we analyse Step j for some j ∈ {2, . . . , n}, and
thus far all our requirements have been fulfilled. Note that we cannot choose
at most dG(vj) sets from B for vj (these already assigned to neighbours of
vj in G). We however may always modify the weight of every vkvj ∈ Oi(vj)
by 1 so that c(vk) ∈ Bk (if vk has already Bk assigned), i = 1, 2. This way
we may obtain at least |O1(vj)| + 1 distinct values of the first coordinate
of c(vj) and at least |O2(vj)| + 1 distinct values for the second one. This
altogether yields a list of available pairs of cardinality at least

(|O1(vj)|+ 1)(|O1(vj)|+ 1) ≥ (d+
D1

(v) + 1)(d+
D2

(v) + 1) > 4dG(v)

for c(vj) due to Inequality (1) above. At least one of these pairs must thus
not belong to any Bk for vk ∈ NG(vj). We choose any such pair and fix
as Bj the set in B which includes this pair, performing at the same time
modifications of weights (to 1 or 3) of (some of) the edges in O1(vj)∪O2(vj)
so that c(vj) ∈ Bj afterwards. Note that by our choice of the sets Oi(v),
the weight of each edge might be modified only once, and hence belongs to
{1, 2, 3}.

After Step n, we thus obtain desired weightings of G1 and G2.
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