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Speed-Accuracy Tradeoff: A Formal Information-Theoretic Transmission
Scheme (FITTS)
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YVES GUIARD, LRI, Univ. Paris-Sud, CNRS, INRIA, Université Paris-Saclay and LTCI, Telecom

ParisTech, Université Paris-Saclay

The rationale for Fitts’ law is that the pointing task has the information-theoretic analogy of sending a signal over
a noisy channel, therefore matching Shannon’s capacity formula. Yet, the currently received analysis is incomplete
and unsatisfactory: there is no explicit communication model for the aiming task, there is a confusion between central
concepts of capacity (mathematical limit), throughput (average performance measure) and bandwidth (physical
quantity) and between source and channel coding so that Shannon’s Theorem 17 can be misinterpreted. We develop
an information-theoretic model for pointing tasks where ID is the expression of both a source entropy and a channel
capacity when misses are not allowed; then extend the model to include mistakes at rate 𝜀 and prove that ID should
be adjusted to (1 − 𝜀)ID. Finally, we reflect on Shannon’s channel coding theorem: Only minimum movement times,
not performance averages, should be considered.
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1 FITTS’ LAW: AN INTRODUCTION

The basic principles of the speed-accuracy tradeoff (e.g., that one can deliberately slow down one’s movements
to achieve a better precision) have been known for a long time by students of human motor control [56],
but the best-known attempt to mathematically describe the tradeoff is due to Fitts [15]. Fitts’ law, as we
say today, predicts the movement time MT required to reach a target of width 𝑊 located at distance 𝐷,
through a parameter called the index of difficulty (ID) expressed in bits:

ID = log2
2𝐷

𝑊
bit. (1)

The higher the value of the index, the more difficult the task, and the more time needed to reach the target.
Thus, Fitts’ law reads

MT = 𝑎 + 𝑏 · ID, (2)
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2 Julien Gori, Olivier Rioul, and Yves Guiard

where the intercept 𝑎 and the slope 𝑏 > 0 are constants to be empirically adjusted. The law has since been
extended using an effective index of difficulty IDe and compressed into a one-dimensional quantity, called
the throughput, to which we will return.

Being successfully applicable to all sorts of conditions—e.g., with restricted visual feedback [57]) and
with various types of participants (e.g., elders [3])—and in several environments—e.g., under water [28])—
the law has proven to be impressively robust from the empirical point of view. Its theoretical foundation,
however, has been challenged many times in many frameworks. Fitts originally used results from information
theory [15] but other derivations have been put forth using feedback considerations [11, 12], [35], ballistic
theory [26], control theory [6], and the theory of non-linear dynamical systems [5, 18].

This multiplicity of derivations, providing new ID’s or entirely new formulations are discomforting and
make Fitts’ law much harder to extend. As Meyer et al. [36, p. 192] explained: “Although [Fitts’] empirical
results were easy to replicate, the theoretical framework that he proposed to account for them was not
well accepted [. . . ]. Consequently, this triggered a search for other ways of explaining the logarithmic
speed-accuracy tradeoff.”

This paper is an attempt to articulate a thorough information-theoretic account of Fitts’ law. While the
information-theoretic framework will perhaps look archaic to some readers, we will suggest that, quite on
the contrary, that framework is still alive and promising. The remainder of this introductory section will put
into context and motivate the content of this paper through a short historical review in the remainder of
this introduction section.

1.1 Fitts’ Law and Shannon’s Information Theory

In 1948, Claude Shannon published A Mathematical Theory of Communication [48], a paper that pioneered
the modern analysis of digital communications. Fitts was inspired by Shannon’s work, to which he explicitly
referred [15, 17]. Shannon provided mathematically well-defined measures of important concepts such as the
information contained in a message or the uncertainty about the possible occurrence of an event. He also
described a generic paradigm for communications with a strict partitioning between the source, the encoder,
the channel, the decoder, and the destination. Shannon was able to obtain operational results, such as the
maximum achievable rate of transmission over a noisy Gaussian channel [48, Theorem 17]:

Shannon’s Theorem 17. The capacity of a channel of band1 𝐵𝑊 perturbed by white thermal noise of
power 𝑁 when the average transmitter power is limited to 𝑃 is given by:

𝐶 = 𝐵𝑊 log2

(︁
𝑃 +𝑁

𝑁

)︁
bit s−1.

As Meyer et al. [36, p. 189] explained: “To interpret his results concerning movement speed and accuracy,
Fitts (1954) adapted some concepts from information theory, which was popular at the time (Shannon
1948)”. In fact, Fitts [15] explicitly used the words entropy and capacity, and his interpretation of his finding
rested on a direct analogy with Theorem 17.

Obviously Fitts was not the only experimental psychologist in the nineteen fifties to pick up concepts from
Shannon’s information theory. While Shannon developed his theory only to solve specific problems related to

1Band is an old-fashioned designation for bandwidth. We use the 𝐵𝑊 notation for bandwidth rather than the original 𝑊 , to
avoid ambiguity with Fitts’ law notations.
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digital communications—in fact, Shannon preferred the name “communication theory”—the book [50] which
reprinted Shannon’s paper together with an expository introduction by Warren Weaver had an immense
impact on many scientists at that time. Weaver advocated the use of information-theoretic concepts to any
scientific field adressing broad communication issues, including linguistics, social sciences, and psychology.

One of the first successful applications of information theory to psychology is Hick’s law [25], later
extended by Hyman [27]. Hick’s law states that the time it takes a person to select one item in a set varies
linearly with the entropy of the set; in the simple case of equiprobable stimuli, the reaction time increases
logarithmically with the number of possible choices.

Perhaps the most memorable application of information theory to psychology is due to G. Miller [37].
In this highly-cited and most-influential paper, Miller attributed the coincidence that absolute judgment
and short-term memory share the same limits—the famous magic number seven plus or minus two—to the
human capacity for processing information.

Most of the successes of the information-theoretic approach to psychology were summarized in 1959 in a
book by Attneave [2] entitled Applications of Information Theory to Psychology.

1.2 Whatever Happened to Information Theory in Psychology

Today it is not uncommon to find information-theoretic approaches in statistics, probability, economics,
biology, etc.; however it is less so in psychology. Information theory had become so popular in the nineteen
fifties that many psychologists had perhaps become over-eager to use it: Many resulting applications were
far fetched and unfruitful; Attneave [2] pointed to “pointless”, or “downright bizarre” applications.

