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ABSTRACT
In usual Fitts’ law experiments the outcome of a pointing act
can be either measured as an error, i.e., a distance from end-
point to target center, or categorized in an all-or-none way as a
hit versus a miss. Information theory offers a useful distinction
between transmission errors (the received symbol is wrong)
and erasures (the received symbol is empty). Although Fitts’
law research has been very much inspired by the information
theoretic rationale, the error/erasure distinction has escaped
attention so far: Target misses have always been treated as
normally-distributed errors, through the effective index of diffi-
culty IDe. The paper introduces a new index of difficulty based
on the simple observation that a target miss conveys zero bit
of information, i.e., it is an erasure. Not only is the new index
more consistent with the fundamentals of information theory,
it is much simpler to derive than the ISO-recommended IDe.
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INTRODUCTION
Fitts’ law is a well documented rule [13] that predicts the time
MT it takes to reach a target of width W located at distance D.
The law conveniently reduces the two-parameter task (D,W )
to a single parameter called the index of difficulty ID [12]:

ID = log2

(
1+

D
W

)
bit1.

1This form of the ID is known as the Shannon ID [11]. Other well-
known forms are the Welford ID = log2(

1
2 +

D
W ) [18] and the Fitts

ID = log2(
2D
W ) [4].
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Movement time MT has been found empirically to be linearly
related to ID:

MT = a+b · ID. (1)

The experimental paradigm introduced by Fitts [4] consists
of measuring MT , which participants try their best to mini-
mize, at various levels of ID. Ideally, movement endpoints
must always fall within the prescribed tolerance interval of
width W—or at least with very few misses. Unfortunately,
the paradigm faces a serious difficulty: As has been observed
ever since Fitts [4], the percentage of target misses tends to in-
crease systematically, along with MT , as ID is raised, meaning
that experimenters face two effects of the same manipulation,
which is one too many. Different participants may also have
different biases towards speed or accuracy (see e.g. [6] for
further discussion on the innate bias in psycho-physical exper-
iments).

The currently received—and actually standardized [10, 17]—
solution is to adjust the ID by computing an effective index
of difficulty IDe in the place of the prescribed or nominal ID.
The adjusted index takes into account the empirical standard
deviation σ of the endpoint distribution:

IDe = log2

(
1+

D
We

)
= log2

(
1+

D
4.133σ

)
bit. (2)

Historically, Fitts’ law emerged in a specific context: Informa-
tion Theory was booming2, and at the time many psychologists
(e.g., [1, 9, 14]) were trying to apply its operational results to
human behaviour. One concept crucial to most researchers,
Fitts included, was the channel capacity, namely, the maxi-
mum rate at which information can be reliably transmitted in
a communication system. The expression for ID shown in
Equation (1) is based on Shannon’s formula for the capacity
of the Gaussian channel [3, 4, 12].

Errors vs. Erasures
In this paper, we call attention to the distinction made in In-
formation Theory between two sorts of transmission mistakes:
errors vs. erasures. We will show that this classic distinc-
tion, which apparently has escaped the attention of Fitts’ law
students, opens the way to an elegant theoretical solution to

2Shannon himself believed it was even ballooning [16].



the problem raised in the Fitts paradigm by the non-constant
frequency of target misses.

In communication engineering, an error is said to have oc-
curred when the received symbol differs from that originally
sent. For example, the word BUTTER is received in the place
of the sent word BATTER, the A having been accidentally re-
placed by an U. But suppose that the received word is B?TTER,
with the question mark signaling a missing character: This
is what is called an erasure. One important difference be-
tween an error and an erasure is that the former conveys wrong
information whereas the latter conveys no information at all.

How does the error/erasure distinction apply to Fitts’ target-
reaching paradigm? Below we will argue that the option most
consistent with the logic of this paradigm is to model target
misses as erasures, rather than errors.

MEASURING ACCURACY IN FITTS’ PARADIGM
The goal of a Fitts’ law experiment being to observe and study
the speed-accuracy tradeoff described by Woodworth [20], the
choice of the metrics used to measure speed and accuracy
is fundamental. While there has been unanimous agreement
in the literature that movement time provides a satisfactory
measure of speed [8], the measure for accuracy defined by
Equation (1) has been controversial from the outset [3]. It is
only recently that the adjustment for errors was standardized
by ISO [10, 17].

