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Abstract—In today’s world, tenants of cloud systems expect
timely responses to queries that process ever-increasing sizes
of data. However, most cloud providers offer their services
without any performance guarantees to their tenants. In this
paper we propose a data replication strategy that aims to
satisfy performance guarantees for the tenant while ensuring
profitability of the cloud provider. Our strategy estimates the
response time of the queries, as well as the expenditures that affect
the profitability of the cloud provider. The decision of whether to
perform replication is determined by the fulfillment of these two
criteria. Validity of the proposed strategy is provided by means
of a simulation study.

Keywords—cloud computing, data replication, performance,
economic benefit

I. INTRODUCTION

Cloud computing has established itself as a popular com-
puting paradigm. With datacenters filled with commodity
hardware, cloud providers offer seemingly infinite amount of
resources to meet ever-increasing storage and computational
needs of the tenants. Moreover, the set of resources are
abstracted and delivered in an economy-based manner [1].
This shift towards the economy based systems brings new
challenges to the interactions between cloud providers and
tenants. As the tenant requirements change, cloud resources
are elastically adjusted and the monetary cost for the tenant
is determined according to the pay-as-you-go model [2]. As
expected from any economic enterprise, cloud providers aim
to maximize their profits. At the same time, tenants expect
cloud providers to keep a certain, agreed upon set of service
level objectives (SLO), defined in a service level agreement
(SLA) [3]. SLA is a legally binding contract between the cloud
provider and tenant. In case of an SLA breach, the provider
pays a penalty to the tenant.

Data replication is a very well-known optimization tech-
nique that has been commonly adopted by many tradi-
tional systems, including (i) database management systems
(DBMS) [4], (ii) parallel and distributed systems [5], (iii)
mobile systems [6] and (iv) other large-scale systems including
P2P [7] and data grid systems [8]. Benefits of data replication
include increasing data availability, improving performance,
and achieving fault tolerance. In a data replication strategy
three major questions of what to replicate, when to replicate,
and where to replicate must be answered [9]. In the tradi-
tional systems, many available replication strategies create as

many replicas as possible to achieve maximum performance.
However, such an approach may not be economically feasible
for the provider in cloud computing, since the creation of an
unnecessarily high number of replicas can result in degraded
performance and reduced profit. Hence, new replicas should be
added in order to satisfy SLA requirements, while the removal
of replicas occurs when these objectives are satisfied over time.

There is a number of efforts in the literature that studied
data replication in the cloud systems. Many of them focus just
on satisfying the availability SLO [10], [11]. In a typical cloud
environment, where frequent queries are placed on a large-
scale data, having low response time is crucial for the tenants.
However, performance guarantees, e.g. response time, are not
offered by cloud providers as a part of the SLA. In order to
resolve this issue, there are several works proposed [12], [13]
in the literature to include the response time guarantees in
the SLA. Dealing with data replication, only a few studies
are particularly interested in improved response time [14]–
[17]. In addition, even fewer of those studies [18], [19] are
taking economics of the cloud into account. To the best of
our knowledge, lack of performance SLO is also true for
the commercial clouds offered by Amazon1, Google2, and
Microsoft3.

In this paper we propose Performance and Profit Ori-
ented Data Replication Strategy (PEPR) that ensures SLA
guarantees, e.g. availability and performance, to the tenant
while maximizing the economic benefit of the cloud provider.
For the measure of performance, we consider response time
guarantee as an integral part of the SLA. In PEPR, when
evaluating a query, if an estimated response time value is
greater than the SLO response time threshold, this means that
a replication process may be triggered. At that time, economic
benefit, i.e. profitability, of the cloud provider is also estimated.
Replication decision is made only when both the response time
and economic benefit of the provider are satisfied. In replica
placement, new replicas are placed on the cloud node that is
closest to the most amount of queries. The number of replicas
is dynamically adjusted following whether the SLA objectives
are satisfied over time. Moreover, a minimum number of
replicas are always kept to ensure minimum availability [14].

