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ABSTRACT
Achieving the accuracy-complexity tradeoffs for compositional tim-

ing analyses using Network Calculus is still a hot research topic.

In this specific area, we propose in this paper an improved version

of the Total Flow Analysis (TFA) algorithm, called TFA++, when

taking into account the impact of the finite transmission capac-

ity of the network links on the input and output traffic models

at each network node. First, we review the existing analysis algo-

rithms by identifying their main limitations in terms of accuracy

and complexity, through a simple but representative network ex-

ample. Afterwards, we define the TFA++ algorithm and we detail

the main steps of the followed methodology to compute the delay

upper bounds. Moreover, we conduct comparative analyses of the

derived delay bounds and analysis times with the different algo-

rithms, with respect to the network size and load. In doing this, we

highlight noticeable enhancements of both metrics under TFA++, in

comparison to the existing algorithms; thus the high accuracy and

low complexity of TFA++. Finally, this statement has been asserted

through a representative avionics case.
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1 INTRODUCTION
With the inherent complexity and the growing number of com-

ponents, in addition to the use of advanced communication tech-

nologies and multi/many core processors, many challenges have

emerged from designing new generation Cyber-Physical Systems

(CPS). Hence, innovative cost-effectivemethods and tools are needed

to design, analyze and verify the hardware and software archi-

tecture components of such systems, to guarantee predictability

and reliability requirements while minimizing the development

and maintenance costs. Particularly, for new generation CPS, the

communication networks are considered as a bottleneck for perfor-

mance and timing predictability; thus an appropriate performance

analysis to provide safe guarantees has to be considered.

Most performance analysis approaches of complex networks can

broadly be categorized under two main classes, simulation-based

and analytical-based. The former enables the performance analy-

sis of large-scale networks, but it is not appropriate to draw firm

conclusions since it does not cover all corner cases, i.e., worst-case

scenario; whereas, the latter is based on high-level analytical mod-

els that can be easily injected within optimization procedures, to

speed up the design space exploration. These facts make the use of

analytical-based approaches outwardly growing for early verifica-

tion of networks in CPS, and one of the most relevant approaches in

this specific area is the Network Calculus [9]. The Network Calculus
is a compositional algebraic framework to derive maximum bounds

on system performance, such as delays and backlogs. The high

modularity and scalability of such a framework make it particularly

efficient to conduct performance analysis of complex communica-

tion networks [12], such as Switched Ethernet [11], the AFDX[8],

Networks on Chip [13] and networks with cyclic dependencies [2].

However, one of the main challenging issues for Network Calcu-

lus is computing accurate performance bounds with a reasonable

time-effort. Particularly, the lack of accuracy may lead to resource

over-dimensioning of the networks under design; thus increasing

development costs. Most of the related work in this area is focus-

ing on improving the timing analysis algorithms [10] [15] [4], to

cope with the accuracy-complexity tradeoffs. Such research efforts

lead to two main classes of approaches using Network Calculus:

algebraic and optimization-based methods. In this paper, our main

focus is the algebraic class, since it is the one keeping the composi-

tion property of Network Calculus. Particularly, there are mainly

three existing timing analysis algorithms [14]: Total Flow Analysis

(TFA), Separated Flow analysis (SFA) and Pay Multiplex Only Once

(PMOO). Each one of these aforementioned algorithms has its pros

and cons in terms of accuracy and complexity, but there is no best

algorithm in terms of both metrics.

To overcome these limitations, we propose in this paper an im-

proved TFA algorithm (TFA++) to enhance accuracy, while keeping

low complexity. The main idea of such an improved algorithm con-

sists in considering the link transmission capacity impact on the

input and output traffic models of each crossed node in the network.

Hence, the main contributions in this paper are as follows:

(i) First, we review the existing analysis algorithms by identifying

their main limitations in terms of accuracy and complexity, through

a simple but representative network example. In doing this, we con-

solidate the idea of the non-existence of a best algorithm;

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(ii) Second, we define the TFA++ algorithm (Algorithm 1) and we

detail the main steps of the followed methodology to compute the

delay upper bounds;

(iii) Third, we conduct comparative analyses of the derived delay

bounds and analysis times with the different algorithms, with re-

spect to the network size and load. In doing this, we highlight

noticeable enhancements of both metrics under TFA++, in com-

parison to the existing algorithms; thus the high accuracy and low

complexity of TFA++. Finally, this statement has been asserted

through a representative avionics case.