In a Fitts’ law experimental setup3, the task of the participant
is to aim for a target of predefined width as fast as possi-
ble while making as few mistakes (target misses) as possible.
There are three different ways of handling these mistakes: sim-
ply ignoring them, measuring the error rate (a percentage),
or measuring the spread of endpoints (typically a standard
deviation).

• Ignoring the mistakes. Fitts, who did not measure actual
amplitudes, classified the movements in an all-or-none way
as hits and misses. Although he did tabulate the (variable)
error rates he obtained in his experiments, he felt in a posi-
tion to leave them aside because of the “small incidence” of
target misses [4, p. 265].

• Taking the error rate into account. To our knowledge, Cross-
man [3] was the first to try to incorporate the error rate
information into his ID measure, leveraging the standard
Gaussian distribution model.

• Taking the spread of endpoints into account. This is the stan-
dardized way of measuring accuracy in Fitts’ law [10, 17].
Recourse to the standard deviation as a measure of accuracy
has the implication that the amplitude of the mistake matters
in the upcoming analysis: if the target is missed, the farther
from the edge of the interval, the worse the performance.
It also implies that there is equivalence between two move-
ments hitting the target if and only if they end up at exactly
the same distance from the center of the target.

3While Fitts’s time-minimization paradigm is widespread in HCI, it is
important to bear in mind that it is not the only workable paradigm for
studying the speed-accuracy trade-off of aimed movement [7, 8, 15].

The ISO standard and Fitts’ law literature in general treats
mistakes as errors, by referring to the standard deviation of the
endpoints distribution—either by direct estimation or through
a calculation from error rates. Thus in the error concept, the
accuracy depends on the (continuous) distance between the
movement endpoint and the target center.

There seems to be a contradiction between this approach and
the all-or-none logic of Fitts’ experimental paradigm: Since
the only instruction for participants is to hit the target about
96% of the time (i.e., miss it about 4% of the time), all move-
ments that end up inside the W interval should be considered
equivalent, in keeping with the observation that in a real-world
interface, what matters is not precisely where the click takes
place, but rather whether or not the click falls in the intended
area. This corresponds to the information-theoretic concept of
erasures.

Besides this conceptual mismatch between errors and mistakes,
IDe suffers from at least three further deficiencies.

INFORMATION-THEORETIC CRITIQUE OF IDe
The detailed expression of the effective width We in Equa-
tion (2) as given in [17] is as follows. Let σ denote the stan-
dard deviation of the end-point distribution, and ε the error
rate, i.e., the proportion of target misses:

• If σ is available:

We = 4.133σ . (3)

• Otherwise:

We =

{
W · 2.066

z(1−ε/2) if ε > 0.0049%
0.5089 ·W otherwise.

(4)

The received justification is as follows [12, Section 2]:

“The entropy (H), or information, in a normal distri-
bution is H = log2

(
(2πe)1/2σ

)
= log2(4.133σ), where

σ is the standard deviation in the unit of measurement.
Splitting the constant 4.133 into a pair of z-scores for
the unit-normal curve (i.e., σ = 1), we find that the area
bounded by z = ±2.066 represents about 96 % of the
total area of the distribution. In other words, a condition
that target width is analogous to the information-theoretic
concept of noise is that 96 % of the hits are within the
target and 4 % of the hits miss the target [. . . ]. When an
error rate other than 4% is observed, target width should
be adjusted to form the effective target width in keeping
with the underlying theory.”

We see three issues with IDe:

1. The computation of We as 4.133σ as well as the computa-
tion leading to Equation (4) presumes a Gaussian distribu-
tion of endpoints [17], but the validity of this hypothesis
has been questioned empirically, e.g., [4] [19].

2. To our knowledge Information Theory provides no justifi-
cation to the relation We = 4.133σ . When Crossman [3]
calculated the expression for We from the area under the
standard normal curve, he took the 5% value as an arbi-
trary “permissible” error rate. McKenzie [12] noticed that



by changing the arbitrary rate from 5% to 3.88% (approxi-
mately 4%), the entropy of the rectangular distribution of
width We would equal the entropy of the Gaussian distribu-
tion of standard deviation σ (see Appendix), but this is no
more than a nice coincidence: we can see no information-
theoretic reason to equalize these two entropies.4.

