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How can one distinguish the adjacent vertices of a graph through an edge-weighting? In the last decades, this question
has been attracting increasing attention, which resulted in the active field of distinguishing labellings.

One of its most popular problems is the one where neighbours must be distinguishable via their incident sums of weights.
An edge-weighting verifying this is said neighbour-sum-distinguishing. The popularity of this notion arises from two
reasons. A first one is that designing a neighbour-sum-distinguishing edge-weighting showed up to be equivalent to
turning a simple graph into a locally irregular (i.e., without neighbours with the same degree) multigraph by adding
parallel edges, which is motivated by the concept of irregularity in graphs. Another source of popularity is probably the
influence of the famous 1-2-3 Conjecture, which claims that such weightings with weights in {1, 2, 3} exist for graphs
with no isolated edge.

The 1-2-3 Conjecture has recently been investigated from a decompositional angle, via so-called locally irregular de-
compositions, which are edge-partitions into locally irregular subgraphs. Through several recent studies, it was shown
that this concept is quite related to the 1-2-3 Conjecture. However, the full connexion between all those concepts was
not clear.

In this work, we propose an approach that generalizes all concepts above, involving coloured weights and sums. As a
consequence, we get another interpretation of several existing results related to the 1-2-3 Conjecture. We also come up
with new related conjectures, to which we give some support.

Keywords: 1-2-3 Conjecture, Locally irregular decompositions, Coloured weighted degrees

1 Introduction
The current work is mainly related to the well-known 1-2-3 Conjecture, which is defined accordingly to the
upcoming notions. Let G be a graph, and let ω be an edge-weighting (assigning weights among {1, . . . , k})
of G. From ω, one can design the vertex-colouring σ of G where each vertex v gets assigned, as its colour
σ(v), the sum of weights (called its weighted degree) assigned to its incident edges. That is, for every vertex
v of G we have

σ(v) :=
∑

u∈N(v)

ω(uv),

where N(v) denotes the set of neighbours of v. In case σ is actually a proper vertex-colouring of G, i.e., we
have σ(u) 6= σ(v) for every two adjacent vertices u and v, then we call ω neighbour-sum-distinguishing.
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For any two graphs G and H , we say that G has no isolated H if no connected component of G is
isomorphic to H . Note that all graphs with no isolated edge admit neighbour-sum-distinguishing edge-
weightings (consider e.g. an inductive argument). Graphs with no such connected components are thus
called nice, with respect to this edge-weighting notion. The 1-2-3 Conjecture, posed in 2004 by Karoński,
Łuczak and Thomason [9], asks whether, for every nice graph, we can design neighbour-sum-distinguishing
3-edge-weightings, i.e., using weights 1, 2, 3 only. More precisely, if we denote by χΣ(G) the least k
such that a nice graph G admits a neighbour-sum-distinguishing k-edge-weighting, then it is believed that
χΣ(G) ≤ 3 should always hold.

1-2-3 Conjecture (Karoński, Łuczak, Thomason [9]). For every nice graph G, we have χΣ(G) ≤ 3.

Despite many active investigations in the last decade, the 1-2-3 Conjecture is still wide open to date. These
investigations have been mainly focused on 1) proving the 1-2-3 Conjecture for new classes of nice graphs,
2) proving general constant upper bounds on χΣ, and 3) studying side aspects of the 1-2-3 Conjecture. As
the literature on this topic is vast, a brief summary of some of these investigations is deferred to the next
section.

The current work is also related to locally irregular decompositions, which were considered as a de-
compositional approach towards understanding some aspects behind the 1-2-3 Conjecture. In general, by
a decomposition of a graph, we mean an edge-colouring where each colour class yields a graph with par-
ticular properties. A locally irregular graph is a graph in which every two adjacent vertices have distinct
degrees. By a locally irregular decomposition of a graph, we thus mean a decomposition into locally irreg-
ular graphs. Sticking to the edge-colouring point of view, we will also sometimes instead speak of a locally
irregular edge-colouring.

Locally irregular decompositions relate to the 1-2-3 Conjecture through, notably, the following argu-
ments. In a sense, the graphs G that are the “most convenient” for the 1-2-3 Conjecture are those which
verify χΣ(G) = 1. Those graphs are precisely the locally irregular ones. Also, in particular contexts,
locally irregular decompositions can be turned into neighbour-sum-distinguishing edge-weightings. Per-
haps the best illustration of that claim is the fact that, in any regular graph, a neighbour-sum-distinguishing
2-edge-weighting yields a decomposition into two locally irregular graphs, and vice versa.

Similarly as for neighbour-sum-distinguishing edge-weightings, there exist graphs which do not admit
any locally irregular decomposition; but, this time, the class of exceptional graphs is much wider (consider
e.g. any path of odd length). An exceptional graph (with respect to locally irregular decompositions) is
also called an exception, for short. Conversely, a graph that is not exceptional is said decomposable. For
a decomposable graph G, we denote by χ′irr(G) the least k such that G admits a locally irregular k-edge-
colouring. Similarly as in the case of the 1-2-3 Conjecture, it is believed that every decomposable graph
should decompose into at most three locally irregular graphs, as conjectured by some of the authors of the
present paper:

Conjecture 1.1 (Baudon, Bensmail, Przybyło, Woźniak [3]). For every decomposable graph G, we have
χ′irr(G) ≤ 3.

Conjecture 1.1 was first verified for a few graph classes. Also, general constant upper bounds on χ′irr were
recently exhibited. For the sake of keeping the introduction short, we again refer the reader to the next
section for a survey of some of these results.

In this work, we aim at introducing a general decompositional theory enclosing neighbour-sum-distinguishing
edge-weightings and locally irregular decompositions. This theory is mainly based on the observation that
a locally irregular `-edge-colouring of a graph G is, put differently, a decomposition of G into graphs
G1, . . . , G` verifying χΣ(G1), . . . , χΣ(G`) = 1. This leads us to combine the notions of neighbour-sum-
distinguishing edge-weightings and locally irregular edge-colourings, in the following way. Let `, k ≥ 1
be two integers, and G be a graph. To each edge of G, we assign, via a colouring ω, a pair (α, β), where
α ∈ {1, . . . , `} and β ∈ {1, . . . , k}, which can be regarded as a coloured weight (with value β and colour
α). Now, for every vertex v of G, and every colour α ∈ {1, . . . , `}, one can compute the weighted α-degree
σα(v), being the sum of weights with colour α incident to v. So, to every vertex v is associated a palette
(σ1(v), . . . , σ`(v)) of ` coloured weighted degrees.