The rest of the paper is organized as follows: we start with

presenting the main concepts of the Network Calculus framework

in Section 2. Afterwards, we report the main related work and the

identified limitations in Section 3. Then, we present the proposed

TFA++ algorithm and report evaluation results in Sections 4 and

5, respectively. Finally, we draw the main conclusions and future

work in Section 6.

2 THE NETWORK CALCULUS AS A
COMPOSITIONAL ALGEBRAIC THEORY

The Network Calculus framework has been founded by the seminal

work of Cruz in [6, 7], and then extended with min-plus Algebra

operations in [5] and [9]. The latter extension is based on the idea

of modeling the communication nodes as in conventional system

theory, with an input function, a transfer function and an output

function, where addition and multiplication are replaced by mini-

mum and addition, respectively. Particularly, we will detail in this

section how this algebraic extension has enabled the composition

property of Network Calculus.

We will answer herein some primordial questions when applying

Network Calculus to conduct performance analysis of a realistic

network: how to model the input traffic? how to model the node

specifications? how to deal with a network of nodes to compute

end-to-end performance?

2.1 Traffic Model
Network Calculus describes data flows by means of cumulative

functions, R(t), defined as the number of transmitted bits during

the time interval [0, t]. Function R(t) is always a non-decreasing
function of time with R(0) = 0. Consider a system S receiving input

data with cumulative function R(t), called input function. After

the data processing, the output data is described using another

cumulative function R∗(t), called output function. The horizontal

distance d(t) between the input and output functions represents

the experienced delay of an input data received at time t in the

system. The vertical distance x(t) between input and output func-

tions represents the backlog, i.e., total number of bits present in the

system at instant t .
One of the fundamental concepts in Network Calculus is the

notion of maximum arrival curve, which provides an upper bound

on the number of events, e.g., bits or packets, observed during any

interval of time, as shown in Figure 1. Consequently, this curve

covers all possible scenarios of traffic arrivals, observed at any

instant, i.e., if α is a maximum arrival curve, then for any interval

duration ∆, there will be at most α(∆) events. This concept allows
modeling a large panel of event arrival patterns, such as periodic,

sporadic, with or without jitter, and bursty or not. The definition

of the arrival curve is as following:

Definition 2.1. (Arrival Curve)[9] A function α is an arrival curve

for a data flow with an input cumulative function R, such that R(t)
is the number of bits received until time t , iff:

∀t , s ≥ 0, s ≤ t ,R(t) − R(s) ≤ α(t − s) (1)

Figure 1: Arrival curve

The considered arrival patterns necessary to define the arrival

curve can be obtained from traffic traces if any, or formal specifi-

cation. The latter is more common for real-time communication

systems under design. The network designer generally specifies a

traffic contract for each application, that is enforced using a con-

troller, e.g., policers or shapers. The most common controller fol-

lows a leaky bucket algorithm, which guarantees for the controlled

traffic a maximum burst b and a maximum rate r on the commu-

nication medium, i.e., the traffic flow is (b, r )-constrained. In this

case, the arrival curve is an affine curve, defined as λb,r (t) = b + r .t
for t > 0. Furthermore, there is the following interesting result

concerning the arrival curves.

Lemma 2.2. [9] If α1 and α2 are arrival curves for a flow R, then
so is α1 ⊗ α2, where (f ⊗ д)(t) = inf0≤s≤t { f (t − s) + д(s)}.

2.2 Node Model
To conduct worst-case performance analysis, we need to put con-

straints on the input traffic through the maximum arrival curve

notion. In return, we need to guarantee a minimum offered service

within crossed nodes to cover the worst-case behavior and infer

upper bounds on performance metrics, e.g., backlog and delay. This

is done through the concept of minimum service curve, which is

defined as following.