3. The threshold of error rate placed at 0.0049% is arbitrary.
Even if considering a Gaussian distribution for the end-
points, the one-to-one relationship between standard devi-
ations and error rates is only true for strictly positive error
rates. Indeed, when the error rate is vanishing, the standard
deviation is also vanishing, so IDe tends to infinity! To
prevent this from happening, [17] recommends that below a
certain error rate (0.0049%), IDe should be kept constant.
The justification of the threshold error rate of 0.0049% is
that it “rounds to 0.00”. As shown below, the existence of
such a threshold is in fact adverse to the theory.

The standardized index of difficulty IDe is thus questionable.
It relies on the unsafe Gaussian hypothesis, two arbitrary con-
stants, and one coincidence. Even more importantly, it has
never been shown to be the correct expression of the capacity
of a human-motor channel—the expected rationale behind
Fitts’ law.

We now propose a new effective index ID(ε) that is compliant
with Fitts’ experimental design, does not need the Gaussian
hypothesis and is justified theoretically as a channel capacity.

A COMPLIANT INDEX OF DIFFICULTY: ID(ε)
We have already noted that treating target misses as errors is
not adapted to Fitts’ paradigm—these events should rather
be viewed as erasures. Indeed, the design of the experiment
entails a binary decision: there is a target and the movement
either finishes inside (a hit) or outside (a miss). This is con-
sistent with the instruction “try to hit the target” as opposed
to “try to aim for the center of the target”. In this section we
build a model for a channel which allows erasures, and obtain
a new index of difficulty ID(ε) through Shannon’s concept of
channel capacity.

Consider a channel that oscillates randomly between a good
(G) state and a bad (B) state, with probability ε of being in state
B and probability 1− ε of being in state G. When the channel
is in its good state, it corresponds to the typical channel of
capacity log2

(
1+ D

W

)
described by McKenzie [12], which we

refer to as the Fitts channel. However, when the channel is
in its bad state it can only produce erasures—we call it an
erasure channel. This configuration (Figure 1) is known as a
compound channel [5].

We now evaluate Shannon’s capacity of such a channel as
a common ground to compare the performance of different

4Incidentally, these entropies can both be negative. Information The-
ory distinguishes the (discrete) entropy of a discrete random variable,
which is non-negative and serves as a measure of information, and the
(so-called differential) entropy of a continuous random variable such
as a normal random variable, which is positive for large variances
and negative for small variances and thus cannot be interpreted as a
measure of information [2]

X

1− ε

ε

Good(G)

Bad(B)

Fitts channel

Erasure channel

Figure 1. Compound channel for an aiming task with target misses.

participants operating at different accuracy levels (with dif-
ferent values of ε). The channel capacity corresponds to the
maximum transmission rate that the participants would have
achieved with an arbitrarily small error rate, as if they never
missed the target. Shannon’s capacity of the compound chan-
nel of Figure 1 is given by the following theorem.

THEOREM (COMPOUND CHANNEL CAPACITY). Consider
a compound channel as in Figure 1, with probability ε of
being in state B and probability 1− ε of being in state G. The
capacity of such a channel is given by

C = (1− ε) log2

(
1+

D
W

)
.

As expected, the obtained capacity is lower than the capacity
log2

(
1+ D

W

)
that would have been achieved with 100% hitting

accuracy (ε = 0).

The formal information-theoretic proof is known [2] and sum-
marized in the Appendix for completeness, but is easy to
sketch in order to understand the reasoning: The participant
is effectively time sharing both channels. With Fitts’ channel,
the transmitted information is log2

(
1+ D

W

)
bits and with the

erasure channel the transmitted information is 0 bit, so that, on
average, C = (1−ε)× log2

(
1+ D

W

)
+ε×0. In line with Fitts’

parallel between capacity and ID, our new effective index is

ID(ε) = (1− ε) log2

(
1+

D
W

)
where ε is no other than the traditional ‘error rate’ (more
cautiously designated here as the percentage of target misses).

