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Abstract

Real-time speaker diarization has many potential applications,
including public security, biometrics or forensics. It can also
significantly speed up the indexing of increasingly large mul-
timedia archives. In this paper, we address the issue of low-
latency speaker diarization that consists in continuously detect-
ing new or reoccurring speakers within an audio stream, and
determining when each speaker is active with a low latency
(e.g. every second). This is in contrast with most existing
approaches in speaker diarization that rely on multiple passes
over the complete audio recording. The proposed approach
combines speaker turn neural embeddings with an incremental
structure prediction approach inspired by state-of-the-art Natu-
ral Language Processing models for Part-of-Speech tagging and
dependency parsing. It can therefore leverage both informa-
tion describing the utterance and the inherent temporal structure
of interactions between speakers to learn, in supervised frame-
work, to identify speakers. Experiments on the Etape broadcast
news benchmark validate the approach.

1. Introduction

In this paper, we address the issue of online speaker diariza-
tion that consists in continuously detecting new or reoccurring
speakers within an audio stream, and determining when each
speaker is active in an online fashion. This differs from most
state-of-the-art speaker diarization systems that follow a batch
process, performing multiple agglomerative clustering passes
over the complete audio recording [1].

More precisely, we focus on very low latency (e.g. one sec-
ond) online speaker diarization. This issue has been addressed
before (see [2] for a survey), but usually with higher or variable
latency. Liu and Kubala [3] compared online speaker cluster-
ing with a hierarchical batch clustering but relied on a (refer-
ence) speaker turn segmentation, delaying the decision to the
end of each turn. Oku et al. [4] looked for speaker changes at
phoneme boundaries and performed speaker clustering with a 2
to 20 seconds latency, resulting in better speaker adapted mod-
els for speech transcription.

Markov and Nakamura designed an online speaker diariza-
tion system based on Gaussian Mixture Models (GMM) and
observed a doubling of the error rate when the latency is re-
duced from 5 seconds to only one second [5]. This is likely due
to the fact that GMMs are not well suited for modeling very
short speech segments. Our first contribution is therefore to re-
place (multi-)gaussian modeling by neural embeddings that we
recently found to significantly outperform state-of-the-art ap-
proaches for short speech segments comparison [6]. Section 2
describes how we extend our previous work with a new multi-
level architecture and a better training procedure.

Our second contribution is to consider diarization as an in-
cremental sequence labeling task, a popular framework in the
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Natural Language Processing (NLP) community that reduces
structure prediction to a sequence of local actions predicted
by a multi-class classifier that incrementally builds the output
structure. This approach is at the heart of state-of-the-art NLP
models for many sequence labeling tasks [7, 8] and of many
parsers [9, 10, 11]. As discussed in Section 3, it has both
advantages of being particularly adapted to online speaker di-
arization, and allowing to model the inherent temporal struc-
ture of interactions between speakers. This follows our previ-
ous work [12] on supervised speaker identification in TV series.
There, we showed that structured prediction techniques (taking
the sequence of speech turns into account) outperform standard
approaches processing speech turns independently from each
other. The main difference over [12] is that we switch from su-
pervised speaker identification to unsupervised speaker diariza-
tion, removing the need for prior biometric models.

2. Neural embedding

In this section, we improve over our previous work [6] on neu-
ral embedding of short speech segment using Long Short-Term
Memory network (LSTM). This type of approaches aims at pro-
jecting speech sequences into a high-dimensional space where
sequences from one speaker (respectively two different speak-
ers) are close to (resp. far from) each other. We propose a
novel network architecture and the associated “angular proxim-
ity” loss that, when combined, facilitate training and improve
performance. More details about this approach can be found
in [13], where it is used for spoken language identification.

2.1. Network architecture
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Figure 1: Multi-level network for sequence embedding.

As depicted in Figure 1, the proposed network is composed
of three stacked bi-directional LSTM layers whose output se-
quences are concatenated to obtain an output combining mul-
tiple levels of abstraction. This architecture also facilitates the
training by linking all the LSTM layers directly to the output.
The output sequence is averaged over time, giving a unique out-
put vector for the whole sequence. A final L2-normalization
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layer ensures the output embedding lives on the unit hyper-
sphere.