Definition 2.3. [9] (SimpleMinimum Service Curve) The function

β is the simple service curve for a data flowwith an input cumulative

function R and output cumulative function R∗ iff:

∀t ≥ 0,R∗(t) ≥ inf

s≤t
(R(t) + β(t − s)) (2)

A very useful and common model of service curve is the rate-

latency curve βR,T , with R the minimum guaranteed rate and T
the maximum latency before starting the service. This rate-latency

function is defined as follows: βR,T (t) = 0 if t ≤ T and R(t − T )
otherwise.
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This service curve is easy to define in the case of one input/
output node serving one or many traffic flows coming from the

same source and going to the same destination. However, to handle

more realistic scenarios with a network of nodes, implementing

aggregate scheduling which multiplexes the crossing flows at the

input and demultiplexes them at the output, we need to define

the left-over service curve guaranteed to each traffic flow within

each crossed node, considering the impact of the other traffic flows

in contention, to infer the offered guarantees for each flow. The

computation of such a left-over service curve depends on the imple-

mented scheduling policy within each crossed node, and the most

common ones are Blind Multiplexing, FIFO and Fixed Priority (FP).

It is worth noting that this derivation needs strict service curve

property in the general case, except for FIFO and Constant bit rate

nodes. A minimum strict service curve is defined as follows.

Definition 2.4. [9] (Strict service curve) The function β is the

strict service curve for a data flowwith an input cumulative function

R and output cumulative function R∗, if for any backlogged period1

]s, t], R∗(t) − R∗(s) ≥ β(t − s).

The main result concerning the left over service curves compu-

tation is as follows:

Theorem 2.5 (Residual service curve - Blind Multiplex). [3]
let f1 and f2 be two flows crossing a server that offers a strict service
curve β such that f1 is α1-constrained, then the residual service curve
offered to f2 is:

β2 = (β − α1)↑
where f↑(t) = max{0, sup

0≤s≤t f (s)}

2.3 Performance Analysis
Knowing the arrival and service curves, one may compute the

performance bounds for data flows, e.g., delay and backlog. In

the case of single node with one input/ output, these bounds are
computed according to the following theorem.

Theorem 2.6 (Performance Bounds). [9] Consider a flow con-
strained by an arrival curve α crossing a system S that offers a
minimum service curve β and a maximum service2 curve γ . The per-
formance bounds obtained at any time t are given by:
Output arrival curve3 : α∗(t) = α ⊘ β(t)
Tight Output arrival curve: α∗(t) = (γ ⊗ α) ⊘ β(t)
Backlog4: ∀ t : q(t) ≤ v(α , β)
Delay5: ∀ t : d(t) ≤ h(α , β)

The calculus of these bounds is greatly simplified in the case

of leaky bucket arrival curve and the Rate-Latency service curve.

In this case, the delay is bounded by
b
R +T , the backlog bound is

b + r ∗T , and the output arrival curve is b + r (T + t). These results
are illustrated in Figure 2.

To extend this result to a network of nodes, one of the strongest
result in the Network Calculus framework is the computation of

an end-to-end service curve for a tandem of nodes crossed by the

1
A backlogged period ]s, t ] is an interval of time during which the backlog is non

null, i.e., R(s) = R∗(s) and ∀u ∈]s, t ], R(u) − R∗(u) > 0

2∀t, R∗(t ) ≤ R ⊗ γ (t )
3f ⊘ д(t ) = sups≥0 {f (t + s) − д(s)}
4v(f , д) is the maximum vertical distance between f and д
5h(f , д) is the maximum horizontal distance between f and д

0

data (bits)

time

( )tα

( )tβ( , )h α β
(

,
)

v
α

β

Figure 2: Backlog and Delay Bounds

same flows. This curve is computed as the convolution of residual

service curves in each node, computed according to Theorem 2.6.

This result is described in the following theorem.

Theorem 2.7 (Concatenation-Pay Bursts Only Once). [9]
Assume a flow crossing two servers with respective service curves β1
and β2. The system composed of the concatenation of the two servers
offers a minimal service curve β1 ⊗ β2 to the flow.