When working on variants of the 1-2-3 Conjecture, the intent is to design edge-weightings ω that allow to
distinguish the adjacent vertices, accordingly to some distinction condition. When dealing with the notions
introduced in the last paragraph, there are many ways for asking for distinction, as several coloured sums
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Figure 1: Three (2, 2)-colourings of K4.

are available; in this work, we will focus on the following three distinction variants, which sound the most
natural to us:

• Weak distinction: two adjacent vertices u and v of G are considered distinguished if there is an
α ∈ {1, . . . , `} such that σα(u) 6= σα(v).

• Standard distinction: two adjacent vertices u and v of G are considered distinguished if, assuming
ω(uv) = (α, β), we have σα(u) 6= σα(v).

• Strong distinction: two adjacent vertices u and v of G are considered distinguished if, for every
α ∈ {1, . . . , `}, we have σα(u) = σα(v) = 0, or σα(u) 6= σα(v).

Assuming ω verifies one of the weak, standard or strong distinction condition for every pair of adjacent
vertices, we say that ω is a weak, standard or strong (`, k)-edge-colouring, and that G is weakly, standardly
or strongly (`, k)-coloured. We also say that G is weakly, standardly or strongly (`, k)-colourable, if there
are `′, k′ ≥ 1 with `′ ≤ ` and k′ ≤ k such that G can be weakly, standardly or strongly (`′, k′)-coloured,
respectively.

We provide, in Figure 1, an illustration of these concepts on K4, the complete graph on four vertices,
where the two colours are represented by solid and dashed edges. By the “incident solid sum” of a vertex,
we here mean the sum of weights assigned to its incident solid edges. It can be checked that, in Figure 1.(a),
the depicted (2, 2)-colouring is a weak colouring. It is however not a standard (2, 2)-colouring as vertices
c and d are joined by a solid edge but their incident solid sums equal 3. The colouring in Figure 1.(b) is a
standard (2, 2)-colouring which is not a strong colouring, in particular because vertices a and c both have
incident solid sum 2. The colouring in Figure 1.(c) is a strong (2, 2)-colouring.

This paper is organized as follows. As already mentioned, the notions of weak, standard and strong
(`, k)-colourings can be employed to generalize neighbour-sum-distinguishing edge-weightings and locally
irregular edge-colourings. In Section 2, we explore these connexions. In particular, we recall known results
and translate them in our new terminology.

Playing with the parameters ` and k and the distinction conditions, we also come up with new problems,
some of which we believe are of independent interest. In particular, we wonder whether almost all graphs
can be weakly, standardly, or even strongly (2, 2)-coloured. If true, this would imply side decomposition
results related to the 1-2-3 Conjecture. The strong, standard and weak versions of that question are formally
introduced in Section 3. They are then studied in Sections 4, 5 and 6, respectively.

2 Previous results and connexions to (`, k)-colourings
As a warm up, we start, in Section 2.1, by making first observations and remarks on weak, standard and
strong colourings. We then survey, in Section 2.2, some of the results from literature that are directly
connected to these notions. More precisely, we explain which notions in the literature are encompassed by
weak, standard and strong colourings, and, by rephrasing known results under that new terminology, we
exhibit first results.

2.1 Early observations
First of all, we note that, according to the definitions, every result holding for some version of (`, k)-
colourings also holds for the weaker versions. This is why, throughout Sections 4 to 6, we start by consid-
ering strong colourings, then standard colourings, and, finally, weak colourings.
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Observation 2.1. A strong (`, k)-colouring is also a standard (`, k)-colouring. Analogously, a standard
(`, k)-colouring is also a weak (`, k)-colouring.

In general, though, it can be observed that the converse direction is not true, i.e., that a given (`, k)-
colouring does not necessarily fulfil stronger distinction conditions. A good illustration for that is the fact
that K3 can be weakly (2, 2)-coloured but not standardly (2, 2)-coloured. There are situations, though,
where all distinction conditions behave similarly. We state a few of them below.

First of all, we recall that, for some values of ` and k, some versions of (`, k)-colourings are equivalent
to other kinds of distinguishing colourings and weightings. Most of these observations are straightforward,
and thus do not need a formal proof. In particular, it can easily be checked that some of these results do not
hold for stronger or weaker versions of our colouring variants.

Observation 2.2. Weak, standard and strong (1, k)-colourings and neighbour-sum-distinguishing k-edge-
weightings are equivalent notions.

Observation 2.3. Standard (k, 1)-colourings and locally irregular k-edge-colourings are equivalent no-
tions.

Let G be a graph, and ω be an edge-weighting of G. For each vertex v of G, one can compute its
multiset µ(v) of incident weights induced by ω. We say that ω is neighbour-multiset-distinguishing if no
two adjacent vertices of G get the same multiset of incident weights. Note that having σ(u) 6= σ(v) for
an edge uv of G implies that µ(u) 6= µ(v) (but the converse is not necessarily true). For this reason,
neighbour-multiset-distinguishing edge-weightings have been studied as a weaker form of neighbour-sum-
distinguishing edge-weightings.

The point for mentioning neighbour-multiset-distinguishing edge-weightings is that they relate to our
notion of weak colourings.

Observation 2.4. Weak (k, 1)-colourings and neighbour-multiset-distinguishing k-edge-weightings are
equivalent notions.

In Observation 2.2, we noticed that, for (1, k)-colourings, all three distinction conditions are equivalent.
In the following result, we point out another context where the three colouring variants coincide.

Observation 2.5. In regular graphs, weak, standard and strong (2, 1)-colourings are equivalent notions.

2.2 Previous results
In this section, we restate, in our terminology, several results from the literature on distinguishing weightings
and colourings to derive the existence of particular (1, k)- or (`, 1)-colourings. In other words, we here point
out how our colouring concepts encapsulate existing distinguishing weightings and colourings.

This section is not intended to be a full survey on variants of the 1-2-3 Conjecture. Hence, we voluntarily
focus on those existing results that are closely related to our investigations; for more details, please refer to
the survey [12] by Seamone.

2.2.1 Neighbour-sum-distinguishing edge-weightings
Recall that, according to Observation 2.2, being strongly (1, k)-colourable is equivalent to being neighbour-
sum-distinguishing k-edge-weightable. Thus, all general constant upper bounds on χΣ yield results on
strong colourability (hence on the weaker variants as well, recall Observation 2.1).