The use of information theory outside the sphere of communication engineering was challenged at the same
time by Shannon and the information theory community. In a famous editorial, Shannon [49] himself wrote
that information theory “has perhaps been ballooned to an importance beyond its actual accomplishments.”
He insisted that “the use of a few exciting words like information, entropy, redundancy, do not solve all our
problems.” Elias [13], an important figure of the information theory society, urged authors to stop writing
papers using information theory outside of its intended scope. In retrospect, Attneave’s survey of 1959
looks like a funeral tribute. Since the end of the sixties very few new articles in psychology have referred to
information-theoretic principles2.

In 1963, Crossman and Goodeve [11] proposed a different explanation for Fitts’ law which did not rely on
information-theoretic results. Their model, based on feedback considerations, assumed an aimed movement
to be composed of a sequence of submovements each of fixed duration and covering a fixed fraction of the
remaining distance. These authors essentially attributed the logarithmic nature of the law to a visual and/or
kinesthetic iterative feedback mechanism. Although the model provided a nice rationale, it was faced with a
number of limitations, mostly caused by its deterministic nature—in particular it failed to explain movement
end-point variability and excluded the very possibility of target misses.

By the end of the eighties, Meyer et al. [35, 36] proposed a stochastic feedback mechanism for rapid aimed
movements, thus eliminating the main flaw of the Crossman and Goodeve model. Meyer et al. proposed

2Another cause for the decline of the popularity of the information-theoretic approach in psychology was the discomforting
discovery reported in 1961, by Bertelson [4] that Hick’s law [25, 27] could be explained as a sequential effect independently of
stimulus entropy. To understand this finding a more sophisticated understanding of information theory was in order, but
then psychologists were more tempted by the cognitive approach [38].
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what they called a power model of Fitts’ law, rather than a logarithmic one. In fact, as shown by Rioul
and Guiard [42, 43] mathematically the Meyer et al. model falls in the class of quasi-logarithmic models.
The stochastic optimized submovement model of Meyer et al. [35] is now considered by many psychologists
(e.g. [45]) as the leading explanatory theory of Fitts’ law, illustrating the extent to which information theory
has lost ground in modern experimental psychology.

In a suggestive title, Whatever Happened to Information Theory in Psychology?, Luce [30] explains that
information theory is “no longer much of a factor” in psychology, essentially relegating information theory
to the rank of a historical curiosity.

1.3 Fitts’ Law, Shannon’s Theory, and Human Computer Interaction

Fitts’ law became popular in the human-computer interaction (HCI) community after a seminal study
by Card et al. [7]. Unlike experimental psychologists, however, HCI researchers have apparently remained
confident in the promise of the information-theoretic approach to Fitts’ law thanks to Scott MacKenzie’s
sustained effort to develop a complete performance model of Fitts’ law for HCI using the tools of information
theory [32], including an improvement of Fitts’ formula to make it more consistent with both Shannon’s
Theorem 17 and the available empirical data.

MacKenzie [32] later incorporated information-theoretic results such as the entropy of a Gaussian
distribution to account for target misses in pointing. Importantly, the recent ISO standardization of the
experimental methodology for the evaluation of pointing devices is explicitly based on information-theoretic
principles [1, 51].

More recently, Soukoreff and MacKenzie [52] have proposed a “fundamental theorem of human performance”
based on modified equations from information theory which the authors claim to explain the speed accuracy
tradeoff.

Other HCI researchers working on Fitts’ law have expressed the view that in this field the information-
theoretic approach has been somewhat imprecise: for example, A. Newell wrote:

“Theories are approximate. Of course, we all know that technically they are approximate;
the world can’t be known with absolute certainty. But I mean more than that. Theories are
also deliberately approximate. Usefulness is often traded against truth. Theories that are
known to be wrong continue to be used, because they are the best available. Fitts’ law is
like that. How a theory is wrong is carried along as part of the theory itself.” [39, p.13]

One problem with approximate theories, however, is that one can always devise a slight variation of a model
to obtain a better fit with some data, leading to a proliferation of variants. This is certainly the case with
Fitts’ law: for example Plamondon et al. [40] have listed a dozen formulations of the speed-accuracy tradeoff,
most, but not all of which correspond to the logarithmic tradeoff function.

Manuscript submitted to ACM
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The three best-known logarithmic models based on an analogy with Shannon’s capacity formula (𝐶 ∝
log(𝑃+𝑁

𝑁 )) are:

Fitts’ index [15] ID = log2
2𝐷

𝑊
, (3)

Welford’s index [54] ID = log2

(︁1
2 +

𝐷

𝑊

)︁
, (4)

and MacKenzie’s index3 [31] ID = log2

(︁
1 + 𝐷

𝑊

)︁
. (5)

MacKenzie’s formulation has been almost unanimously accepted in HCI but many experimental psychologists
still use Fitts’ original formulation, and so it is a fact that no general consensus has been achieved regarding
the exact formulation of the law. Natural questions that remain open are:

∙ why should 𝐷/𝑊 be analogous to 𝑃/𝑁 as defined in Shannon’s Theorem 17?
∙ what is the bandwidth 𝐵𝑊 of Shannon’s Theorem 17 analogous to in Fitts’ law ?
∙ since 𝐷 and 𝑊 are amplitudes while 𝑃 and 𝑁 in Shannon’s Theorem 17 are powers, what happened

to the squares?4

∙ which formulation for ID should we choose?

An important concern is that approximate theories may provide “local” results, but rarely do they propose
a solid framework that allows a generalization of the law. Rephrasing Newell’s quote: usefulness is not only
traded for truth but also for generality. On second thoughts, that tradeoff is perhaps less well balanced than
it seems.

1.4 Aim of the Present Study

Luckily, information theory does provide the solid theoretical framework we need. Among its appealing
features let us mention that it makes it possible to “investigate all kinds of systems without needing to
understand the machinery” [29]. There is little doubt that the modeling of so intricate a machinery as the
human movement system may benefit from information theory. To continue Newell’s quote:

“Grossly approximate theories are continuous launching pads for better attempts. Fitts’
law is like that too.” [39, p.13]

Any attempt to achieve a sounder, more rigorous theory demands that the flaws of the current account
be uncompromisingly acknowledged. We believe the information-theoretic treatment of Fitts’ law that is
currently received within HCI suffers from three fundamental weaknesses:

∙ there is no explicit communication scheme for the aiming task: no serious information analysis can
dispense with such a scheme;

∙ Shannon’s results on channel coding are misinterpreted: Theorem 17 concerns the transmission, not
the generation of information;

∙ two concepts, the information-theoretic capacity, a mathematical limit, and the throughput, an
average empirical measure, are usually confounded.