Furthermore, this result infer an interesting property known

as "Pay bursts Only Once Phenomena". Indeed, the end-to-end

delay bound for a data flow, computed using the end-to-end service

curve obtained with Theorem 2.7, clearly outperforms the sum of

delay bound per node, computed iteratively using Theorem 2.6 and

denoted as additive delay bound. The computation of these two

bounds show the appearance of the burst term many times in the

additive delay bound, as opposed to only once for the other.

3 CONVENTIONAL TIMING ANALYSIS
ALGORITHMS AND LIMITATIONS

In the research community, there has been a growing interest in

the subject of accuracy-complexity tradeoffs of performance analy-

sis approaches using Network Calculus and we particularly focus

herein on the compositional algebraic approaches. There are three

main algorithms to compute the end-to-end delay bound for each

flow of interest (f.o.i). All of them need to start the procedure by

defining the initial input arrival curve within the network, i.e.,

within the source nodes, and the service curve guaranteed within

each crossed node to the aggregate flows. Then, the main difference

between the different algorithms relies on how to use these traffic

and node models to derive the end-to-end delay bounds.

Total Flow Analysis (TFA) [14]
This algorithm consists in computing iteratively the delay upper

bound in each crossed node for the aggregate flow, then the sum

results in end-to-end delay bounds [7]. The main steps are:

(i) summing up all the arrival curves of individual flows at the input

of each crossed node;

(ii) computing the delay bound based on Theorem 2.6, when consid-

ering the arrival curve of the aggregate flows and the global service

curve guaranteed within the node;
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(iii) computing the output arrival curve of each flow using Theorem

2.6, when considering the left-over service curve based on Theorem

2.5.

Separated Flow Analysis (SFA) [14]
This algorithm consists in considering the end-to-end service curve,

through the concatenation of the left over service curves, guaran-

teed for the f.o.i within each crossed node (applying Theorem2.7).

This method is also based on three steps:

(i) summing up the input arrival curves of flows in contention with

the f.o.i;

(ii) computing the left over service curve guaranteed to the f.o.i,

based on Theorem 2.5;

(iii) computing the output arrival curve of the f.o.i.

These steps need to be conducted for each flow within each

crossed node, to infer all the input arrival curves for the next node.

This procedure has to be continued along each flow path to have

all the left over service curves; thus the end-to-end service curve.

Pay Multiplex Only Once (PMOO) [16]
The main idea of this algorithm is based on accounting the flow

serialization phenomena along the flow path to compute tighter

end-to-end delay bounds. This fact consists in defining a smart

application order of Theorem 2.7 and Theorem 2.5 to start concate-

nating as much as possible the service curves of nodes, crossed by

the same group of interfering flows with the f.o.i (applying The-

orem2.7); and then to compute the left-over service curve of the

concatenated system guaranteed to the f.o.i (applying Theorem 2.5).

In doing this, we pay only once the bursts of interfering flows

with the f.o.i along its path.

Limitations and Discussion
To better evaluate these algorithms, we conduct a brief comparative

analysis of derived delay bounds and analysis times under the

different algorithms, when increasing the network load for a simple

but representative network example, shown in Figure 3.

Figure 3: Illustrative Network Example

As shown in Figure 3, the network example consists of two

identical 100Mbps full-duplex ethernet switches, implementing the

store and forward technique and FIFO policy with a negligible

technological latency; and four stations where each one generates

one periodic flow with a period P = 128ms and a maximum packet

length L = 267 bytes, sent in broadcast through the network.

First, each ethernet switch is modeled with a rate-latency service

curve, βC,T with C = 10
8
Mbps and T = L/C = 21 ∗ 10−6s.

Afterwards, each generated flow is modeled with a leaky-bucket

arrival curve, λb,r with b = L = 2136bits and r = L/P = 16, 68 ∗

10
3
bit/s.

To conduct the comparative analysis of the accuracy and com-

plexity of the different algorithms, we vary the network load U
through increasing the number of generated flows per station n;
thus the network load percentageU = n ∗ r is varying in [3 : 3 : 50].