In the context of neighbour-sum-distinguishing edge-weightings, the leading conjecture is the 1-2-3 Con-
jecture. If true, that conjecture would imply that every nice graph is strongly (1, 3)-colourable. Recall that
nice graphs are exactly those graphs without isolated edges.

Conjecture 2.6. Every nice graph is strongly (1, 3)-colourable.

To date, the best result towards the 1-2-3 Conjecture was given by Kalkowski, Karoński and Pfender [8],
who proved χΣ(G) ≤ 5 for every nice graph G. As said above, this result can be stated as follows, using
our terminology.

Theorem 2.7. Every nice graph is strongly (1, 5)-colourable.

The 1-2-3 Conjecture was shown to hold for several common classes of nice graphs, such as complete
graphs and 3-colourable graphs. There exist graphs G verifying χΣ(G) = 3, such as complete graphs of
order at least 3. One natural question is thus whether such graphs are easy to characterize. Dudek and Wajc
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settled the question in the negative [6], by showing that determining the exact value of χΣ(G) is an NP-
complete problem. Later on, Ahadi, Dehghan and Sadeghi [2] proved that this remains true when restricted
to regular (cubic) graphs. This result is of prime interest, as all distinguishing weighing and colouring
notions considered in this paper tend to be equivalent when 1) only two weights or colours are considered,
and 2) the graph is regular (recall Observation 2.5). This result, by itself, directly establishes the general
hardness of weak, standard and strong colourings.

It took some time to settle this complexity question for bipartite graphs. In a first work [7], Chang,
Lu, Wu and Yu provided several sufficient conditions for a nice bipartite graph G to verify χΣ(G) ≤ 2.
In particular, they showed that being connected and having one of the two partite sets of even cardinality
is a sufficient condition, and, from this result, they easily proved that nice trees always admit neighbour-
sum-distinguishing 2-edge-weightings. Later on, the full characterization of connected bipartite graphs G
with χΣ(G) = 3 was given by Thomassen, Wu and Zhang [13], who proved that they are exactly the
odd multicacti. These graphs can be constructed as follows. Start from m ≥ 1 cycles C1, . . . , Cm whose
lengths are at least 6 and congruent to 2 modulo 4, and colour the edges of the Ci’s using colours red and
green alternately. Then, an odd multicactus is any connected graph obtained from the Ci’s via repeated
applications of the following operation: pick two connected components G1 and G2, and identify a green
edge of G1 with a green edge of G2. Said differently, an odd multicactus is obtained by identifying edges
of particular cycles in a tree-like fashion. In particular, every cycle with length congruent to 2 modulo 4 is
an odd multicactus.

Theorem 2.8 (Thomassen, Wu, Zhang [13]). A connected bipartite graph G verifies χΣ(G) = 3 if and
only if G is an odd multicactus.

2.2.2 Locally irregular edge-colourings
By Observation 2.3, we get that locally irregular k-edge-colourings are precisely standard (k, 1)-colourings.
We thus survey some of the research on locally irregular edge-colourings, as they transfer to standard (k, 1)-
colourings.

As mentioned in Section 1, not all graphs decompose into locally irregular graphs, so one has to deal
with so-called exceptions. In their first work on this topic [3], Baudon, Bensmail, Przybyło and Woźniak
completely characterized all connected exceptions. Namely, connected exceptions include 1) odd-length
paths, 2) odd-length cycles, and 3) the family T defined recursively as follows:

• The triangle K3 belongs to T.

• Every other graph in T can be constructed by 1) taking an auxiliary graph F being either a path of
even length or a path of odd length with a triangle glued to one of its ends, then 2) choosing a graph
G ∈ T containing a triangle with at least one vertex, say v, of degree 2 inG, and finally 3) identifying
v with a vertex of degree 1 of F .

Note that all connected exceptions have maximum degree at most 3.
Thus, a graph is decomposable if and only if it has no exception as a connected component. Once

the set of exceptions was characterized, Baudon, Bensmail, Przybyło and Woźniak conjectured that every
decomposable graphG should decompose into at most three locally irregular graphs, i.e., χ′irr(G) ≤ 3. Due
to Observation 2.3, this conjecture can be restated as follows:

Conjecture 2.9. Every decomposable graph is standardly (3, 1)-colourable.

The first constant upper bound on χ′irr is due to Bensmail, Merker and Thomassen [5], who proved that
we have χ′irr(G) ≤ 328 for every decomposable graph G. This bound was recently improved down to 220
by Lužar, Przybyło and Soták [10]. We can thus state the following:

Theorem 2.10. Every decomposable graph is standardly (220, 1)-colourable.

Baudon, Bensmail, Przybyło and Woźniak verified Conjecture 2.9 for several decomposable graph classes [3],
including complete graphs, some bipartite graphs, some Cartesian products, and regular graphs with degree
at least 107. Later on, Przybyło [11] verified the conjecture for graphs with minimum degree at least 1010.
The complexity aspects were considered by Baudon, Bensmail and Sopena [4], who proved that, for a given
graph G, deciding whether χ′irr(G) = 2 is NP-complete in general, while determining χ′irr(G) can be done
in polynomial time when G is a tree.
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2.2.3 Neighbour-multiset-distinguishing edge-weightings
As mentioned in the previous section, all neighbour-sum-distinguishing edge-weightings are neighbour-
multiset-distinguishing, but the converse is not always true. The connexion between these two notions was
first considered by Karoński, Łuczak and Thomason in the paper introducing the 1-2-3 Conjecture [9].
The first formal study of neighbour-multiset-distinguishing edge-weightings may be attributed to Addario-
Berry, Aldred, Dalal and Reed, who, later on, gave improved results towards a “multiset version” of the
1-2-3 Conjecture [1]. In our terminology, this conjecture reads as follows:

Conjecture 2.11. Every nice graph is weakly (3, 1)-colourable.

So far, the best result towards Conjecture 2.11 is hence due to Addario-Berry, Aldred, Dalal and Reed,
who proved that all nice graphs admit neighbour-multiset-distinguishing 4-edge-weightings [1].

Theorem 2.12. Every nice graph is weakly (4, 1)-colourable.

All graph classes verifying the 1-2-3 Conjecture also verify Conjecture 2.11. Additionally, the latter
conjecture was also verified for graphs with minimum degree at least 1000, see [1].