1http://aws.amazon.com/s3/sla/
2https://cloud.google.com/storage/sla
3http://azure.microsoft.com/en-us/support/legal/sla/



We evaluated performance of PEPR with a simulation
study. In the simulations, we show that PEPR not only satisfies
the SLA, but also ensures profitability of the cloud provider.

The organization of the rest of the paper is as follows.
Section II provides a summary of related work on data replica-
tion strategies in the cloud. Section III gives some background
information on the aspects of the cloud that are relevant to our
study. Sections IV and V describes the details of PEPR and the
implemented economic cost model, respectively. Section VI
evaluates the performance of PEPR. Section VII concludes the
paper and reflects on possible future work.

II. RELATED WORK

In this section we give an overview of some existing works
on data replication in the cloud. These include studies that are
interested in the economic aspect of the cloud or improved
response time of queries.

Wei et al. [14] proposed Cost-effective Dynamic Repli-
cation Management (CDRM) for increasing availability in
cloud storage. They make a justification that having too many
replicas does not increase availability but results in higher
costs. Therefore, the main contribution of CDRM is finding a
minimal number of replicas to satisfy the availability require-
ment. Authors mention that nodes can only serve a limited
number of queries and overloaded nodes are blocked from new
query arrivals. As a result, replica placement is performed in
such a way that the nodes with lowest blocking probability
will host the new replicas.

Bonvin et al. [18] presented Skute, a scattered key-value
store. In Skute, virtual nodes act as autonomous agents and
decide on behalf of the data owner, without any control from
the outside. Proposed economic model is based on a virtual
economy. Nodes pay rent to other nodes to host replicas
according to storage use and query load. In addition, nodes
also generate revenue by the amount of queries they answer.
In the proposed work, first the availability and then the net
benefit is considered by placing replicas to nodes with respect
to their economic fitness. Even though performance guarantees
are not regarded as an integral part of the SLA used in Skute,
reduced average query load per node is achieved over time.

Sakr and Liu [13] introduced an SLA based provisioning
strategy for cloud databases. Their approach is a customer-
centric strategy, in which the database servers are scaled in and
out according to the SLA requirements. As the main SLA ob-
jective for the decision process, they chose the total execution
time of transactions. In the proposed strategy, cloud system
is closely monitored and cloud providers declaratively define
application specific rules to adaptively scale the resources.
While the SLA-aware provisioning is beneficial for scaling,
economic impact of the replication for the cloud provider is
not mentioned.

Janpet and Wen [16] designed a data replication strategy
to minimize data access time by finding the shortest access
path to data objects. They model access frequency, delay and
replication budget to find the closest, most suitable node for
replica placement. Replication budget is predefined and it is
only used as a limiting factor for the users in such a way to
regulate number of replicas. A detailed economic relationship

between the users and the cloud provider is not addressed.
The experimental study shows that by placing data objects
closer to the nodes with high access frequency, response time
is improved.

Kumar et al. [20] proposed SWORD, a workload-aware
data placement and replica selection scheme. Authors intro-
duced a new metric named query span, which is the aver-
age number of nodes used in execution of a query. Their
approach aims to minimize query span in order to reduce
the communication overhead, resource consumption, energy
footprint, and transaction cost. They claim that SWORD deals
with performance degradation with incremental repartitioning
of data. Although provider profit is not a focus of this study,
the authors show the effectiveness of their work by doing an
experimental analysis to measure query span and transaction
times.

Zhang et al. [17] present an auction model to implement
a replica placement policy. Proposed work aims to satisfy
only availability in a large-scale cloud storage environment.
If the desired availability level cannot be maintained, a bid-
ding is held to determine the placement for a new replica.
Bidding price is dependent on several properties of the nodes
including failure probability, network bandwidth and available
space. While response time is not included in the objective
function, in the experiments authors observe that performance
is improved alongside satisfied availability.