3The index of Equation 5 is usually known in HCI as the Shannon index, which suggests an exact match with Shannon’s
information theory. In this paper to take it for granted that the analogy with Shannon’s Theorem 17 holds would amount
to begging the question, and so we will refer to the “MacKenzie index”, neutrally acknowledging the fact that it was first
proposed by MacKenzie [31].
4The power of a random variable 𝑋 is the average of 𝑋2. If 𝑋 has zero mean, power is identical to variance.
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In Fitts’ law research as well as in other fields, information theory has suffered the backlash from its popularity
in the nineteen fifties—it has been literally a victim of its own success. Blatant abuses of Shannon’s theory
in a few scientific fields have led, possibly quite wrongly, to its global discredit in fields where its use was
indeed promising—and still is.

Our goal in this paper is to show that a simple, yet rigorous communication model for human aimed
movement is possible, and that this approach can provide useful results for HCI. The remainder of this
paper is organized as follows.

We start in Section 2 by presenting the few fundamentals (known concepts and results) of information
theory that will be needed throughout this paper. In Section 3 we then review previous information-theoretic
approaches and in Section 4 we propose a simple model for errorless aiming as observable in task contexts
where target misses are prohibited, or even technically impossible as was the case in Fitts’ disc- and
pin-transfer experiments [15]. From this model we will derive Fitts’ law through the computation of the
capacity of the so-called “uniform channel”. in Section 5 we will then extend the model, computing the
associated capacity so as to accommodate the occurrence of target misses: the index of difficulty will then
become a simple function of the probability of the target miss. Finally, in Section 6 we will show that the
very definition of the notion of capacity demands that Fitts’ law be interpreted as a law of extreme, rather
than average performance, a result whose implications for the statistical handling of experimental data are
far reaching.

2 SOME KEY CONCEPTS OF INFORMATION THEORY

It is customary in HCI to use the terms of capacity, throughput, and bandwidth—three technical terms that
receive different precise definitions in information theory—almost interchangeably when referring to the idea
of information-transmission rate.

In the Fitts’ law literature the term capacity is often used in a non-technical sense. This is the case for
example in Fitts’ own writings: in both [15] and [17] the word capacity is used three times (in the title as
well as on the first and last pages of the paper) but it seems that in Fitts’ mind the capacity was a general
notion that neither required a formal definition nor afforded measurement.

Typically in HCI, the word throughput serves to denote the measured performance, but there has been
a long controversy on the definition of that term. One option is to take the inverse of the slope of Fitts’
law [7, 59], the other is to take the ratio ID

MT [32, 51]. Both options conveniently compress the two parameters
of Fitts’ law into a single parameter but are not identical because of the existence of the intercept. Some
definitions (e.g., in [1]) allow for the integration of the error rates [51]. Not only does the throughput appear
to be an all-encompassing measure that lacks an information-theoretically justified definition, it is also
confusing to have at one’s disposal two incompatible definitions for it.

Finally, bandwidth is used either as a synonym of throughput [59] or as an equivalent to 1
MT [34]. Likewise,

the term information is loosely applied, often as a synonym for entropy (e.g., [15]), occasionally for mutual
information (e.g., [10]).

This section recalls basic definitions and some fundamental results of information theory5. Although that
material is very well known, it is absolutely essential for the understanding of this paper.
5Many important notions and proofs are omitted. The interested reader could look at [9, 41, 58] for more details and in-depth
analyses.
Manuscript submitted to ACM
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Source Encoder

Noise

Decoder Destination
𝑋 𝑌

Channel

Fig. 1. Shannon’s point-to-point communication paradigm

2.1 Shannon’s Communication Model

Shannon [48] gave an accurate and generic description of a point-to-point transmission system (see Figure
1). His analysis of information transmission is based on this scheme, composed of five elements. To identify
each of these elements in a pointing task is a necessary preliminary step that traditional Fitts’ law research
has skipped.

∙ The information source produces 𝑀 , modeled as a random variable. One particular message 𝑚 is the
outcome of 𝑀 , say 𝑀 = 𝑚. The only aspect that matters is that we can assign a probability to each
outcome, in line with Shannon’s famous quote: “Semantic aspects of communication are irrelevant
to the engineering problem. The significant aspect is that the actual message is one selected from a
set of possible messages”;

∙ The encoder adapts the message from the source to the channel, in at least two aspects: a physical
adaptation in which the message is converted into a suitable signal for transmission (e.g., the
variation of an electrical current); and a channel encoding in which certain operations are performed
on the message to enhance transmission quality. One important feature is that the encoder performs
deterministic operations;

∙ The channel is the medium that serves to transmit the signal from the emitter (source and encoder
pair) to the receiver (decoder and destination pair). On its way from the emitter to the receiver,
the signal may be corrupted by noise. If the input of the channel is 𝑋, and the output is 𝑌 , then
the channel is completely described by the probability of 𝑌 conditional on 𝑋: 𝑝(𝑌 |𝑋 ).

∙ The decoder also performs deterministic operations to get back to the message space while trying
to correct the effect of transmission noise in such a way that the destination can understand the
message.

Because of channel noise, a given message at the input of the channel may turn into an erroneous message
at the output, so that we may not achieve a completely reliable communication. The revolutionary aspect
of Shannon’s work was to demonstrate that every channel possesses a non-negative parameter, called its
capacity, below which every rate of information can be achieved reliably, that is, with an arbitrarily low error
rate. In a sense one can trade off the rate of information by lowering the speed of transmission to obtain an
accurate communication: this is where Shannon’s paradigm almost naturally comes into play in the study of
the speed-accuracy tradeoff.

The task of the electrical engineer is to find the encoding and decoding schemes that match the channel
so as to ensure optimal transmission (maximizing the transmission rate while keeping a very low error rate).
Students of the human motor system actually face a reverse engineering problem: all the key elements of
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8 Julien Gori, Olivier Rioul, and Yves Guiard

the motor system are in place, but they would like to determine, if possible, the properties of the motor
system from what they are able to observe.

2.2 Shannon’s Information Measures

Information in Shannon’s sense is a measure of randomness. We now review the definitions of entropy and
mutual information.

Definition 2.1 (Entropy of a discrete random variable 𝑋).