2.2. “Angular proximity” loss

Because embeddings are forced to live on the unit hypersphere,
the information resides in the direction of the embedding, not
the norm. Therefore, inspired by the triplet [14] and the cen-
ter [15] losses, we designed the “angular proximity” loss that
jointly:

* learns a unique representative embedding 7; for every
speaker ¢ € [1,n] in the training set,

* minimizes the angular offset 8;(z) = arccos(r; - z) be-
tween embeddings z (uttered by speaker ¢) and their rep-
resentative embedding r;,

* maximizes the angular offset with the representative em-
beddings of all other speakers.

It is defined as follows:

L(z,s)

a(0s(z) — 0:(2)) M

i#s
= >

1€(1,n]

where z is the embedding of a sequence uttered by speaker s,
and o is the logistic function which brings faster and better con-
vergence by focusing the training efforts on the cases that are
close to the boundaries between speakers.

In practice, representative embeddings r; are initialized
randomly, and trained together with the parameters of the net-
work using backpropagation and SMORMS3 gradient descent
algorithm [16]. Though representative embeddings can serve as
speaker models for later supervised speaker identification, they
are not used in the rest of the paper: the diarization approach is
fully unsupervised in terms of prior biometric models.

3. Incremental structure prediction

Considering speaker diarization as an incremental sequence la-
beling task has several advantages. First, it allows us to iden-
tify speakers continuously with a low latency as decisions are
taken “on the fly”, as soon as a new audio segment has been
observed. Second, by using a discriminative classifier, it is pos-
sible to consider arbitrary features describing both the speech
utterance and the inherent temporal structure of interactions be-
tween speakers. Finally, this approach formulates diarization in
a supervised learning framework. While we do not consider the
actual speaker identities (labels are arbitrary integers that can
only be used to decide if two utterances have been pronounced
by the same person), the proposed method is trained from an-
notated audio streams.

3.1. Inference

Algorithm 1 and Figure 2 describe how diarization can be for-
mulated as an incremental sequence labeling task. The audio
stream is segmented into segments of fixed length (1 second in
our experiments). After observing a new segment, a multi-class
classifier is used to choose one among n classes (or actions) to
attribute this utterance to:

* one of the n — 1 speakers that have been previously de-
tected (n — 1 ADD actions);

* anew speaker that will be referred to as the n-th speaker
(NEW action);
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The classifier can use features describing both the past obser-
vations (e.g. the similarity between current and past neural em-
beddings) and the past decisions (or history, e.g. the number of
speakers identified so far). Note that the number of possible
actions increases as new speakers are detected.

Algorithm 1 Inference of our low-latency diarization system.

h = EMPTYLIST();
while The audio stream is not empty do
x = NEXTOBSERVATION()
A = GETACTIONS (h)
a” = PREDICTMULTICLASS (A, x, w, h)
h.PUSH((x,a"))
end while

Choosing an action results in an update of the history h,
that stores the sequence of actions made so far. In particular,
this history allows to determine the number of speakers that has
already been detected and the utterances pronounced by them:
this is used to determine the set of possible actions and the fea-
tures describing them.

In practice, a standard multi-class SVM is trained to choose
one of the n possible actions .4 according to the current history.
There is one weight vector w, and one feature function ¢, (x)
for each possible action a. Given an observation x, the SVM
predicts the highest-scoring action:

a® = arg max wq - ¢q(x)
acA

@

To take into account the fact that the number of actions is in-
creasing as new speakers are detected, we assume that all ADD
actions share the same parameters: there are in fact only two
weight vectors in our SVM, one for computing the score of all
ADD actions and one for computing the score of the NEW ac-
tion. The feature vectors are obviously adapted to each action.

3.2. Training

The main challenge faced by incremental approaches is that the
past predictions influence the distribution of the future features
violating the crucial assumption that examples are independent
and identically distributed. The Algorithm 2 is an imitation
learning method [7, 17] designed to avoid this problem by in-
tegrating learning and inference: the classifier is trained in an
online fashion (i.e. the weight vector is updated each time an
new utterance is observed) on a distribution of a possibly sub-
optimal sequence of actions obtained by running the system it-
self. Itis closely related to the training algorithm of dependency
parsers [18].