Sousa and Machado [21] proposed RepliC, an elastic multi-
tenant database replication strategy. RepliC takes performance
SLA into account and elastically adjusts the number of replicas
by monitoring the system utilization. When workload changes,
RepliC can handle the variation by directing transactions to the
replicas with available resources. In an experimental study,
RepliC is compared with a rule-based scaling scheme. The
results indicate that the proposed strategy satisfies QoS with
minimal SLA violations.

Boru et al. [22] introduce a data replication strategy that
focuses on improving the energy efficiency of cloud data-
centers. Their strategy optimizes energy consumption, band-
width use and network delays at both inter-datacenter and
intra-datacenter levels. The authors modeled datacenter power
usage and bandwidth consumption of database operations. A
periodical analysis determines the replication decision and
estimates the power and bandwidth usage of the replicas in the
upcoming periods. With a simulation study they showed that
by placing replicas closer, power consumption and response
time is improved. Economic benefit however, is not a focus of
this study.

III. BACKGROUND

Cloud providers often establish multiple facilities in sepa-
rate geographical regions for a multitude of reasons, including
providing services that span across the globe. Each region may
contain several other subregions that are distributed inside a
region. These subregions are cloud facilities that host a number
of nodes that provide computational power and storage to the
tenants. All nodes in the cloud are interconnected by network
links. Nodes in the same subregion of a particular geographical
region are interconnected via local and relatively cheaper links.
In a similar manner, intra-region bandwidth is comparatively



less abundant and more expensive. As the network hierarchy
goes from inter-node links to inter-region links, bandwidth
abundance decreases and bandwidth cost increases [23]. A
typical example of this cloud hierarchy is depicted in Figure 1.

Region

Subregion

Inter-region link

Intra-region link

Fig. 1. An example cloud topology showing regions and subregions. Nodes
and links inside subregions are not depicted in this figure.

Tenants utilize the services they rent from the provider
by placing queries to the cloud. These queries require data
sets that may reside on multiple cloud nodes scattered around
different geographical regions. From the tenant’s perspective,
it is essential for the response time of an average query to be
within the threshold defined in the SLA. The cloud provider
aims to satisfy the SLA with the maximum amount of profit.
The essence of the proposed strategy contains two models.
Former is the cost model based on a response time estimation
and latter is the economic cost model based on a provider
profit estimation. It should be noted that, processing data in
the cloud has many challenges including distributed execution
and partitioning. The focus of our study is only on the data
replication aspect of cloud data.

An important characteristic that differentiates the cloud
from traditional business models is the penalty mechanism.
Should an SLA breach occur, the provider is obligated to pay
an agreed upon monetary sum to the tenant [12]. In our case,
when the actual response time is found to be greater than the
threshold defined in the SLA, there exists an SLA violation. It
is therefore important to note that, penalties play an important
role in the economics of the cloud.

IV. DATA REPLICATION STRATEGY

Replication strategies are expected to determine what data
are concerned by the replication, when a replica should be
created/deleted, how many replicas to create and where to place
the replicas [9]. Creating as many replicas as possible cannot
be economically feasible in cloud systems. Hence, PEPR gives
a prime importance to issues such as timing of starting the
replication, keeping an optimal number of replicas, a good
replica placement and economic profitability.

A. When to replicate

In PEPR, a replication event occurs if and only if it is
necessary to replicate to meet the response time guarantee and
it is a profitable action for the provider (Figure 2). At the
beginning of the query execution, when the query is submitted
to the node, response time estimation is calculated for that

particular query. If the estimated response time is greater
than the response time threshold (denoted TSLO), namely the
response time SLO, the required remote data set may be
required to be replicated. However, response time estimation
is not enough on its own to trigger a replication. In the
second step, the replication of that particular remote data set
is evaluated from an economic standpoint by profit estimation
model. Calculated profit estimation indicates, if the provider
would still be profitable after a particular replication event is
carried out. If and only if the provider is still estimated to
be profitable, the replication event starts. Decision to trigger a
replication involves both the response time and provider profit
estimations.