𝐻 (𝑋 ) = −
∑︁

𝑥

𝑝(𝑥) log2 𝑝(𝑥) = −E log2 𝑝(𝑋 ) bit

where 𝑋 is drawn according to the probability distribution 𝑝(𝑥) = 𝑃 {𝑋 =𝑥}, and where E(𝑋 ) =
∑︀

𝑥 𝑥 · 𝑝(𝑥)

(noted E𝑋 when no confusion is possible) denotes the mathematical expectation of the random variable 𝑋.

Entropy measures the uncertainty of the outcome of a random variable, and that uncertainty is a function
of the probabilities assigned to the different values of the random variable: the higher the entropy of 𝑋, the
more uncertain its outcome, the harder the prediction. Entropy measures “information” in the sense that the
outcome of a random variable will increase the receiver’s knowledge (or decreases the receiver’s uncertainty).

In pointing studies, the entropy has been used to measure the “difficulty” of the task (e.g. [10, 15]) or the
richness of the set of pointing possibilities [46]. In an equiprobable scenario where 𝑋 is uniformly distributed,
the entropy reduces to the logarithm of the number of choices [9, 25, 41].

Entropy is instrumental in proving source coding results: if the source of information produces 𝑛 messages
𝑋1, . . . , 𝑋𝑛, the information rate

𝑅 =
1
𝑛

𝐻 (𝑋1, ..., 𝑋𝑛) =
1
𝑛
E log2 𝑝(𝑋1, ..., 𝑋𝑛) bit symbol−1.

is the amount of information the source produces on average and represents the minimal bit rate at which it
is possible to encode the source without distortion. However, since the messages are transmitted over a noisy
channel, some information might be lost. Mutual information, or, synonymously, transmitted information is
the measure we need to characterize the amount of information that is effectively transmitted through the
channel.

Definition-Proposition 2.2 (Mutual information between random variables 𝑋 and 𝑌 ).

𝐼 (𝑋; 𝑌 ) = E log2

(︁
𝑝(𝑌, 𝑋 )

𝑝(𝑋 )𝑝(𝑌 )

)︁
= E log2

(︁
𝑝(𝑌 |𝑋 )

𝑝(𝑌 )

)︁
= E log2

(︁
𝑝(𝑋|𝑌 )

𝑝(𝑋 )

)︁
bit

= 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝑋 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋|𝑌 )

where 𝑋 and 𝑌 are drawn according to the joint pdf 𝑝(𝑥, 𝑦).

Each of these diverse expressions is useful. Mutual information measures the difference between the
receiver’s uncertainty about the source before the transmission (𝐻 (𝑋 )) and after the transmission given the
channel output (𝐻 (𝑋|𝑌 )). In an ideal (noise-free) transmission, we would have no residual uncertainty on
𝑋 after receiving 𝑌 , so that 𝐻 (𝑋|𝑌 ) would be zero and 𝐼 (𝑋; 𝑌 ) = 𝐻 (𝑋 ): that information would then be
perfectly transmitted from the source to the destination.
Manuscript submitted to ACM
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2.3 Shannon’s Capacity: Maximum Transmitted Information

Shannon’s Theorem 17, which was explicitly considered by Fitts, is in fact a corollary to the more general
channel coding theorem, which states that the maximum bit rate (capacity) of a so-called “memoryless”
channel in a reliable communication scheme is the maximum mutual information.

Channel Coding Theorem. The capacity of a memoryless channel:

𝐶 = max
𝑝(𝑥)

𝐼 (𝑋; 𝑌 ) bpcu,

expressed in bits per channel use (bpcu), is such that for any rate 𝑅 < 𝐶 and any 𝜀 > 0, there exists a coding
scheme with arbitrarily small probability of error P𝑒 < 𝜀.

In other words, channel capacity 𝐶 is computed as the maximum amount of mutual information 𝐼 (𝑋; 𝑌 )

conveyed in the channel. This maximum is usually taken over some cost constraint on 𝑝(𝑥) (that is, on the
channel use)6. As long as rate 𝑅 does not exceed capacity 𝐶, error probability P𝑒 can be made as small as
we like—this defines “reliable communication” as a mathematical limit.

2.4 Throughput and Bandwidth: A Matter of Units

It is customary in modern practice of communication theory to use as units bits per second (bit s−1) or bits
per channel use (bpcu) interchangeably when discussing information rates. This is because in almost all
digital devices, any waveform can be sampled at a fixed time period 𝑇𝑠. In this case, time is in one-to-one
correspondence with sample number: it is the sample number times 𝑇𝑠.

The throughput has no fixed definition in digital communications as its definition may vary depending on
the application (wireless network communication, packet-based schemes, etc.). The basic idea is to measure
an effective speed of data transmission, usually in bits per second.

In contrast, the bandwidth of a signal has a simple definition.

Definition 2.3. The bandwidth is the difference between the upper and lower frequencies in a continuous
set of frequencies.

The bandwidth is measured in ‘Hertz ≡ s−1’ and, therefore, is in no way equivalent to throughout or to
capacity. The following sampling theorem7 can be used to relate ‘Hertz’, ‘bit s−1’ and ‘bpcu’.

Shannon-Nyquist Sampling Theorem. If a function of time has a limited bandwidth 𝐵𝑊 , it is
completely determined by its values (“samples”) taken at a series of discrete times regularly spaced 1

2𝐵𝑊

seconds apart8.

By the sampling theorem, 𝑇 seconds of a waveform of bandwidth 𝐵𝑊 correspond to 2𝑇 𝐵𝑊 samples
fed into the channel. Thus, to obtain units in ‘bit s−1’ from a quantity expressed in ‘bpcu’, one just has to

6This cost constraint is usually a power constraint on the transmitted signal, but as we shall see later other types of constraint
can be useful.
7This theorem has many aliases, ranging from Shannon’s sampling theorem to the Whittaker-Nyquist-Kotelnikov-Shannon
theorem.
8In addition, it is possible to derive a practical procedure to reconstruct the waveform (function of time) from its samples.
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10 Julien Gori, Olivier Rioul, and Yves Guiard

multiply the quantity by 2𝐵𝑊 . For additive white Gaussian noise under a power constraint, Shannon [48]
calculated the channel capacity as

𝐶 = max
𝑝(𝑥)

𝐼 (𝑋; 𝑌 ) =
1
2 log2

(︁
1 + 𝑃

𝑁

)︁
=

1
2 log2 (1 + SNR) bpcu, (6)

where SNR = 𝑃
𝑁 is the signal-to-noise power ratio. Multiplying by 2𝐵𝑊 gives Shannon’s Theorem 17:

𝐶 = 𝐵𝑊 log2

(︁
1 + 𝑃

𝑁

)︁
= 𝐵𝑊 log2 (1 + SNR) bit s−1. (7)

Similarly any transmission rate 𝑅 in ‘bpcu’, when multiplied by twice the bandwidth 2𝐵𝑊 , yields the
expression of the throughput 𝑅 in ‘bit s−1’.