Figure 4: Delay bounds vs Network load of the different al-
gorithms for the Network example

The derived delay bounds and analysis times under the different

algorithms regarding the network load are illustrated in Figure 4 and

Table 1, respectively. As we can notice, the delay bounds increase

linearly with the network load. Furthermore, the PMOO guarantees

the lowest delay bounds, which confirms the high accuracy of

PMOO in comparison with TFA and SFA algorithms. On the other

hand, the TFA offers the lowest maximum analysis time per flow,

which shows the low complexity of TFA in comparison with SFA

and PMOO. These results consolidate our statement that there is

no best algorithm in terms of both metrics.

TFA SFA PMOO

Max. Analysis Time per flow (us) 897 1683 953

Table 1: Maximum Analysis Times per flow of the different
algorithms for the Network example

Therefore, there is a need of a new solution to bridge the gap

between these existing algorithms and guarantee high accuracy

and low complexity. To achieve this aim, we make the choice of

improving the TFA algorithm to favor the time-effort metric, and

this extension is detailed in the next section.
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4 IMPROVED TFA ALGORITHM
In this section, we present the main idea of our proposed algorithm,

called TFA++, to compute accurate delay bounds with low com-

plexity. Afterwards, we detail the main steps of the computation

methodology and explain the algorithm. Finally, we express the

delay bounds for an illustrative network example under TFA++ and

PMOO, to show the expected enhancement in terms of accuracy,

while keeping a low complexity.

4.1 Main Idea
Without loss of generality, we model the network as a direct graph

where the nodes are the output ports of the different network com-

ponents and the edges the network links with finite transmission

capacities. It is worth noting that the output ports are generally

the only network parts inducing unknown multiplexing delays;

whereas the other kinds of ports or blocks generally infer maxi-

mum constant delays that we can easily add at the end of the delay

bound computation.

The main idea of the TFA++ is to take into account the impact

of the link capacity on the traffic model to enhance the end-to-end

delay bound tightness. Hence, we present herein two improvements

due to this fact.

Tighter input arrival curve of an aggregate traffic
To refine the input arrival curve of an aggregate traffic at a given

node with multiple inputs, where each input l has a finite transmis-

sion capacity Cl , we define the following notations:

• i ∋ k the set of flows crossing the node k ;
• Each flow i has an input arrival curve at each crossed node

k , αk⊖1i (t);
• PredN is the set of nodes transmitting flows on the input of

node N .

The aggregate traffic sent by each node l ∈ PredN on the input

of node N can be modeled through two possible arrival curves:

(1) the first one is simply the sum of individual flow arrival

curves crossing l ,
∑
i ∋l α

N ⊖1
i ;

(2) knowing the finite transmission capacity of the link from

node l to node N , Cl , we have a second arrival curve of this

same aggregate traffic, λ0,Cl .

Hence, based on Lemma 2.2, the aggregate traffic flow at the

input of node N has the following arrival curve:∑
l ∈PredN

(λ0,Cl ⊗
∑
i ∋l

αN ⊖1i (t)) (3)

According to Theorem 3.1.6 in [9], for functions passing through

the origin, the convolution of both functions is at most equal to their

minimum. Moreover, for the particular case of concave functions,

e.g., leaky bucket curves, the convolution is equal to the minimum.

Hence, the refined input arrival curve in Eq. 3 used in TFA++ is

necessarily tighter than the sum of the individual arrival curves,

used in the original TFA algorithm:∑
l ∈PredN

(λ0,Cl ⊗
∑
i ∋l

αN ⊖1i (t)) ≤
∑

l ∈PredN

∑
i ∋l

αN ⊖1i (t) (4)

Tighter output arrival curve of an individual flow
The finite transmission capacity at the output of a node N , CN ,

infers a maximum service curve γN (t) = CN .t .
Hence, through applying Theorem 2.6, we can compute the fol-

lowing output arrival curve from node N for each flow i , αNi , as

follows:

αNi (t) = (α
N ⊖1
i ⊗ γN ) ⊘ βNi (t) (5)

where βNi (t) is the left-over service curve of the flow i at node N
computed through applying Theorem 2.5.

The refined output arrival curve in Eq. (5) used in TFA++ is

tighter than the one used in the original TFA algorithm:

(αN ⊖1i ⊗ γN ) ⊘ βNi (t) ≤ αN ⊖1i ⊘ βNi (t) (6)

In the next section, we explain the use of both improvements to

compute the end-to-end delay bounds through the Algorithm 1.