1: TQ,n ← estimated response time of executing Q on node
n

2: if TQ,n > TSLO then
3: p← estimated profit by placement of new replica
4: if p > 0 then
5: PlaceReplica()
6: end if
7: end if

Fig. 2. Replication decision algorithm.

1) Response time estimation: Queries are placed to the
cloud for processing. In order to find the estimated response
time (TQ,n) of a particular query (Q) executed on a node
(n), it is necessary to evaluate the amount of time contributed
by computation, I/O, and network. Any particular query may
require data sets from both the local node (n) and a number
(i) of remote nodes. In the case when some remote data
(d) is required, it is necessary to access each remote data
set with the I/O throughput of t from the remote nodes
and migrate each over a bandwidth (b) to the local node.
Once the required total data (D) is ready to be processed
on node n, the query is executed. During query execution, a
computational load of ln is observed on node n, alongside with
the I/O throughput capability of local node (tn). α is a variable
denoting the overhead of executing the query on node n and
variation between queries. While response time estimation for
similar scenarios has been studied in traditional systems [5],
Equation 1 shows the proposed response time estimation.

TQ,n = (
Dln
tn

+
i∑

1

(
di

bi
+

di

ti
))α (1)

Response time estimation takes processing of the query and
data transfer into account. As a result, TQ,n > TSLO condition
may occur in two situations. First, during the execution of the
query, some portion of total data is shipped from remote nodes
to the node that is executing the query. If the nodes that host the
remote data are in a region that is accessed via a low bandwidth
availability, this will have an impact on data transfer times and
in turn the response time. Therefore, it is beneficial to replicate
data sets that reside in remote nodes. Second, the average load
of the node that executes the query directly contributes to the
response time of the query. Normally, queries are not redirected
to the nodes with high average load. However, if all replicas
of any particular data set reside on nodes with high average



load, these data sets may be replicated to new locations with
low system load to prevent over-utilization.

2) Profit estimation: In PEPR, we assume that the tenant
pays for a particular service with an agreed upon quality. As
a result, for any amount of revenue, the provider must pursue
the route of most economical replication decisions in order to
decrease expenditures. In other words, ensuring profitability
for the provider lies in minimizing expenditures (Equation 2).

profit = revenue− expenditures (2)

Before the execution of a query, the expenditure of the
provider is calculated alongside the response time estimation.
Calculated expenditure is compared against the revenue to
estimate the profit of provider.

B. How many replicas

Regarding the decision of how many replicas of a data
set to maintain a system, the first critical issue is maintaining
availability. While PEPR aims to satisfy response time SLO,
keeping availability SLO cannot be ignored. As discussed in
Section II there are many existing studies in the literature that
focus on satisfying availability SLO. In PEPR, we create a
minimum number of replicas to maintain a minimum given
availability [14] at the initial placement stage of data sets. At
no point in time, the number of replicas for any particular
data set is allowed to decrease below this minimum number
of replicas.

How many replicas of each data set to keep in the system
do not have a strictly defined upper limit. As long as satisfying
SLA requires so and it is still profitable to have more replicas,
new replicas will be created. In PEPR, we implement an
incremental approach for creating replicas. In other words,
at each step, one replica is created. As a result, the degree
of replication is merely a consequence of the data replication
strategy. Therefore, the number of replicas is not a statically
defined number indicating the degree of replication, but rather
a dynamically performed adjustment.

1: updateAccessCounts()
2: actualRespT ime←measureRespTime(Q)
3: if actualRespT ime > TSLO then
4: slaBreached← true
5: end if
6: if ExecutedQCount = QPerEpoch and

slaBreached = true then
7: slaBreached← false
8: ExecutedQCount← 0
9: removeLeastRecentlyUsed(Num LRU )

10: end if

Fig. 3. Replica retirement algorithm.