2.5 Spectral Efficiency

The relation between throughput and bandwidth can also be clarified using yet another important quantity
used in digital communications, spectral efficiency.

The actual transmission rate 𝑅 in ‘bpcu’ (or the actual throughput 𝑅 in bit s−1) used in a communication
system is virtually never equal to the capacity—the capacity is only a theoretical upper bound. However, as
we have seen in the preceding subsection, both quantities, when expressed in ‘bit s−1’, increase linearly with
the bandwidth 𝐵𝑊 . Since 𝑅 in ‘bpcu’ is fixed by the practical coding scheme used in the system, for a fixed
code, the only way to increase the throughput 𝑅 in bit s−1 is to increase the bandwidth 𝐵𝑊 of the system,
which is probably the reason for the widespread conflation of bandwidth and throughput. The ratio between
the two quantities is called spectral efficiency:

Definition 2.4. Spectral Efficiency

𝑆𝐸 =
𝑅

𝐵𝑊
bit s−1 Hz−1 (≡ bit)

where 𝐵𝑊 is the available bandwidth and 𝑅 the actual throughput of the communication scheme.

Thus in an ideal noise-free setup, spectral efficiency would be equal to the capacity in bpcu.
The following interpretation is quite useful: a communication that lasts 𝑇 seconds, occupies a bandwidth

𝐵𝑊 , and successfully transmits 𝐿 bits will have spectral efficiency

𝑆𝐸 =
𝐿

𝑇 · 𝐵𝑊
bit

So in essence 𝑆𝐸 is just the number of transmitted bits (load) divided by the resources (time window and
bandwidth) used for transmission.

2.6 Errors vs. Erasures

Due to noise in the channel, transmission mistakes in the channel9 may occur. These can be of two types:
errors and erasures. In communication engineering, an error is said to have occurred when the received
symbol differs from that originally sent. For example, the word BUTTER is received in the place of the sent

9It is important to distinguish channel mistakes from decoding mistakes. Channel mistakes will inevitably occur, yet they
can be corrected. Shannon’s channel coding theorem states that the decoding errors can be made arbitrarily rare, meaning
we are able to correct nearly all channel errors.
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word BATTER, the A having been accidentally replaced by an U. But suppose that the received word is
B?TTER, with the question mark signaling a missing character: This is what is called an erasure.

One important difference between an error and an erasure is that the former conveys wrong information
whereas the latter conveys no information but the error’s position. In usual Fitts’ law experiments the
outcome of a pointing act can be either measured as an error, i.e., a distance from endpoint to target center,
or categorized in an all-or-none way as a hit versus a miss.

The error vs. erasure distinction will be very useful below in Section 5, when we proceed to extend the
error-less model to the more general model that allows for target misses.

3 PREVIOUS INFORMATION-THEORETIC DERIVATIONS OF FITTS’ LAW

As pointed out in the introduction, Fitts’ law has been derived in multiple ways, multiple times. In this
section, we look at those derivations that make use of the information-theoretic concepts of entropy and
capacity.

Throughout this paper, we will exclusively consider the case of a discrete (one-shot) aiming task because
the so-called reciprocal task introduced by Fitts [15] allows a problematic overlap between processes involved
in controlling successive movements—in particular, we have the drawback that the variability of the movement
endpoint can be in part attributed to the variability of the starting point (See [17, 22] for a more detailed
argumentation).

3.1 Difficulty as a Source Entropy: Aiming is Choosing

In an early book chapter that has attracted limited attention, Fitts [14] wondered whether the scope of
Hick’s law [25] could be broadened: “The selection of a particular response member is only one of the ways
in which man can generate information. Another way is by selecting one of several directions or amplitudes
of the movement of a designated body member” [14, p. 53].

Hick measured choice reaction time in response to one of several equally probable stimulus events and
found that reaction time increased linearly with the logarithm of the number of possibilities. From Figure
2 taken from [14], we see how Fitts envisioned aiming as a choice: aiming towards a target of size 𝑊 out
of a distance 𝐷 is made equivalent by Fitts to choosing one target out of 𝑛 = 𝐷

𝑊 . Note that Figure 2
represents targets when direction is fixed; adding the choice of direction doubles the choice to 𝑛 = 2𝐷

𝑊 . Fitts’
formulation then becomes, in bits:

ID = log2 𝑛 = log2

(︁2𝐷

𝑊

)︁
bit,

which is almost identical to Hicks’ formula: Hick considered log2 (𝑛 + 1) bits for 𝑛 choices, because he
considered as a possibility not to choose any of the targets.

Welford [54] derived his own index using the same “aiming is choosing” rationale, the difference consisting
in the definition of the amplitude to be considered and the way in which the targets are laid out. Figure 3
illustrates layouts considered by Fitts vs. by Welford.

Using the same rationale, we can in fact derive MacKenzie’s index of difficulty by taking the amplitude to
be equal to 𝐷, and the first and last targets centered around the starting and stopping points, as illustrated
in Figure 4. Assuming that the probability of hitting a target is only dependent on its geometry, the chance of
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2 choice amplitude 16 choice amplitude

| |
8 in.