4.2 Computation Methodology

Algorithm 1 Improved Total Flow Analysis (Network , F )

1: for each flow of interest f ∈ F do
2: for each sink ∈ sinks(f ) do
3: DEED (f , sink) ← 0

4: for each node N ∈ pathsrc(f )=>sink (f ) do
5: MaxDelay ← 0

6: K ← set-of-flows-at-input (N , f )
7: Pred← Predecessors(N )

8: MaxInput← ComputeInput(N , f )
9: MinService← ComputeService(N , f )
10: D ← ComputeDelay(MaxInput, MinService )

11: for each flow k ∈ K do
12: αNk (t) ← ComputeOutput(N , f )

13: end for
14: DEED (f , sink) ← DEED (f , sink) + D
15: end for
16: DEED (f ) ← Vector(DEED (f , sink))
17: end for
18: DEED ← Matrix(DEED (f ))
19: end for
20: return DEED

The Delay bounds analysis based on the proposed TFA++ is

described in Algorithm 1 for feed-forward networks, i.e., no cyclic

dependencies, and supporting multicast communications.

For each flow of interest f (line 1) and for each one of its paths

pathsrc(f )=>sink (f ) (line 2), the delay bound is computed within

each crossed node N , accounting the set of flows in contention

with f , K (line 6) and the the set of predecessors (line 7). Finally,

the end-to-end delay is simply equal to the sum of these individual

delays along the flow path (lines 4-15).

First, we compute the input arrival curve of the node N , consid-

ering the impact of the link capacity, as explained in Eq. (3) (line 8).

Then, we compute the total service curve of the crossed node (line

9), to enable the computation of the delay bound within the crossed

node through applying Theorem 2.6 (line 10). Afterwards, for each

flow in the interference set, we need to compute the output arrival

curve when taking into account the impact of the link capacity,
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as explained in (Eq. 5) (lines 11-13). Finally, the end-to-end delay

bound is the sum of all the crossed node delays until reaching the

corresponding sink (line 16).

4.3 Illustrative Example

Figure 5: Illustrative Example

We consider herein the illustrative example in Figure 5 to express

the derived delay bounds under TFA++ and PMOO for the flow of

interest f1 with the arrival curve α1. We detail herein the delay

bounds computation when considering identical flows, i.e., f1 and
f2, with leaky-bucket arrival curves, λb,r , and nodes with rate-

latency service curves, βC,T .
Under PMOO, as we can notice, both flows are crossing the same

nodes 3 and 4 until the final destination. Hence, we can start by

concatenating the nodes 3 and 4 through applying Theorem 2.7,

then computing the residual service curve offered to the f.o.i f1
through Theorem 2.5. This combination gives the following end-to-

end service curve under PMOO for f1:

β1 ⊗ (β3 ⊗ β4 − α
3⊖1
2
)↑ = βC−r,T+(2T .C+b+r .T )/C−r (7)

Consequently, the end-to-end delay bound under PMOO when

applying Theorem 2.6 is DPMOO = T + (2T .C + 2b + r .T )/(C − r ).
Under TFA++, we compute the end-to-end delay bound as the

sum of local delays in nodes 1, 3 and 4 crossed by the f.o.i. f1.
First, the delay bound in node 1 is simply equal to the maximum

horizontal distance between the arrival and service curves; thus

D1 = T +b/C . Afterwards, to compute the delay in node 3, we define

the input arrival curve of node 3 as in Eq. (3), 2∗min(C .t ,b+r (t+T )),
and consequently D3 = T + b/(C − r ). Finally, we compute the

output arrival curve of node 3 as in Eq. (5),min(C .t ,α4⊖1
1
+ α4⊖1

2
);

thus D4 = T . Hence, the end-to-end delay bound under TFA++ is

DT FA++ = 3T + b/(C − r ) + b/C .
As we can notice, DT FA++ < DPMOO for this illustrative exam-

ple. This fact shows the promising accuracy of TFA++ in comparison

to PMOO, and we will consolidate this statement in the next section

under different network configurations.