While creation of new replicas are straightforward, replica
retirement operation requires some apriori information. In
essence, replica retirement is performed as the SLA is satisfied
over time. After execution of each query, the actual response
time of that particular query is logged. In addition, how many
times a particular data set has been accessed is also recorded

in a list, ordered by the number of accesses. Let QPerEpoch
show a system parameter that indicates the number of queries
that defines an epoch. After every QPerEpoch queries exe-
cuted, if there are no SLA breaches observed in that epoch, a
predefined number of least recently used replicas, denoted by
Num LRU , are removed from the system. Keeping unused
replicas in the cloud would result in wasted storage space and
in turn, unnecessary expenditure for the provider. Using this
approach, the cloud system will converge to keep replicas that
only have high number of access. Figure 3 is evaluated after
each query Q and performs the described retirement tasks,
after each epoch.

C. Where to replicate

Given that the creation of a new replica is determined to be
necessary, finding a node to place the new replica is the next
issue to address. Similar to the previous replication decisions,
this task is performed with the consideration of response time
and profit estimation.

Finding an optimal placement should be done in a timely
fashion to minimize the overhead caused by the search. Search-
ing among all of the nodes in the cloud may take a significant
time, resulting in violation of response time SLO. Taking
just the nodes in the local region into account reduces the
search space for finding optimal placement. As a result, PEPR
evaluates the nodes only in the local region to come up with
the placement for the new replica. Also, in terms of bandwidth
availability, response time guarantees can be met when the
remote data is replicated closer to the requesting nodes. Ideally,
required data is preferred to be placed on the node executing
a particular query. However, if that is not possible, the reality
may require placing replicas in the same subregion or at least
in the same region. Increased data locality will improve data
transfer times and positively affect response times. Moreover,
the system load of the query executing nodes is also important.
High average system load of the candidate node for replica
placement is may to prevent meeting the response time SLO
by resulting in I/O bottleneck.

1: i← 0
2: while i do
3: N ← getNeighborsAtHops(n, i)
4: for each node m in N do
5: if m.freeSpace ≥ sizeOf(d) then
6: if m.load ≤ loadThreshold then
7: place replica of remote data d on m
8: terminate
9: end if

10: end if
11: end for
12: increment i
13: end while

Fig. 4. Replica placement algorithm.

In PEPR, bandwidth capability, storage space and computa-
tional load of the nodes are evaluated to find a placement. The
search for optimal placement starts from the requestor node
itself, and continues firstly in the local subregion and then the
other subregions in the same region until a placement location
is found. At each step, each node is checked to determine



whether it has the necessary storage space. If a node with
enough available storage to host a new replica is found, it is
then checked for the computational load. As placing a new
replica on a particular node will result in more load for that
node, only a node having less load than a predefined load
threshold (denoted loadThreshold) is selected. At this point,
the selected node is considered the best node to place the
replica. Details of the process of selecting a node for replica
placement is given in Figure 4.

It is important to mention that, at any time some data
migrate, there is a cost associated with the migration. In
data migration, bandwidth is consumed during transfer and
storage is consumed at the destination. Monetary aspect of the
migration cost is dealt with the profit estimation by regarding
migration cost a part of bandwidth and storage costs. In
addition, data migration caused by pre-replicating data also
results in an adverse effect on response time of execution of
a query.

V. ECONOMIC COST MODEL

Unlike a one-time payment for an unlimited use of the
software in a traditional business model, a cloud tenant pays
the provider only for its own consumption [1]. For this aim, an
efficient provider economic cost management is required. That
leads us to realize an economic cost model that deals with the
estimation of expenditures of the provider when evaluating a
query.

A. Provider’s revenue

A tenant periodically pays the rent associated with the
services acquired from the provider. Exact amount to pay
is determined according to the utility metrics defined and
monitored during a billing period. Hence, the revenue of a
provider when evaluating a query is essentially composed of
the amount received from the tenant.