3 New problems
As seen in Section 2, some of the (1, k)-colouring and (`, 1)-colouring variants correspond to distinguishing
weighting and colouring notions already considered in the literature. In particular, for such values of ` and
k, there is still some gap between the corresponding conjectures and the best results we know to date.
One way to get some sort of side progress, could be to prove the existence of (`, k)-colourings (for some
distinction condition) where `+ k or max{`, k} is as small as possible.

In particular, the main problem we consider in the rest of this paper, which corresponds to minimizing
max{`, k}, and to which we could not find any obvious counterexample, reads as follows. By a nicer graph,
we mean a graph with no isolated edges and triangles.

Conjecture 3.1. Every nicer graph is strongly (2, 2)-colourable.

The main reason for suspecting that K2 and K3 might be the only connected graphs admitting no strong
(2, 2)-colourings is that they are the only connected exceptional graphs (recall the exact characterization in
Subsection 2.2.2) admitting no neighbour-sum-distinguishing 2-edge-weightings.

Observation 3.2. Every connected exception different from K2 and K3 verifies Conjecture 3.1.

Proof: LetG be a connected exception different fromK2 andK3. We consider several cases corresponding
to the three families of connected exceptions given by the definition:

• If G is an odd-length path, then G is a connected bipartite graph different from an odd multicactus,
thus verifies χΣ(G) ≤ 2 according to Theorem 2.8, and hence admits strong (1, 2)-colourings.

• If G is an odd-length cycle with length at least 5, then G can be decomposed into two paths Pr, Pb
with length at least 2. In particular, the end-vertices of Pr (and similarly Pb) are not adjacent in G,
and we have χΣ(Pr), χΣ(Pb) ≤ 2. By considering a strong (1, 2)-colouring of Pr (with red weights)
and a strong (1, 2)-colouring of Pb (with blue weights), we eventually get a strong (2, 2)-colouring
of G.

• Finally assume that G ∈ T \ {K3}. By contracting the triangles (there is at least one such) of G to
vertices, we obtain a tree R(G) with maximum degree 3, whose some nodes (triangle nodes) corre-
spond to triangles of G, while some nodes (normal nodes) correspond to real vertices. Furthermore,
by definition, any path of R(G) joining two triangle nodes has odd length, and any path joining a
triangle node and a pendant normal node has even length.

We can consider G as a collection of triangles with at most three pendant edges attached (extended
triangles), and paths with one or two ends attached to a triangle (maximal paths) (see Figure 2 for
an example). The pendant edges attached to the extended triangles, as well as the end-edges incident
to triangles of the maximal paths, are called attachment edges. According to these definitions, G
can be constructed from extended triangles and maximal paths by glueing their attachment edges. In
particular, every attachment edge belongs to one extended triangle and one maximal path.
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(a) An exception. (b) Its decomposition into extended triangles
(gray) and maximal paths (black).

Figure 2: Decomposing an exception as described in the proof of Observation 3.2.

Necessarily R(G) has a degree-1 node r, being either a triangle node (pendant triangle in G) or a
normal node (pendant vertex in G). Consider the (virtual) orientation of the edges of R(G) from
r towards the leaves. We construct a strong (2, 2)-colouring (assigning weights coloured red and
blue) iteratively, by extending a colouring along extended triangles and maximal paths following the
ordering given by the orientation of the attachment edges. Since R(G) is a tree, note that once an
attachment edge is coloured, this provides a pre-colouring of the next extended triangle or maximal
path to be coloured.

We start constructing the colouring from r. In G, node r corresponds either to an end-vertex of a
maximal path P (normal node), or to a triangle T (triangle node). In the first case, let P := v1 . . . v2k;
then we just assign red weights 1, 2, 2, 1, 1, . . . along P . In the second case, let T := v1v2v3v1, and
let v′1 denote, without loss of generality, the neighbour of v1 outside T ; we here assign red weight 1
to v3v2 and red weight 2 to v2v1, and blue weight 1 to v3v1 and blue weight 2 to v1v

′
1. In any case, it

can be checked that the colouring is correct so far.

We now proceed to the general case, i.e., we consider a maximal path P or extended triangle T whose
one attachment edge is coloured, and we extend the colouring to all its other attachment edges in G.
Consider first a maximal path P := v1 . . . vk whose attachment edge v1v2 was assigned, say, a red
weight. We here extend the colouring to all edges of P by assigning red weights (with value 1 or 2) to
its edges v2v3, . . . , vk−1vk successively. Note that this can be done correctly, as, when a red weight
is being assigned to an edge vivi+1, we just have to make sure that the red sum of vi avoids the red
sum of vi−1, which is possible since we have two red weights to play with.

We are left with the case where the colouring must be extended to an extended triangle T := v1v2v3v1

whose one attachment edge, say v1v
′
1, was previously assigned, say, a red weight. We here consider

cases depending on the number of additional attachment edges:

– If v1v
′
1 is the only attachment edge of T , then we assign a red weight to v1v2 so that the red sum

of v1 does not get equal to the red sum of v′1. We then assign blue weights 1, 2 or 2, 1 to v1v3

and v3v2 in such a way that the blue sum of v1 does not get equal to the blue sum of v′1.

– Assume v2v
′
2 is the only other attachment edge of T . We here assign a red weight to v1v3 in

such a way that the red sum of v1 does not get equal to the red sum of v′1. We then assign blue
weights 1, 2, 1 or 2, 1, 1 to v2v1, v2v3 and v2v

′
2 in such a way that the blue sum of v1 does not

get equal to the blue sum of v′1.

– Lastly, assume v2v
′
2 and v3v

′
3 are attachment edges. First, we assign blue weight 1 to v1v2

and blue weight 2 to v1v3. We now assign red weight 1 to v′2v2, red weight α to v2v3 and red
weight 2 to v3v

′
3, where α is the red weight of v′1v1.

In any of these cases, it can be checked that the colouring extension is correct. So this covers all cases of
the proof.

The rest of this paper is dedicated to providing evidences towards Conjecture 3.1. We do it gradually, by
first considering, in Section 4, Conjecture 3.1 in its literal form. We then consider its standard version (in
Section 5), before finally considering its weak version (in Section 6).

4 Strong (`, k)-colouring
In this section, we consider Conjecture 3.1 in its literal form, namely:
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Strong Conjecture. Every nicer graph is strongly (2, 2)-colourable.

We verify the Strong Conjecture for nicer complete graphs and bipartite graphs. Recall that every result
on strong (2, 2)-colourings directly transfers to standard and weak (2, 2)-colourings.