Fig. 2. Schematic drawing of two target patterns that would be used in an experiment to illustrate how the number of
alternative movement amplitudes might influence decision time and movement time, reproduced from [14, Figure 2, p. 53]

.

stop
start

𝐷

2𝐷

𝑊 start stop

𝐷

𝑊

Fig. 3. Placing targets and identifying 𝐷 and 𝑊 in the context of the Fitts (left) and the Welford (right) formulation.

start stop

𝐷

𝑊

Fig. 4. Placing targets and identifying 𝐷 and 𝑊 in the context of the MacKenzie formulation

hitting a target of size 𝑊 across a distance of 𝐷+𝑊 is the ratio 𝑝 =𝑊/(𝐷+𝑊 ). Provided that (𝐷+𝑊 )/𝑊

is a round number, the number of targets that fit inside 𝐷+𝑊 is exactly 𝑛 = (𝐷+𝑊 )/𝑊 . Since distribution
of the targets is uniform, the entropy 𝐻 of this target distribution is simply

𝐻 = −
𝑛∑︁
1

𝑝 log2 𝑝 = − log2 𝑝 = log2 𝑛 = log2

(︁
1 + 𝐷

𝑊

)︁
bit,

which yields an exact match with the MacKenzie ID.
The index of difficulty is here computed as a source entropy—there is no information transmission. The

aiming task is simply identified to the creation of target identifiers using the “aiming is choosing” rationale.
One may also argue that uniformly distributed (equiprobable) “targets” is a rather implausible hypothesis,
but since the uniform distribution is the one that maximizes entropy [9, 41] it provides the least upper
bound on the entropy for any target probability distribution. The resulting entropy 𝐻 is thus the number
of bits required to identify the target position without any prior knowledge whatsoever, and the index of
difficulty arises as a measure of the uncertainty associated with the task of choosing one target. The more
potential targets (the higher the ratio 𝐷/𝑊 ), the more difficult the pointing task.

It is noteworthy that Fitts [14] explicitly used the term information “generation” rather than transmission
and made movement time to depend upon the index of difficulty. This is consistent with his assumption that
Manuscript submitted to ACM
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the ID should serve to characterize target entropy—a source coding rate in Shannon’s sense. It is somewhat
surprising that to justify the same index in his famous article published one year later, Fitts [15] referred to
Theorem 17—a channel coding rate in Shannon’s sense, which is completely unrelated to source coding.

3.2 Difficulty as a Channel Capacity: An Analogy

The analogy with Theorem 17 was put forward first by Fitts [15], and later by MacKenzie [31]. In Shannon’s
capacity formula for the additive white Gaussian noise channel

𝐶 = 𝐵𝑊 log2 (1 + SNR) bit s−1,

MacKenzie [31] identified the bandwidth to the reciprocal of movement time 𝐵𝑊 = 1/MT, and log2 (1+SNR)

to ID = log2 (1 +𝐷/𝑊 ), so that MT = ID/𝐶.
Fitts [15] followed the same steps, except that he identified log2 (1 + SNR) with log2 (2𝐷/𝑊 ) instead of

log2 (1 +𝐷/𝑊 ). The addition of 1 to the term inside the log by MacKenzie was inspired by the visual shape
of Shannon’s capacity formula which can be expressed in two mathematically equivalent forms:

𝐶 = 𝐵𝑊 log2

(︁
𝑃 +𝑁

𝑁

)︁
= 𝐵𝑊 log2

(︁
1 + 𝑃

𝑁

)︁
bit s−1. (8)

MacKenzie [31] remarked that Fitts and Peterson’s [17] formulation contained an “unnecessary deviation
from Shannon’s Theorem 17” (see also [33]) and that Fitts’ index was actually based on an approximation
of 𝐶 for large SNR (𝑃 ≫ 𝑁). Adding the one would give the true formula, because in Fitts’ law it is not
always true that 𝑃 ≫ 𝑁 . Fitts and Peterson [17], however, considered the amplitude of the movement 𝐷 to
be equivalent to the signal plus noise power: 𝑃 +𝑁 , and half the range of movement variability 𝑊/2 to be
equivalent to noise power 𝑁 ; so in essence their formula also matches Equation 8. Therefore, as it turns out,
MacKenzie’s amendment boils down to a reformulation of the same idea as Fitts and Peterson’s in which
movement amplitude is made to correspond to the signal alone, instead of signal plus noise.

Recalling the exposition of Section 2, the analogy seems loose, whether with the Fitts or the MacKenzie
version of the index:

(1) the SNR is a ratio of powers, while 𝐷/𝑊 is a ratio of amplitudes;
(2) there is no justification to identify 𝐵𝑊 to 1/MT beyond the fact that both have the same physical

units s−1;
(3) the ID is in fact identified with twice the capacity 𝐶 = (1/2) log2

(︀
(𝑃 +𝑁 )/𝑁

)︀
in bpcu;

(4) most importantly, the channel, as well as the channel’s input and output, are left undefined.

Overall, it is not clear how the proposed analogy may actually help tackle the problem of aiming.

3.3 Difficulty as an Entropy Difference

Definition-Proposition 2.2 makes it possible to calculate mutual information as the difference between two
entropies. Crossman [10] was the first to use this result to compute what he called the “perceptual load”
associated with an aiming task, arguing that “the perceptual load [...] is measured by the difference between
initial and final entropy”.
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14 Julien Gori, Olivier Rioul, and Yves Guiard

In keeping with Shannon’s terminology, Crossman used 𝐻 (𝑋 ) as the input entropy, and 𝐻 (𝑌 ) as the
output entropy, but his formula10 for information 𝐼:

𝐼 = 𝐻 (𝑌 ) − 𝐻 (𝑋 ),

is questionable, since mutual information is in fact equal to

𝐼 (𝑋; 𝑌 ) = 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝑋 ). (9)

Now assume that the channel noise, represented as a random variable 𝑍, is added to the channel’s input 𝑋

to yield the output 𝑌 = 𝑋 + 𝑍, where the noise 𝑍 is independent of 𝑋. This is known as an additive noise
model. In this case we have

𝐼 (𝑋; 𝑌 ) = 𝐻 (𝑌 ) − 𝐻 (𝑋 + 𝑍|𝑋 ) = 𝐻 (𝑌 ) − 𝐻 (𝑍|𝑋 ) = 𝐻 (𝑌 ) − 𝐻 (𝑍 ).

Thus information is obtained from the output (endpoint distribution) entropy by substracting the entropy
of the noise 𝑍, not the entropy of the input signal 𝑋 like in [10].

Recently, a derivation in the same spirit was given by Hoffmann [26], who considered the difference
in entropy between visually-controlled and ballistic movements for a distribution of movement endpoints.
Hoffmannn’s rationale, reminiscent of Woodworth’s [56], was that visual control represents an extra process
that must reduce the entropy of the endpoint distribution. Therefore, by taking the entropy difference
between visually-controlled and ballistic movements, one should be left with the amount of information
needed for the specific aiming process. Hoffman ended up with the following formula for mutual information:

𝐼 = log2 (
√

2𝜋𝑒𝜎𝑏) − log2 (
√

2𝜋𝑒𝜎𝑣 ),

where 𝜎𝑣 is proportional to 𝑊 11, and 𝜎𝑏 = 𝑐 + 𝑑𝐷, with the constants 𝑐 and 𝑑 to be evaluated empirically.
This last relationship comes from ballistic movement theory, where movement time and movement variability
are evaluated under a maximum torque condition [19].