Considering that the provider offers various service plans
with different capability levels, we assume that both parties
agree upon the most suitable one for a particular application
of the tenant. In the case when the tenant is supplied with an
inadequate service level, obviously it would be problematic to
satisfy the SLA. For this reason, in our strategy we assume that
the tenant is supplied with a suitable service which is scaled
according to the changing requirements.

It is worthy of noting that, data replication is transparent
to the tenant. Therefore, tenant is not billed for the number
of replicas kept. It is the provider’s responsibility to maintain
the replicas in the cloud to satisfy the SLA terms. The tenant
pays for the utilized service, and does not care about how many
replicas the provider needs to create to meet the demand caused
by the query load.

When a provider serves several tenants, it receives revenues
from all served tenants. It is obvious that increasing the number
of tenants decreases the per tenant performance but reduces the
overall operating cost of the provider [24].

B. Provider’s expenditures

As an inevitable part of doing business, cloud provider
has a number of expenditures. In PEPR, we separately deal

with various types of costs that contributes toward the total
expenditure. Cloud provider hosts a number of nodes to handle
the queries from tenants. These nodes require power and
other support hardware to function properly. These expenses
contribute towards the computational investment (Ci). Another
type of cost is related to network usage (Cb). The data required
by the queries perpetually shipped over network links to
various destinations in the cloud, globally. Whether it is for
accessing remote data set without replication or migrating
data for creating a replica, it all requires precious bandwidth
resource. Storage is another cost item (Cs) that the provider
deals with. Creating new replicas will consume storage space
on the nodes and increase the expenditure.

For any replication event, it is possible to comment on the
change in any particular type of cost. For example, creation
of a new replica will result in a certain amount of increased
storage use. However, it is relatively harder to comment on
how a change in one unit of expenditure imposes a change in
another. Moreover, this relationship between different types of
expenditures can vary from one provider to another. Therefore,
each individual cost type are treated separately from each other.

On the cost of computational utility, let TQ be the estimated
total time needed to evaluate a query Q. Let nQ be the number
of nodes required when evaluatingQ during a unit time Ct (e.g.
one hour on a node). Please note that, this includes nodes that
hold the replicas created when evaluating Q [21].

expenditures = Ci + Cb + Cs +

nQ∑

1

TQCt

+ Ptenant

(3)

Provider pays penalties to the tenants (Ptenant) if one or
more SLOs are not satisfied. As a result, in addition to the
operational costs, penalties are also included in the provider
cost. Through data replication, the provider aims to minimize
the penalties paid to reduce cost [25]. In regard to described
cost types, estimation of provider cost, i.e. expenditures, is
given in Equation 3.

VI. PERFORMANCE EVALUATION

A. Simulation environment

Using a well-designed simulation tool is an accurate way
of implementing performance evaluation scenarios without the
burden and cost of dealing with an actual cloud environment.
For this purpose, several cloud simulators [26] have been used
in the literature. Among these simulators, most popular choice
is the CloudSim [27]. Being an open source project, CloudSim
is also relatively easily extensible.

Originally, CloudSim is suitable for simulation scenarios
that require virtual machine (VM) provisioning, task distri-
bution, and power management. However, data replication
functionality is not as advanced. As a result, we extended
CloudSim to support the requirements of data replication and
placement tasks.

In the simulations, we realized a hierarchical cloud envi-
ronment as described at the beginning of Section III. Simulated
cloud consists of three geographical regions. Each region



TABLE I. SIMULATION PARAMETERS

Parameter Value

Number of regions 3
Number of datacenters per region 2
Number of VMs per datacenter 10
VM processing capability 1000 MIPS
VM storage capacity 20 GB
Intra-datacenter bandwidth 40 Gbit/s
Intra-region bandwidth 5 Gbit/s
Inter-region bandwidth 1 Gbit/s
Avg. Intra-datacenter delay 5 ms
Avg. Intra-region delay 25 ms
Avg. Inter-region delay 100 ms
Response time SLO 180 s
Simulation duration 10 min
Number of queries processed 10000
Query arrival rate 16.67 query/s
Avg. computational load of a query 2500 MI
Number of data sets 20
Avg. size of a data set 550 MB
Intra-datacenter data transfer cost $0.05 per GB
Intra-region data transfer cost $0.005 per GB
Inter-region data transfer cost $0.0001 per GB
Storage cost $0.1 per GB