5 EVALUATION
In this section, we first report the computed delay bounds and time

analysis with respect to network size and load, to benchmark the

existing timing analysis algorithms against our proposed TFA++

in terms of accuracy and complexity. Afterwards, we present the

delay bounds for a representative avionics study to consolidate our

evaluation. All the computed metrics in this section are based on

the WoPANets tool [1].

5.1 Comparative Analyses
To conduct the comparative analyses, we consider the case study

with the following assumptions:

(i) The topology is a mesh connectingM nodes, as the one illustrated

in Figure 6;

(ii) All nodes guarantee a rate-latency service curve βR,T with

R = 100Mb/s and T = 40us;
(iii) Each node generates leaky-bucket constrained flows with a

burst σ and a rate ρ;
(iv) The network has a maximum bottleneck utilisation rateU .

Furthermore, we define various network configurations, where

each network configuration is defined with the tuple (σ , ρ,M,U ).
We vary the network size M or load U of this tuple at a time, to

highlight its impact on the derived delay bounds and time analysis.

Figure 6: Considered Network topology for the comparative
analysis

Figures 7 and 8 show the impact of the network size and load on

the delay bounds under the different timing algorithms, respectively.

As we can notice, TFA++ implies the lowest delay bounds for both

scenarios, in comparison to existing algorithms. This fact shows

its high accuracy. Moreover, when increasing the network size, i.e.,

the number of nodes, or the network load, i.e., the number of flows,

after a given threshold value, PMOO leads to worse delay bounds

than SFA, since it becomes more and more difficult to find a smart

application order of Theorem 2.7 and Theorem 2.5 under these

conditions; thus a more pessimistic bounds.

On the other hand, Figures 9 and 10 show the impact of the

network size and load on the time analysis under the different

timing algorithms, respectively. As illustrated, TFA++ infers almost

the same time analysis than the original TFA, which still is the

lowest one in comparison to existing algorithms.
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Figure 7: The impact of the network size on the delay bounds
for (σ = 400bytes, ρ = 20kbps,M ∈ [2x2 : 1x1 : 16x16],U = 30%)

Figure 8: The impact of the network load on the delay
bounds for (σ = 1000bytes, ρ = 250kbps,M = 6x6,U ∈ [2 :

2 : 98])

In addition, we can notice that the PMOO analysis time becomes

the highest when increasing the network size due to the high call

number of convolution operator (⊗); whereas when increasing the

number of flows, the SFA leads to the highest analysis time due to

the high call number of deconvolution operator (⊘).

Hence, these results confirm our first conclusions in Sec-
tion 3 concerning the pros and cons of the existing algorithms,
where the PMOO is considered in general as the most accu-
rate one but also the most complex one. Moreover, they show
the performance of our proposed algorithm in terms of high
accuracy and low complexity, in comparison to existing solu-
tions.

5.2 Avionics Case Study
We report herein the derived delay bounds under the different

timing algorithms for a representative AFDX network of A350,

illustrated in Figure 11. This network consists of 7 switches and

more than 60 end-systems. The latter generate more than 1100 mul-

ticast Virtual Links, inferring more than 8600 flows. The maximum

Figure 9: The impact of the network size on the analysis time
for (σ = 400bytes, ρ = 20kbps,M ∈ [2x2 : 1x1 : 16x16],U = 30%)

Figure 10: The impact of the network load on the analysis
time for (σ = 1000bytes, ρ = 250kbps,M = 6x6,U ∈ [2 : 2 : 98])

packet lengths are between 64bytes and 1500bytes and the periods

are between 4ms and 128ms.

Figure 11: Representative Avionics Case Study
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Figure 12 shows the delay bounds for the different flows follow-

ing the ascending order under the different timing algorithms. As

we can notice, both TFA++ and PMOO imply the most accurate

delay bounds for most of the flows. However, for this realistic case

study, there is no strict order relation between both algorithms.

Hence, to derive the tightest delay bounds, we can consider the

minimum of the computed delay bounds for each flow using PMOO

and TFA++. It is worth noting that the TFA++ still has the lowest

time analysis for this avionics case study. This fact shows that our

proposal still is a good value for this realistic case study, in compar-

ison to the existing algorithms in terms of accuracy and complexity.