The rationale of Hoffmann is the same as Crossman’s, except that the start and endpoint entropies are
evaluated differently—in both cases what is being evaluated is not information transmission. The problem is
that the quantity considered has little to do with the idea of a capacity for transmitting information. In
such derivations, Shannon’s channel coding theorem has no light to cast.

There is another mismatch between Shannon’s theory and ID in Soukoreff and MacKenzie’s paper [53]
where the entropy difference is considered between the (input) signal and the noise instead of between the
output and the noise.

3.4 Soukoreff and MacKenzie’s Fundamental Theorem of Human Performance

Soukoreff and MacKenzie [52] have proposed another account of the speed-accuracy tradeoff of rapid aimed
movements based on modified information-theoretic inequalities. The main claim of the article is that the
classical equation:

𝐻 (𝑋|𝑌 ) = 𝐻 (𝑋 ) − 𝐼 (𝑋; 𝑌 ) ≥ 𝐻 (𝑋 ) − max 𝐼 (𝑋; 𝑌 ) = 𝐻 (𝑋 ) − 𝐶,

10Formula 3, page 5 in [10]
11This relationship was first used by Crossman [10], and supposes that the endpoints follow a Gaussian distribution (see
Section 5).
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should be accommodated to take into account the human’s imperfect nature (Formula 8 in [52]) using a
parameter 𝛼 ≥ 1:

𝐻 (𝑋|𝑌 )ℎ = 𝛼[𝐻 (𝑋 ) − 𝐼 (𝑋; 𝑌 )] ≥ 𝛼[𝐻 (𝑋 ) − max 𝐼 (𝑋; 𝑌 )] = 𝛼[𝐻 (𝑋 ) − 𝐶] (10)

These author’s analysis, however, raises some doubts:

∙ The validity of the modified equation is evaluated in [52, Figure 5]. Although the maximum
equivocation is 4 bit s−1, throughput is extrapolated up to 12 bit s−1. Also, all the points but three
are clustered into an isotropic mass: removing the three data points corresponding to maximum
equivocation, out of a total of 18 data points, would massively decrease the correlation. What further
weakens the empirical analysis is that the data has been acquired by scanning Fitts’ article [16],
and that Fitts himself never actually described how he would estimate equivocation12.

∙ Soukoreff et al. [52] treated the speed-accuracy tradeoff in general without tackling Fitts’ law,
perhaps the most important instance of a speed-accuracy tradeoff.

∙ Arguably twisting a fundamental information-theoretic formulation by introducing 𝛼 is unsatisfactory—
within an appropriate framework no twists should be needed.

Unlike Soukoreff and MacKenzie [52], we believe that Fitts’ law results can in fact be accommodated within
the standard information-theoretic approach. The goal of the model to be presented next is precisely to do
that.

4 A CHANNEL CAPACITY FOR AN ERRORLESS MODEL OF FITTS’ LAW

Many authors have adhered to the view that the human motor system can be modeled as a communication
system composed of a source, a transmitter, a channel, a receiver, and a destination (see Section 2).
Welford [54] discussed a single channel hypothesis with a structure for the chain of mechanisms involved in
sensory-motor performance. More recently Zhai et al. [60] (page 106, Figure 2.1) proposed a model for stroke
gestures, in which the human intention forms the source of the communication system. Figure 5 displays an
adaptation of the stroke gesture’s model to the case of pointing.

Message. The information source we consider is the user’s intention, as in [60]. Following the “aiming is
choosing” rationale, the participants’ intention is that of choosing a target, i.e. locating its center. Thus,
considering the (centered) partition of Figure 4, the message 𝑋 takes value in the set {− 𝐷

2 , − 𝐷
2 +𝑊, . . . , 𝐷

2 −
𝑊, 𝐷

2 }. As seen in the previous Section, the entropy of the source then reduces to the MacKenzie index of
difficulty: 𝐻 (𝑋 ) = ID = log2 (1 +𝐷/𝑊 ). The description of the message shows a least-effort strategy for the
description of the target: the smaller the targets, the higher the source entropy.

Channel. The message produced under the intention of the participant is encoded and sent through
the noisy channel. The noise in the channel is presumably a reflection of the imperfection of neural and
musculo-skelettal mechanisms, and should ultimately model movement end-point variability. If we want
“target aiming” to become “target hitting”, then the noise must have an absolute amplitude less than 𝑊

2 , so
that the constraint on the channel is an amplitude constraint, rather than the usual power constraint.

12Estimating information-related measures is far from trivial, and is actually a research question on its own.
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Fig. 5. The human motor system as a communication system

Destination. The receiver simply checks if the right target has been attained. It may be the participant
herself, through a visual check (which suggests the possibility of some feedback). The right target may very
well be always hit, which ensures errorless communication; this will be the case of our model.

In summary, our model for the aiming task is comprised of a source that represents the “aiming is choosing”
paradigm and a limited-amplitude channel that allows the receiver to ensure that the target is never missed.
A limited-amplitude channel is described next.

4.1 The Capacity of the Uniform Channel

A limited-amplitude channel was presented by Rioul and Magossi [44] to show that “Hartley’s rule”13 may
yield Shannon’s capacity theorem. The theorems and proofs of this subsection are directly inspired from this
work.