Processing cost $1 per 106 MI
Penalty cost $0.01 per violation
Revenue $75 per billing period
Num LRU 1
QPerEpoch 10
loadThreshold 90%

contains two subregions represented as datacenters. In turn,
each datacenter contains ten nodes realized as VMs. Network
topology is established in such a way that, the bandwidth
capacity is more abundant and cheaper inside the datacenters
but less abundant and more expensive towards the inter-region
level. Details of this cloud topology are depicted in Figure 5.
Also a complete list of simulation parameters can be found in
Table I. We chose the simulation parameters to be in accord
with existing studies [28] to realistically represent a typical
cloud environment.

Each VM has the necessary computational resources to
perform execution of queries. These resources include CPU,
RAM, storage, and network connectivity. In order to make
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Virtual machines
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Fig. 5. Simulated cloud topology.

an accurate comparison, we use this same computational
investment for all evaluated strategies. During execution of
queries, VMs can access the data sets in other VMs by remote
reads or by replicating them to local storage.

The duration of the simulation is regarded as one billing
period. For that period, the tenant is charged for the services
obtained, and provider profit is determined by the expenditures
of the provider during this billing period. In the simulation, the
queries are placed to the cloud with random arrival times. Each
query requires a randomly determined data set to be retrieved
for processing. The aim is to monitor how the replication
strategies cope with the query load to keep the response time
SLO and observe provider profit in a billing period.

B. Simulation results

In the simulations, we compared PEPR against no replica-
tion (i.e. full remote reads) and Bandwidth Hierarchy Replica-
tion (BHR) [23] strategies. No replication strategy is used as
a baseline to show the impact of replication by how the profit
and response time are affected by only performing remote
reads. BHR is a data replication strategy that is aimed towards
traditional systems in which, the provider profit is not taken
into account while making replication decisions.

We measured average response time, the average of actual
response times of all queries processed during the simulation,
in addition to the total number of replications, number of SLA
violations, storage usage, and the amount of data transferred
over network as the evaluation metrics. Each type of cost
associated with these metrics are calculated according to the
simulation parameters. Table II shows the obtained values for
each of these metrics, and the total provider cost.

As its name suggests, the no replication strategy did not
create any replicas, therefore its storage use only shows the
space occupied by the initial data placement. Among the other
two strategies, PEPR created less than half of the number of
replicas created by BHR. Consequently, this determines the
storage use of these strategies. PEPR used almost half of the
storage space consumed by BHR, while BHR filled more than
half of the entire storage space available in the cloud.
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Fig. 6. Average response time and the number of replications.



TABLE II. SIMULATION RESULTS.

Replication Avg. response Number of SLA Storage Inter-region Intra-region Intra-datacenter Total expenditures
strategy time (s) replications violations usage (%) data transfer (GB) data transfer (GB) data transfer (GB) of the provider ($)

No Replication 630.83 0 7754 0.91 3648.63 915.00 901.17 278.99
BHR 21.62 1179 266 54.79 21.92 382.78 5121.93 85.19
PEPR 39.31 480 259 28.36 21.92 1274.80 4165.58 60.01