We start off with complete graphs. For every n ≥ 1, we denote by Kn the complete graph with order n.

Theorem 4.1. For every n ≥ 4, the graph Kn is strongly (2, 2)-colourable.

Proof: We prove the claim by induction on n. To ease the proof, we prove a stronger statement, namely
that every complete graph Kn admits a strong (2, 2)-colouring with red and blue weights such that either
there is no vertex incident to red edges only, or there is no vertex incident to blue edges only.

As a base step, consider K = K4. Note that K can be decomposed into two paths Pr and Pb of length 3.
To get a strong (2, 2)-colouring, we proceed as follows (see Figure 1.(c), where Pr, Pb are the paths with
solid and dashed edges, respectively). Consider first the edges of Pr from one end to the other, and assign
them red weights 1, 2, 2, respectively. Similarly, then consider the edges of Pb from one end to the other,
and assign them blue weights 1, 2, 2, respectively. Since Pr and Pb span all vertices of K, each vertex gets
a non-zero red sum and a non-zero blue sum. This, by itself, guarantees that the additional requirement is
fulfilled (i.e., there is no monochromatic vertex). Now, due to how the red weights were assigned, it can
easily be seen that the obtained red sums are 1, 2, 3, 4; hence no two vertices get the same red sums. As this
is also the case for the blue sums, we have thus constructed a strong (2, 2)-colouring of K.

We now prove the general case. Let K = Kn (where n ≥ 5), and remove one vertex v from K. We end
up with a graph isomorphic to Kn−1, which, by the induction hypothesis, admits a strong (2, 2)-colouring
with colours red and blue. Furthermore, we may, without loss of generality, assume that, by this colouring,
there is no vertex incident to red edges only. We extend this colouring to K, i.e., to the edges incident to v,
by assigning red weight 2 to all those edges. As a result, all red sums of the vertices of V (K)\{v} rise by 2,
and since every two of them were different, they still are after the extension. Now, note that the red sum of
v is precisely 2(n− 1), which is strictly greater than all the other red sums since all vertices of V (K) \ {v}
are incident to blue edges. Furthermore, the blue sums of the vertices of V (K) \ {v} have not been altered,
while v has blue sum 0 – so no two non-zero blue sums are the same. We thus get a strong (2, 2)-colouring
of K, and it can be noted that no vertex is incident to blue edges only, as additionally required.

We now prove the Strong Conjecture for bipartite graphs. Recall that a connected bipartite graph G
verifies χΣ(G) = 3 if and only if it is an odd multicactus (Theorem 2.8).

Theorem 4.2. Every nice bipartite graph G is strongly (2, 2)-colourable.

Proof: We can assume that G is connected. If G is not an odd multicactus, then χΣ(G) ≤ 2, and, equiva-
lently, G is strongly (1, 2)-colourable. So let us now assume that G is an odd multicactus. By construction,
note thatG necessarily has a degree-2 vertex v. Furthermore,G is 2-connected, so the graphG′ := G−{v}
is connected. Also, G′ is not an odd multicactus (to be convinced of this, note that it has degree-1 vertices
and that one of its partite sets if of even cardinality). So G′ is strongly (1, 2)-colourable.

Consider thus a strong (1, 2)-colouring of G′ assigning red weights. We extend this colouring to a strong
(2, 2)-colouring of G, i.e., to the edges u1v and vu2 incident to v, by just assigning blue weights 1 and 2
to u1v and vu2, respectively. As no new edge was assigned a red weight, the adjacent red sums are still
different in G. Also, v has red degree 0. Furthermore, the only three non-zero blue sums are all different,
as they are equal to 1, 2 and 3.

In the rest of this section, we confirm that odd multicacti are a peculiar class of nice bipartite graphs for
the distinguishing colouring notions we consider, in the following sense.

Theorem 4.3. A connected nice bipartite graph cannot be strongly (2, 2)-coloured if and only if it is an
odd multicactus.

The proof of Theorem 4.3 relies on the following result on locally irregular decompositions of odd mul-
ticacti, which we believe is of independent interest, as there is still no known characterization of bipartite
graphs G verifying χ′irr(G) ≤ 2.

Lemma 4.4. For every odd multicactus G, we have χ′irr(G) = 3.

Proof: Let G be an odd multicactus. As such (recall the description in Subsection 2.2.1), G has edges
coloured red and green “alternatively”. To avoid any confusion with the colours, in the rest of the proof we
refer to the green edges of G as its attachment edges, while we refer to the red edges as its support edges.
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Since G is an odd multicactus, by construction there has to be an attachment edge uv such that u and
v are joined by several disjoint non-trivial paths P1, . . . , Pk of length congruent to 1 modulo 4, whose
removal does not disconnect the graph. In some sense, the Pi’s are leaves in the tree representation of the
construction of G. Along such a path Pi, if wx and yz are two edges at distance 2 (thus xy is an edge, and
x, y have degree 2), then wx and yz must have different colours in any locally irregular 2-edge-colouring
of G, as otherwise x and y would be adjacent and have the same degree in the subgraph induced by the
colour assigned to xy. Since every Pi has length congruent to 1 modulo 4, this means that, in every locally
irregular 2-edge-colouring of G, the first and last edges of each Pi must be assigned a same colour. Thus,
from the point of view of uv, colouring the Pi’s is similar to colouring k parallel edges joining uv. Said
differently, if the multigraph G′, obtained by replacing the Pi’s by k parallel (attachment) edges joining
u and v, admits no locally irregular 2-edge-colouring, so neither does G. This operation, consisting in
contracting non-trivial paths joining a “leaf” attachment edge, is called a contraction below.

By repeatedly applying contractions (note that the argument above works even if the non-trivial paths
have parallel attachment edges), we get a series of multigraphs G = G0, G1, . . . , Gm = G′ such that 1) if
Gi+1 admits no locally irregular 2-edge-colourings, then so does not Gi, and 2) G′ consists of two vertices
joined by several parallel (attachment) edges. Since G′ admits no locally irregular 2-edge-colouring (its
two vertices are necessarily adjacent and have the same degree in every colour assigned to some edges), this
gives the conclusion for G.

We can now prove Theorem 4.3:

Proof of Theorem 4.3: Let G be a connected nice bipartite graph. If G is not an odd multicactus, then
χΣ(G) ≤ 2 (Theorem 2.8), and hence G is strongly (1, 2)-colourable. So we may assume that G is an
odd multicactus, and thus that G is not strongly (1, 2)-colourable. In that case, according to Lemma 4.4, G
admits no locally irregular 2-edge-colourings, hence no strong (2, 1)-colourings.