Figure 12: Delay bounds for the avionics case study under
the different analysis algorithms

6 CONCLUSIONS
A new timing analysis algorithm based on Network Calculus, called

TFA++, has been proposed in this paper to cope with the known

accuracy-complexity tradeoffs in the literature. The main idea of

TFA++ is to take into account the impact of the finite transmission

capacity of the links on the input and output traffic models of

each crossed node. Moreover, this algorithm outperforms the main

existing solutions, in terms of high accuracy and low complexity

for some network configurations.

However, the avionics case has shown that there is no strict order

relation between PMOO and TFA in terms of accuracy. This fact

encourages us to lead further investigations on the comparative

analysis of both algorithms, when considering various network

topologies and flow parameters, i.e., the burst, the rate or the path

length.

REFERENCES
[1] WoPANets: Worst-Case Performance Analysis of embedded Networks. http:

//websites.isae.fr/wopanets.

[2] A. Amari and A. Mifdaoui. Worst-case Timing Analysis of Ring Networks with

Cyclic Dependencies using Network Calculus. Proceedings of RTCSA, 2017.

[3] A. Bouillard, L. Jouhet, and E. Thierry. Service curves in Network Calculus: dos

and don’ts. Technical report, 2009.

[4] A. Bouillard and G. Stea. Exact Worst-case Delay in FIFO-multiplexing Feed-

forward Networks. IEEE/ACM Transactions on Networking, 2014.
[5] C.-S. Chang. Performance Guarantees in Communication Networks. Springer-

Verlag, 2000.

[6] R. L. Cruz. A calculus for network delay. I. Network elements in isolation.

Information Theory, IEEE Transactions on, 37, 1991.
[7] R. L. Cruz. A calculus for network delay. II. Network Analysis. Information

Theory, IEEE Transactions on, 37, 1991.
[8] J. Grieu. Analyse et evaluation de techniques de commutation Ethernet pour

l’interconnexion de systemes avioniques. PhD thesis, INP, Toulouse, 2004.

[9] J. Le Boudec and P. Thiran. Network calculus: a theory of deterministic queuing
systems for the internet. Springer-Verlag, 2001.

[10] L. Lenzini, E. Mingozzi, and G. Stea. A Methodology for Computing End-to-end

Delay Bounds in FIFO-multiplexing Tandems. Performance Evaluation, 2008.
[11] J. Loeser and H. Haertig. Low latency hard real-time communication over

switched Ethernet. IEEE, Proceedings of Euromicro Conference on Real-Time

Systems, 2004.

[12] S. Perathoner, E. Wandeler, and et al. Influence of Different Abstractions on the

Performance Analysis of Distributed Hard Real-Time Systems. Design Automation
for Embedded Systems, 2009.

[13] Y. Qian, Z. Lu, and W. Dou. Analysis of worst-case delay bounds for on-chip

packet-switching networks. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2010.

[14] J. B. Schmitt and F. A. Zdarsky. The DISCO Network Calculator - A Toolbox for

Worst Case Analysis. In Proceedings of the First International Conference on

Performance Evaluation Methodologies and Tools, 2006.

[15] J. B. Schmitt, F. A. Zdarsky, and M. Fidler. Delay bounds under arbitrary multi-

plexing: When network calculus leaves you in the lurch... INFOCOM, 2008.

[16] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic. Improving Performance Bounds

in Feed-Forward Networks by Paying Multiplexing Only Once. MMB, 2008.

http://websites.isae.fr/wopanets
http://websites.isae.fr/wopanets

	Abstract
	1 Introduction
	2 The Network Calculus as a compositional Algebraic Theory
	2.1 Traffic Model
	2.2 Node Model
	2.3 Performance Analysis

	3 Conventional Timing Analysis Algorithms and Limitations
	4 Improved TFA Algorithm
	4.1 Main Idea
	4.2 Computation Methodology
	4.3 Illustrative Example

	5 Evaluation
	5.1 Comparative Analyses
	5.2 Avionics Case Study

	6 Conclusions
	References