Algorithm 2 Training of a low-latency diarization system

h = EMPTYLIST();
while The audio stream is not empty do
X,y = NEXTOBSERVATION()
A = GETACTIONS (h)
0= ORACLE(y, h)
a” = PREDICTMULTICLASS (A, x, w, h)
w = UPDATE(W, X, 0)
h.PUSH((x,a"))
end while

More precisely, at each step, the algorithm computes the
oracle action that would associate the received observation to
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Figure 2: Incremental sequence labeling formulation of a low-latency speaker diarization task.

the correct speaker and compare it to the predicted actions. The
weight vector of the classifier is then updated if necessary (i.e.
if the loss of the considered classifier is not null). Importantly,
the history is updated with the predicted action and not the gold
action so that the training data model the fact that the sequence
of past actions will be imperfect at test time.

Detecting whether an error occurs when the SVM makes a
prediction for an observation x with gold action y is done by
computing the multi-class hinge-loss [19] defined as:

0y, w) = max (0,1 + ¢, (x) - wr — ¢y (x) - W) (3)

where r = arg maX,e 4\ {y} Wa" ¢a(x) is the erroneous action
with the highest score. This loss is null only when the correct
action has been predicted with a large enough confidence. After
receiving a new observation, the weight vector of the SVM is
updated as follows:

Va, Wla = Wg — ntva (4’)

where ¢ is the number of observations received so far, n: = —
is the learning rate and V, is a sub-gradient of the objective
function that defines the task of learning a SVM (i.e. minimize
the regularized empirical risk):

M 2 1

=,y

where y is the regularization constant, |[w||> = >°_ [[wa]|?
the norm of the weight vector and m the total number of obser-
vations. As explained in [20], V, = p - W, if the loss (Eq. (3))
is null. If the loss is above zero, then:

B Wa—¢a(x) ifa=y
Va=q 1 -wWo+ ¢o(x) ifa=r (6)
W W otherwise

This update corresponds to a step of a stochastic gradient de-
scent optimizing the objective function of Equation (5).

3.3. Features

The features used to decide which action must be performed are
strongly inspired by features used in online clustering [21] and
structure features used in speaker identification task [12].

As explained in Section 3.1, we maintain throughout the in-
ference a history of all the past actions. Thanks to this history,
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it is possible to associate each speaker recognized to the list of
the utterances she (presumably) pronounced and compute sev-
eral quantities that can describe her, such as the center, defined
as the mean of the observations attached to her or the radius
defined as the average of the distance between the observations
referring to this speaker and her center.

For a given action, the feature function ¢; associated to the
I-th speaker defines three different kind of features':

« features describing the observation such as the dis-
tance between the current observation and the previous
ones, distance between the current observation and the
center of this speaker, a Boolean indicating whether the
observation is further than the radius of this speaker, ...

features describing interactions between speakers
such as the number of seconds since this speaker has
last spoken, a Boolean indicating whether this speaker
was the last one to speak, whether there was a silence or
not, ...

« features characterizing the speaker such as the num-
ber of utterances attributed to this speaker, the increase
in intra-cluster distance variance or the increase of the
speaker radius.

Note that none of these features rely on the actual identity of the
speaker during training. Labels are only used to decide whether
two observations were uttered by the same speaker.

4. Experiments
4.1. Datasets

We relied on the REPERE? corpus [22] to pre-train the recur-
rent neural network used for extracting neural embeddings. It
is composed of various TV shows (around news, politics and
people) from two French TV channels for a total of 137h (50 of
which are manually annotated). In practice, we used a subset
made of 37.5h of speech uttered by a total of 1,178 different
speakers to train the network.

Speaker diarization experiments were performed on the TV
subset of the ETAPE? dataset [23]. It contains 29h of TV broad-
cast (18h for training, 5.5h for development and 5.5h for test)

IPlease refer to the source code, available at https://perso.
limsi.fr/wisniews/recherche/, to see the full set of features
used in our experiments

2islrn.org/resources/360-758-359-485-0/

3islrn.org/resources/425-777-374-455-4/



from three French TV channels (also around news, politics and
people).

4.2. Neural embedding

In this paragraph, we first evaluate the intrinsic quality of the
proposed neural embedding.

Implementation details. 59-dimensional acoustic features
are extracted every 10ms on a 25ms window using Yaafe
toolkit [24]: 19 Mel-Frequency Cepstral Coefficients (MFCC),
their first and second derivatives, and the first and second
derivatives of the energy. The neural network embeds 1s-long
sequences (i.e. 100 frames) into 192-dimensional embeddings
(three levels with 64 dimensions each, as shown in Figure 1).
It is trained for 400 epochs on the REPERE dataset, using
mini-batches of 60 sequences from 20 different speakers
(3 sequences per speaker). An epoch ends when every speaker
has been seen at least once by the network.