5 Standard (`, k)-colouring
We here consider the standard weakening of Conjecture 3.1:

Standard Conjecture. Every nicer graph is standardly (2, 2)-colourable.

Note that a standard (`, k)-colouring is nothing but a decomposition into ` graphs admitting neighbour-
sum-distinguishing k-edge-weightings. From that perspective, it could be interesting to wonder whether
graphs, in general, decompose into a constant number of graphs verifying the 1-2-3 Conjecture. We believe
this is an interesting aspect to consider, as not many graphs are known to verify the 1-2-3 Conjecture.

Towards the Standard Conjecture, we thus also raise the following related conjecture, which is, in a sense,
a weakening of the 1-2-3 Conjecture:

Conjecture 5.1. Every nice graph is standardly (2, 3)-colourable. That is, every nice graph decomposes
into two graphs verifying the 1-2-3 Conjecture.

In this section, towards the Standard Conjecture, we first improve Theorem 2.10 by showing that all nice
graphs admit standard (40, 3)-colourings. We then prove the Standard Conjecture 5.1 for nicer 2-degenerate
graphs and subcubic graphs, before proving Conjecture 5.1 for nice 9-colourable graphs.

5.1 Standard (40, 3)-colourability
The proof of the following result follows the lines of one in [5], where Bensmail, Merker and Thomassen
proved that decomposable graphs can be decomposed into at most 328 locally irregular graphs.

Theorem 5.2. Every decomposable graph G is standardly (40, 3)-colourable.

Proof: In G, we can find a locally irregular subgraph H1 such that G − E(H1) has all of its connected
components being of even size ([5], Lemma 2.1). If G already had even size, then H1 is empty. Still calling
G the remaining graph, we can decompose G into a graph H2 with minimum degree at least 1010 and a
(2 · 1010 + 2)-degenerate graph H3 whose all connected components are of even size ([5], Lemma 4.5).
On the one hand, according to a result of Przybyło [11], we can decompose H2 into three (possibly empty)
locally irregular graphsH2,1, H2,2, H2,3. On the other hand,H3 can be decomposed into 36 bipartite graphs
H3,1, . . . ,H3,36 whose all connected components are of even size ([5], Theorem 4.3).
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Recall that every locally irregular graph H verifies χΣ(H) = 1. Furthermore, all nice bipartite graphs
verify the 1-2-3 Conjecture. From these arguments, using a set of 40 coloured weights 1, 2, 3 to indepen-
dently weight the edges of each of the Hi’s and the Hi,j’s, we eventually get a standard (40, 3)-colouring
of G.

Since all connected nice exceptional graphs are 3-colourable, they verify the 1-2-3 Conjecture (see [12]),
and are thus standardly (1, 3)-colourable. Together with Theorem 5.2, this yields the following:

Theorem 5.3. Every nice graph G is standardly (40, 3)-colourable.

5.2 The Standard Conjecture for 2-degenerate graphs and subcubic graphs
Recall that a graph is 2-degenerate if every of its subgraphs has a vertex with degree at most 2. A subcubic
graph is a graph G with maximum degree at most 3. If all vertices of G have degree precisely 3, then we
call G cubic. Furthermore, if G is connected and not cubic, i.e., G has vertices with degree 1 or 2, then we
say that G is strictly subcubic.

We first prove the Standard Conjecture for 2-degenerate graphs (with a few exceptions). More precisely,
we prove:

Theorem 5.4. Every nicer 2-degenerate graph G is standardly (2, 2)-colourable.

Our proof of Theorem 5.4 relies on the following lemma, which is proved later in this section.

Lemma 5.5. Every nicer 2-degenerate graph G decomposes into two nice forests.

Proof of Theorem 5.4: According to Lemma 5.5, we can decompose G into two forests Fr and Fb none
of which has an isolated edge. Since every nice tree T verifies χΣ(T ) ≤ 2 (i.e., admits standard (1, 2)-
colourings), each of Fr and Fb, independently, admits a standard (1, 2)-colouring; let ωr and ωb be any such
for Fr and Fb, respectively. To get a standard (2, 2)-colouring of G, we consider all weights assigned by ωr
and ωb, and colour red those weights originating from ωr, while we colour blue those weights originating
from ωb.

We are left with proving Lemma 5.5.

Proof of Lemma 5.5: Throughout the proof, which is by induction on |V (G)|+ |E(G)|, we assume that G
is connected. As a base case, it can be checked that the claim is true whenever |V (G)| ≤ 4. In particular,
under all conditions, G is either 1) a nice tree (in which case the claim holds trivially), 2) a triangle with
a pendant vertex attached (which decomposes into two paths of length 2), 3) two triangles glued along an
edge (which decomposes into a path of length 2 and a star with three leaves), or 4) a cycle of length 4 (which
decomposes into two paths of length 2).

Let us thus proceed to the proof of the general case (in particular, |V (G)| ≥ 5). First assume that G has
a degree-1 vertex v. Denote by u the neighbour of v in G, and let G′ := G− {v}. Since |V (G)| ≥ 5, note
that G′ cannot be K2 or K3. So, by the induction hypothesis, G′ decomposes into a red nice forest and a
blue nice forest. Assuming u belongs to the red forest, we extend that decomposition to G by adding vu to
the red forest.

Thus, we may assume that G has a degree-2 vertex v, with neighbours u1, u2. We distinguish two cases:

• First case: v is a cut-vertex. Let H1 and H2 be the two connected components of G − {v}, where
ui belongs to Hi for i = 1, 2, and set G1 := H1 + {u1v} and G2 := H2 + {u2v}. Since G has no
degree-1 vertex, note that none ofG1 andG2 is isomorphic toK2. Also, v has degree 1 in bothG1 and
G2, so none of G1 and G2 is isomorphic to K3. By the induction hypothesis, G1 and G2 decompose
into two nice forests. Note that these two decompositions, when combined in G, altogether form a
decomposition of G into two nice forests.