In terms of average response time, both PEPR and BHR
satisfied the response time SLO while the no replication
strategy failed in that respect. BHR achieved slightly better
average response time (88% less than the response time SLO)
compared to PEPR (78% less than the response time SLO)
due to having a much greater number of replicas in the cloud,
as depicted in Figure 6. However, it is important to highlight
that, the provider’s aim is not to get the best response time but
instead, to satisfy the SLA with most amount of profit. Please
note that, the no replication strategy is omitted in Figure 6
to retain a better axis range for the comparison of other two
strategies.
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By creating no replicas, most queries processed with the
no replication strategy required remote read operations from
different regions. On the other hand, PEPR and BHR created
replicas and benefited from reduced access time, expectedly.
As depicted in Figure 7, PEPR and BHR made the majority
of the network transfer at the intra-datacenter level by using
replicas in the regions where bandwidth is cheaper. Again,
BHR having immensely more amount of replicas, almost
always had a replica of required data set in the same datacenter.
On the other hand, PEPR more frequently chose to access data
sets available in the other datacenters in the same region, as
long as the response time is satisfied. In other words, assuming
that response time SLO is satisfied, if accessing a data set
in another datacenter is more profitable than creating a new
replica in local datacenter, PEPR took such an action to achieve
optimality.

Figure 8 depicts the total monetary cost of each strategy in
the simulated billing period. The accumulated costs are calcu-
lated from the unit costs defined as the simulation parameters.
All replication strategies are evaluated by the queries generated
from the same random distribution, therefore the computational
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costs are the same for all strategies. A large sum of inter-region
data transfers by the no replication strategy caused a significant
network cost. Furthermore, frequent violation of SLA results
in a high penalty cost with the no replication strategy. Among
the other two strategies, number of SLA violations are very
low. As a result, the penalty cost is at a more acceptable level.

In terms of storage costs, no replication strategy only
kept the initially placed data sets, hence the storage cost is
almost negligible. BHR strategy created a large number of
replicas that in turn resulted in a substantial storage cost for
the provider. Compared to BHR, PEPR caused less then half
the storage cost of BHR. PEPR accumulated slightly more
network costs, however this can be regarded as a trade-off
move to save on storage costs. When total costs are considered,
the PEPR yielded 30% less provider cost than BHR strategy.
This difference in cost amount directly contributes towards the
profitability of the provider.

Results of the experimental evaluation indicate that, while
a data replication strategy is essential to satisfy performance
guarantees, simply using a traditional strategy is not enough
for the cloud provider to ensure economic benefit. Traditional
strategies tend to eagerly replicate to attain best possible
performance. However, in pursuit of the best performance, tra-
ditional strategies consume more storage and increase provider
costs. As a result, as long as the performance SLO is satisfied,
it is important to focus on improving the economic benefit of
the provider. PEPR works towards this aim by not increasing
provider costs due to unnecessary replication once the perfor-
mance SLO is met.



VII. CONCLUSION

In this study, we proposed PEPR, Performance and Profit
Oriented Data Replication Strategy for cloud systems. PEPR
not only satisfies the SLA, but also ensures the profitability
of the provider. These two criteria are at the core of our
replication strategy. As the tenants place queries to the cloud,
PEPR estimates the response time of each query and evaluates
whether the response time can be satisfied or not. In the case
where the estimated response time is greater than the response
time SLO, PEPR calculates a profit estimation for creating a
replica for that particular data set. Only if the creation of the
new replica is profitable, the replication is performed. When
response time is satisfied over time, older replicas that are
not used are retired from the cloud. We evaluated the validity
of PEPR with an experimental evaluation. In a simulation
environment, we compared PEPR with two other strategies, a
traditional strategy that does not take economics of the cloud
into account and a no replication strategy. While both PEPR
and the the traditional strategy satisfied the SLA, only PEPR
ensured the profitability of the provider. The results confirm
that the consideration of economics of the cloud should be an
important consideration in any data replication strategy that
aims to perform in a cloud environment.

A possible future direction for this study is to take queries
that include dependent operations, e.g. join operations, into
account. This way, the proposed strategy would be applicable
to database queries as well. Hence, we deferred performance
comparison with existing database oriented replication strate-
gies to a future study. Moreover, implementing the proposed
strategy in a real cloud environment may also present an
interesting research opportunity.
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