Results. 100 sequences are extracted randomly for each
of the 61 speakers in the ETAPE development set. The
“same/different” experiment consists in a binary classification
task: given any two of those sequences, decide whether they
were uttered by the same speaker, or two different speakers.
This is achieved by thresholding the computed distance between
their embeddings. While TristouNet embeddings [6] achieved
17.3% equal error rate (EER) on sequences of 1 second, they
are significantly outperformed by our proposed multi-level ap-
proach, which brings the EER down to 12.2%.

4.3. Low-latency speaker diarization

In this paragraph, we evaluate the overall low-latency speaker
diarization system on the test set of ETAPE dataset (5.5h).

Evaluation metric. While the diarization error rate (DER)*
is the de facto standard metric for comparing different diariza-
tion approaches [1], it is usually not enough to understand the
type of errors commited by the system. Therefore, we also re-
port purity [25] and coverage [26] which are two dual evalua-
tion metrics providing additional insight on the behavior of the
system. Over-segmented results (e.g. too many speaker clus-
ters) tend to lead to high purity and low coverage, while under-
segmented results (e.g. when two speakers are merged into one
large cluster) lead to low purity and higher coverage. We rely
on pyannote.metrics [27] open-source toolkit to compute those
metrics.

Implementation details. The ETAPE training set (18h) is
used to train the SVM multi-class classifier, while the develop-
ment set (5.5h) is used to tune two hyper-parameters: the regu-
larization constant p and the number of steps in the stochastic
gradient descent (Equation (4)). Their value is chosen using a
grid search to optimize the DER on the development set of the
ETAPE corpus. Note that we rely on the reference speech/non-
speech segmentation in all experiments.

Baseline. We compare our low-latency approach with our
offline in-house multi-stage speaker diarization system [28].
It relies on the sequence of a few module: segmentation

4All reported DER are computed using a 250ms collar.
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into acoustically homogeneous segments using Gaussian diver-
gence, Bayesian Information Criterion (BIC) clustering, Viterbi
resegmentation and Cross-Likelihood Ratio (CLR) clustering.
It is only one DER point worse than the best performing system
of the official ETAPE benchmark submitted by LIUM [29].

Table 1: Diarization error rate (DER, %), purity (Pur., %) and
coverage (Cov., %) on the ETAPE development and test sets.

Subset Low-latency (ours) | Offline baseline [28]

DER Pur. Cov. | DER Pur. Cov.

dev. 209 84.1 664 | 11.8 893 87.6

test 25.1 829 728 | 124 885 856
Results. Table 1 reports the results on the ETAPE develop-

ment and test subsets. Our low-latency approach degrades pre-
diction performance by around 10 DER points. Assessing to
which extent this drop in performance is a problem for down-
stream applications is an open question. The result of the pro-
posed approach are not surprising. Indeed, by design, it only
considers a very small audio window, while the baseline realizes
two passes over the entire stream. Moreover, the baseline au-
tomatically segments the audio stream into homogeneous seg-
ments and can therefore use longer, more consistent segments
while the proposed approach uses windows of fixed length.

Comparing the purity and coverage of the two approaches
show that the the proposed method tends to detect more speak-
ers than the baseline: while their purity is almost the same, the
coverage of the former approach is much smaller than the one of
the latter approach. In practice, on the test set, the low-latency
method detects almost 2.5 times more speakers than there are in
the reference.

5. Conclusion

We have developed a very low latency (1 second) online speaker
diarization system based on the combination of neural embed-
dings and incremental structure prediction. Experiments on
the ETAPE broadcast news benchmark validate the approach,
with only around 10 DER points increase when compared to a
state-of-the-art offline system that does multiple passes on the
complete audio files. We have also significantly improved the
discriminative power of neural embedding of short (1 second)
speech segments, going from 17.3% in our previous work [6]
down to 12.2% identification error rate.

A detailed analysis of the influence of the latency on the
overall performance of the system remains to be done, in order
to find the best compromise between latency and performance.
For instance, for applications where offline speaker diarization
is not technically feasible (e.g. with very long audio files) but
needs to be indexed very accurately, one may use the online
speaker diarization approach using a higher latency. It should
also be possible to run several online speaker diarization sys-
tems in parallel, with various levels of latency, to jointly bene-
fit from the fast decision-taking capabilities of low-latency sys-
tems and higher accuracy of the ones with higher latency.
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