• Second case: v is not a cut-vertex. Note that G′ := G − {v} is nicer, as it is a connected graph
with |V (G′)| ≥ 4. By the induction hypothesis, G′ thus decomposes into two nice forests, say red
and blue. If u1 belongs to the blue forest while u2 belongs to the red forest, then we extend this
decomposition to G by assigning colour blue to vu1 and colour red to vu2. So we may assume that
u1 does not belong to the blue forest, in which case we extend the decomposition to G by assigning
colour blue to both vu1, vu2. This way, either a pendant path of length 2 is attached to a blue tree
(if u2 belongs to the blue forest), or a path of length 2 is added to the blue forest (otherwise). As all
remaining cases are symmetrical to those two ones, these arguments cover all cases.



A general decomposition theory for the 1-2-3 Conjecture and locally irregular decompositions 11

This concludes the proof.

We now extend the previous results to nicer subcubic graphs.

Lemma 5.6. Every nicer subcubic graph G decomposes into two nice forests.

Proof: Throughout the proof, which is by induction on |V (G)| + |E(G)|, it is assumed that G is con-
nected. As the claim is true whenever |V (G)| ≤ 4 (G is either strictly subcubic and the result follows from
Lemma 5.5, or isomorphic to K4, which decomposes into two paths of length 3), we proceed to the proof
of the general case.

We now consider the general case |V (G)| ≥ 5. If G is strictly subcubic, then G is 2-degenerate, in which
case the result follows from Lemma 5.5. So let us assume that G is cubic. Let v be a (degree-3) vertex of
G, with neighbours u1, u2, u3. Note that if all edges among the ui’s exist, then G is K4 while |V (G)| ≥ 5,
a contradiction. Hence, assume without loss of generality that u1u2 is not an edge of G. Consider the graph
G′ := G− {v}+ {u1u2}. Note that, although G′ might consist of up to two connected components, none
of them is isomorphic to K2 or K3 as G is cubic. So all connected components are subcubic, and they
decompose into two nice forests, say red and blue.

Consider the decomposition of G′. Suppose that u1u2 belongs to the red forest. We consider the same
decomposition in G, except that, since G does not contain the edge u1u2, we replace it, in the red forest, by
the two edges u1v and vu2. Note that, in G, the red subgraph remains a nice forest. It thus remains to add
vu3 to either the red or blue forest. If u3 belongs to the blue forest, then we are done when adding vu3 to
the blue forest. So assume that the two edges, different from vu3, incident to u3 belong to the red forest. If
v and u3 belong to different trees of the red forest, then we can freely add vu3 to the red forest. So lastly
suppose that we are not in that case.

All of u1, u2, u3 belong to the same tree, say T , of the red forest. In T , let us assume that u3 is closer
to u2 than it is closer to u1. In other words, in T , the only path from u3 to u1 passes through u2. Let us
remove vu2 from T . In the red forest, T is disconnected into two trees T ′ and T ′′, where T ′ contains u2

and u3, while T ′′ contains v and u1. Note that T ′ is not isomorphic to K2, since u3 remains of degree 2 in
that tree. If T ′′ also has this property, then we get a desired decomposition of G when adding vu2 and vu3

to the blue forest (recall that u3 originally did not belong to the blue forest). So we may assume that T ′′ is
actually isomorphic to K2, which means that u1 had degree 1 in T . In this situation, we obtain the desired
decomposition of G by adding vu1 and vu3 to the blue forest.

A similar proof as that used to prove Theorem 5.4, but using Lemma 5.6 instead of Lemma 5.5, now
yields the following.

Theorem 5.7. Every nicer subcubic graph is standardly (2, 2)-colourable.

5.3 Conjecture 5.1 for 9-colourable graphs
To prove Conjecture 5.1 for all nicer 9-colourable graphs, we essentially prove that 9-colourable graphs, in
general, decompose into two nice 3-colourable graphs. With such a result in hand, we can then use the fact
that nice 3-colourable graphs verify the 1-2-3 Conjecture.

Lemma 5.8. Assume that a nicer graph G can be 2-edge-coloured with red and blue so that the induced
red subgraph GR and blue subgraph GB satisfy χ(GR) = r and χ(GB) = b with r, b ≥ 2. Then G can be
2-edge-coloured in such a way that χ(GR) ≤ r, χ(GB) ≤ b, and GR and GB are nice.

Proof: Consider a 2-edge-colouring ofGwith red and blue yielding a red subgraphGR and a blue subgraph
GB . Among all possible such colourings, we consider one where χ(GR) ≤ r ≥ 3 and χ(GB) ≤ b ≥ 3
that minimizes the number of monochromatic K2’s. Note that if G has isolated triangles, then, by the latter
requirement, they are monochromatic. Our goal is to show that we can modify the colouring so that the
number of monochromatic K2’s is reduced, while retaining the 3-colourability of GR, GB .

Assume uv is isolated in the blue subgraph GB . We note that u, v must belong to the same component
of GR, as otherwise we could just recolour uv red, and get our conclusion (as joining two disjoint 3-
colourable graphs via an edge yields a 3-colourable graph). Also, if uw is a red edge adjacent to uv,
then, when recolouring uw blue, we must create a new isolated edge in the red subgraph, as otherwise
our conclusion would be reached (because attaching a pendant path of length 2 to a 3-colourable graph
yields a 3-colourable graph). Thus, we may assume that, for every red edge uw (resp. vw), the size of the
component of GR − {uw} (resp. GR − {vw}) that contains w is exactly 1.
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From the previous arguments, we can deduce that u, v have degree precisely 2 in G, and that the second
neighbour of both u, v is a same vertex w. This vertex w cannot have degree 2, as otherwise u, v, w
would belong to an isolated triangle of G, which is impossible since all isolated triangles are coloured in
a monochromatic way. So w has degree at least 3 in G, and all edges incident to w different from wu,wv
are coloured blue. We get here the desired 2-edge-colouring when recolouring wu,wv blue (as attaching a
triangle onto a vertex of a 3-colourable graph yields a 3-colourable graph).

We now prove the second key lemma of this section.

Lemma 5.9. Every 9-colourable graph G decomposes into an r-colourable graph GR and a b-colourable
graph GB with r, b ≤ 3.

Proof: Let G be a graph with χ(G) ≤ 9, and let V0, ..., V8 be a proper 9-vertex-colouring of G. We 2-edge-
colour G with colours red and blue, yielding two subgraphs GR and GB , respectively, as follows. Consider
any edge uv, where u ∈ Vi and v ∈ Vj for some i 6= j ∈ {0, ..., 8}. We colour uv red if and only if i = j
(mod 3). Otherwise, i.e., when i 6= j (mod 3), we colour uv blue. Now GR is a 3-colourable graph with
proper 3-vertex-colouring V0 ∪ V1 ∪ V2, V3 ∪ V4 ∪ V5, V6 ∪ V7 ∪ V8, while GB is a 3-colourable graph with
proper 3-vertex-colouring V0 ∪ V3 ∪ V6, V1 ∪ V4 ∪ V7, V2 ∪ V5 ∪ V8.