COMPARING THE TWO INDICES
We now provide an analytical comparison of IDe and ID(ε).
The behavior of the standardized IDe for vanishing error rates
is problematic. Indeed, the inverse Gauss error function (see
Appendix) erf-1(1− ε) tends to +∞ as ε vanishes, so that we
would normally have

lim
ε→0

IDe = ∞.

Due to the 0.0049% bounding, however, instead we obtain

lim
ε→0

IDe = log2

(
1+

D
0.5089W

)
' log2

(
1+

2D
W

)
= 1+ log2

(1
2
+

D
W

)
,



which is equivalent to the Welford index of difficulty [18].
The particular choice to bound the index at the 0.0049% rate
results in the index coincidentally tending to the Welford ID,
not the Shannon ID. Therefore, there is no continuity as
epsilon approaches zero for IDe.

In contrast, ID(ε) does have the property of continuity towards
zero since obviously ID(0) = ID.

Figure 2 shows the two indices ID(ε), IDe as well as the
unbounded u-IDe (for which the 0.0049% distinction is not
made) for D/W = 15 as a function of ε in the interval [0−
1]. The difference IDe− ID(ε) between IDe and ID(ε) is
lowest around ε = 0.1. With higher values of ε , the difference
increases but such high errors rates are not common. However,
for very small values of ε , ID(ε) can be up to 1 bit smaller
then IDe. It can be noted that this difference accounts for very
careful participants which are well handled by ID(ε).
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Figure 2. Comparison of ID(ε) and IDe for erasure rate in [0,1], for
D
W = 15. u-IDe refers to IDe where the 0.0049% distinction is not made.
The scale is lin-lin above and lin-log below.

IMPLICATIONS FOR HCI
As we have seen, there remains room in Fitts’ law research to
improve the theory. We feel that the erasure-channel notion

has promise to improve our conceptual grasp of accuracy, the
Achilles heel of Fitts’ experimental paradigm.

Capitalizing on the fact—so far unrecognized, to our
knowledge—that the target misses that take place in Fitts’
time-minimization paradigm can be interpreted as erasures in
the language of Information Theory, we have derived a new
effective index of difficulty which has a number of desirable
properties: not only is it theoretically safer than the ISO index
as it does not presuppose a Gaussian distribution of endpoints,
it is also theoretically more relevant, having been proven to
measure a capacity in Shannon’s strict sense. It is also more
convenient in practice for two reasons: (a) it is continuous
towards the zero-error rate region, thus allowing the researcher
to dispense with an arbitrary treatment of the 0 percent miss
case; and (b) it is a great deal simpler to compute than the IDe
traditionally used in HCI by Fitts’ law practitioners.

This is a purely theoretical note and obviously more research
is needed to seriously evaluate all the implications of our
result. The reader might feel that perhaps the above-described
index is just a better tool to obtain essentially the same results,
but there is nothing so practical as a good theory, and there is
reason to think that a conceptually neater and practically easier
ID should help the HCI researchers who routinely exploit Fitts’
law to obtain safer results.
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APPENDIX
PROOF FOR We . Consider the endpoint location Y about

the target center, assumed normally distributed N (0,σ2). The
event |Y |> W

2 defines a target miss. Then target width W and
error rate ε are related by:

ε = 1− erf
( W

2
√

2σ

)
(5)

which allows to link W and We. Equalizing log2 We to the Gaus-
sian entropy H = log2(

√
2πeσ) gives We = 4.133σ , which

from Equation (5) amounts to choose ε = 3.88%.

PROOF OF THE THEOREM. The channel capacity [2] is de-
fined as the maximized value of mutual information I(X ;Y ).
Let S (= G or B) be the channel state. Since observing the
output Y already determines the state, one has I(X ;Y ) =
I(X ;(Y,S)). By the chain rule for mutual information [2],
one has

I(X ;(Y,S))
= P(S = G) · I(X ;Y |S = G)+P(S = B) · I(X ;Y |S = B)
= (1− ε) · I(X ;Y |S = G)+ ε · I(X ;Y |S = B).

Here I(X ;Y |S = G) is the mutual information computed for
the Fitts channel, and I(X ;Y |S = B) = 0 bit since for bad
state, only an erasure can be output. Thus I(X ;Y ) = (1−
ε)I(X ;Y |S = G). Maximizing over the input distribution gives
the result.
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