We are now ready to prove that nice 9-colourable graphs verify Conjecture 5.1.

Theorem 5.10. Every nice 9-colourable graph G is standardly (2, 3)-colourable.

Proof: If G is 3-colourable, then we have χΣ(G) ≤ 3 (see [9]), or, in other words, G is standardly (1, 3)-
colourable. Now assume that G is at least 4-chromatic. By Lemma 5.9, it can be decomposed into two
3-colourable graphs: an r-colourable graph GR and a b-colourable graph GB with r, b ≤ 3. Since G is at
least 4-chromatic we have also r, b ≥ 2.

We distinguish two cases:

• If G has no isolated triangles, then, by Lemma 5.8, it can be decomposed into two nice graphs GR
andGB with χ(GR) ≤ r and χ(GB) ≤ bwith r, b ≥ 3. So, both of them verify the 1-2-3 Conjecture,
and thus admit standardly (1, 3)-colourings. Combining standardly (1, 3)-colourings of GR and GB ,
we get a standard (2, 3)-colouring of G.

• If G has isolated triangles, then we remove those from G, apply the previous point to get a (2, 3)-
colouring of what is left, and then give the same color to all the edges of the isolated triangles. Finally,
by weighting the edges of each isolated triangle with weights 1, 2, 3 (in any colour), we can extend
the (2, 3)-colouring to G.

This ends up the proof.

We note that the approach above can be generalized to show that, in general, any nice graph G decom-
poses into at most blog3 χ(G)c+ 1 graphs fulfilling the 1-2-3 Conjecture. To see this holds, set k = χ(G)
and consider a proper k-vertex-colouring ofGwith parts V0, ..., Vk−1. Now, for every i 6= j ∈ {0, ..., k−1},
assuming x ∈ {1, ..., blog3 χ(G)c + 1} is the right-most position at which the ternary representations of
i and j differ, we assign colour x to all edges uv of G where u ∈ Vi and v ∈ Vj . It can be observed
that this results in a (blog3 χ(G)c + 1)-edge-colouring of G where each colour class yields a 3-colourable
graph. Using Lemma 5.8, we can ensure these 3-colourable graphs are nice, thus that they fulfil the 1-2-3
Conjecture.

6 Weak (`, k)-colouring
We finally consider the weaker form of Conjecture 3.1 (which would follow from the 1-2-3 Conjecture, if
it turned out to be proved):

Weak Conjecture. Every nice graph is weakly (2, 2)-colourable.

Towards the Weak Conjecture, we here prove that all nice graphs are weakly (3, 2)- and (2, 3)-colourable.
Both proofs are based on the fact that every nice graph admits a neighbour-sum-distinguishing 5-edge-
weighing, as proved by Kalkowski, Karoński and Pfender [8].

Theorem 6.1. Every nice graph G is weakly (3, 2)-colourable.
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Proof: Slight modifications of the proof of Kalkowski, Karoński and Pfender [8] allow to show that every
nice graph even admits a neighbour-sum-distinguishing {s− 2, s− 1, s, s+ 1, s+ 2}-edge-weighting, for
any integer s. Let thus ω be a neighbour-sum-distinguishing {−2,−1, 0, 1, 2}-edge-weighting of G. We
deduce a weak (3, 2)-colouring of G by modifying and colouring the weights of ω, as follows:

• we colour red every edge with value in {1, 2};

• we colour blue every edge with value in {−2,−1}, and multiply its value by −1;

• we colour green every edge with value 0, and change its value to 1.

The key point is that, through ω, every two adjacent vertices u and v are only distinguished via their
incident edges with weight in {−2,−1, 1, 2}. Said differently the edges with weight 0 are useless for
distinguishing u and v. This implies that, in the obtained (3, 2)-colouring, it is not possible that both the red
and blue sums of u and v are equal. From this reasoning, we get that the resulting (3, 2)-colouring is indeed
a weak (3, 2)-colouring.

Theorem 6.2. Every nice graph G is weakly (2, 3)-colourable.

Proof: The proof of Kalkowski, Karoński and Pfender [8] that every nice graph G admits a neighbour-
sum-distinguishing 5-edge-weighting can be modified to prove that every nice graph admits a neighbour-
sum-distinguishing {1, 2, 3, 4, 6}-edge-weighting. We voluntarily do not give the full proof of this claim in
details, as the proof would be identical to the original one. Instead, we point out the main differences with
the original proof (employing the same terminology as in [8]):

• At the beginning of the algorithm, all edges vivj are assigned weight f(vivj) = 4.

• For every backward edge vjvi (j < i), the possible valid moves are the following:

– If f(vjvi) = 4, then doing either −2 (changing the weight to 2) or +2 (changing the weight to
6) is a valid move, depending on whether the current sum of vj is the biggest or the smallest,
respectively, among its two allowed ones.

– If f(vjvi) = 3, then doing −2 (changing the weight to 1) is a valid move.

– If f(vjvi) = 1, then doing +2 (changing the weight to 3) is a valid move.

• Whenever it is needed to modify the weight f(vivj) of the first forward edge (i < j) incident to vi
in order to define the two allowed sums for vi, doing either −1 (changing the weight to 3) or −3
(changing the weight to 1) to f(vivj) is a valid move. Furthermore, we can choose the two sums
allowed for vi and perform valid moves on edges incident to vi so that:

– If f(vivj) is changed to 3, then the current sum of vi is the biggest of the two allowed ones.

– If f(vivj) is changed to 1, then the current sum of vi is the smallest of the two allowed ones.

Let us now prove that if G is a nice graph, then it is weakly (2, 3)-colourable. Let ω be a neighbour-sum-
distinguishing {1, 2, 3, 4, 6}-edge-weighting of G. We deduce a weak (2, 3)-colouring of G by 2-colouring
and (possibly) altering the weights assigned by ω, as follows:

• we colour red every edge with value in {1, 3};

• we colour blue every edge with value in {2, 4, 6}, and halve its value.

Consider an edge uv of G. Note that if the red sums of u and v are equal, then their blue sums cannot be
equal too: in such a situation, we would get σω(u) = σω(v), a contradiction. So we get a weak (2, 3)-
colouring.
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