Definition 4.1 (Uniform channel). The aiming task with target distance 𝐷 and target width 𝑊 is modeled
as a channel with the following properties:

∙ discrete input: 𝑋 ∈ {− 𝐷
2 , − 𝐷

2 +𝑊, . . . , 𝐷
2 − 𝑊, 𝐷

2 }
∙ uniformly distributed additive noise: 𝑍 ∈ [− 𝑊

2 , 𝑊
2 ]

∙ output: 𝑌 = 𝑋 + 𝑍

The uniform channel’s input is drawn uniformly in the set of messages relating to the center of the
targets coming from the “aiming is choosing” rationale. The entropy of the input 𝑋 is thus 𝐻 (𝑋 ) = ID =
log2 (1 +𝐷/𝑊 ). When the message enters the channel an independent noise taking values in [−𝑊/2, 𝑊/2]
is added to it. Notice that relative to the previous subsection this definition adds the assumption that

13Hartley’s rule is a formula which shares many similarities with the MacKenzie ID, particularly in the fact that it also
involves the logarithm of a ratio of amplitudes, rather than a ratio of powers as in Shannon’s capacity formula.
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the noise is uniformly distributed (we will return to this assumption in Theorem 4.3). In line with the
information-theoretic rationale, we now compute the capacity of this uniform channel:

|𝑋| ≤ 𝐷
2

|𝑍| ≤ 𝑊
2

|𝑌 | = |𝑋 + 𝑍| ≤ |𝑋| + |𝑍| ≤ 𝐷+𝑊
2+

Fig. 6. The uniform aiming channel under amplitude constraint

Theorem 4.2. The capacity 𝐶′ of the uniform channel under the amplitude constraint |𝑋| < 𝐷
2 is given

by the following expression:

𝐶′
= log2

(︁
1 + 𝐷

𝑊

)︁
bpcu.

The proof can be found in the Appendix. Not only does the MacKenzie ID match the entropy of the target
distribution, it also matches the capacity of the channel used in modeling the aiming task. An important
result of the proof is that the capacity-achieving input distribution corresponds exactly to the uniform
channel’s input, meaning that no channel coding is required: sending messages from the source directly over
the channel is optimal! What then distinguishes good from poor performances is bandwidth only, some
participants having higher bandwidths than others. Theorem 4.2 also implies that:

𝐶′
= max

𝑝(𝑥)
𝐻 (𝑋 ) − 𝐻 (𝑋|𝑌 ) = max 𝐻 (𝑋 ), (11)

meaning that in the optimal scheme, there is no information lost in the channel since 𝐻 (𝑋|𝑌 ) = 0. The
choice of a uniform noise is motivated by the following bound:

Theorem 4.3. The capacity 𝐶𝑛 of any limited-amplitude additive noise channel is lower bounded by the
capacity of the uniform channel: 𝐶𝑛 ≥ 𝐶′.

The proof is omitted here because it can be easily adapted from [44]. The argument used is that the
uniform noise maximizes entropy under amplitude constraint, so that uniform noise is essentially a worst-case
scenario. Any scheme, where noise is limited in amplitude to [−𝑊/2, 𝑊/2], whatever its distribution, will
have higher capacity 𝐶𝑛 ≥ 𝐶′.

Since the MacKenzie’s index involves a ratio of amplitudes 𝐷/𝑊 rather than a ratio of powers 𝑃/𝑁 , it is
appropriate to compute it in terms of powers to further the analogy. The surprising result is that the ID is
mathematically equivalent to Shannon’s Capacity. This is expressed in the next theorem.

Theorem 4.4. Let 𝐶 = (1/2) log2 (1 + 𝑃/𝑁 ) denote the Shannon’s capacity and 𝐶′ = log2 (1 + 𝐷/𝑊 )

denote the capacity for the uniform channel, then:

𝐶′
= 𝐶 bpcu.

The proof can be found in the Appendix. For this particular channel the index of difficulty and the
Shannon capacity truly coincide, legitimizing the analogy with Shannon’s Theorem 17!
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4.2 A Remark on the Equivalence Between Indices

As we have shown above, 𝐶 = 𝐶′ in bpcu is the amount of informational bits that can be sent per sample.
We can define ID = log2 (1 +𝐷/𝑊 ) = (1/2) log2 (1 + SNR) but there are many other equivalent choices:

Proposition 4.5. Any index of difficulty ID which is linearly related to log2 (1 +𝐷/𝑊 ) satisfies Fitts’
law, in the sense that the relationship between MT and ID is linear.

The proof is obvious: if ID = 𝛼 + 𝛽 log2 (1 + 𝐷/𝑊 ) then MT = 𝑎 + 𝑏 log2 (1 + 𝐷/𝑊 ) = 𝑎′ + 𝑏′ID where
𝑎′ = 𝑎 − 𝑏𝛼/𝛽 and 𝑏′ = 𝑏/𝛽. In fact the same argument shows that any two linearly related ID are equivalent:

Corollary 4.6. Suppose that we have two ID’s such that ID1 = 𝛼 + 𝛽 · ID2. Then both will be equivalent
in the sense of Fitts’ law.

Indeed, from Proposition 4.5, we will get MT = 𝑎1 + 𝑏1ID1 = 𝑎1 + 𝛼𝑏1 + 𝛽𝑏1ID2 = 𝑎2 + 𝑏2ID2. Because
both constants have to be measured from experimental data points, both indices are equivalent.

For example, Fitts’ index [15] ID = log2 (2𝐷/𝑊 ) = 1 + log2 (𝐷/𝑊 ) is equivalent to Crossman’s index [10]
ID = log2 (𝐷/𝑊 ). Also, the “mixed” Fitts-MacKenzie’s expression ID = log2 (1 + 2𝐷/𝑊 ) is equivalent to
Welford’s index since log2 (1 + 2𝐷/𝑊 ) = 1 + log2 (1/2 +𝐷/𝑊 ).

As another illustration, Soukoreff et al. [53] proposed a novel formulation for ID:

𝐼𝐷 entropy = 𝑚 + log2 (𝑈 ) − 1
2 log2

(︁
𝜋𝑒

𝑊 2

8

)︁
+ 1, (12)

where 𝑈 is the “size of the movement universe”, i.e. the largest extent considered for movements. Grouping
the logarithms together, we obtain

𝐼𝐷 entropy = 𝑚 + 1 + log2

(︁2𝑈

𝑊

√︂
2

𝜋𝑒

)︁
= 𝑚 + 1 + log2

(︁
2
√︂

2
𝜋𝑒

)︁
+ log2

(︁
𝑈

𝑊

)︁
. (13)

Now considering the largest extent to be either 𝐷, 𝐷 + 𝑊
2 or 𝐷 +𝑊 , one recovers the respective indices of

difficulty of Fitts, Welford and Mackenzie.

4.3 A Proper Analogy

Equipped with the above results, we are now able to formulate a proper analogy from Shannon’s capacity
formula rearranged in the following manner:

𝐶 = 𝐵𝑊 · log2 (1 + SNR) = 2𝐵𝑊 · 1
2 log2 (1 + SNR) bit s−1.

By theorems 4.2 and 4.4, we can now identify (1/2) log2 (1 + SNR) by MacKenzie’s index of difficulty
ID = log2 (1+𝐷/𝑊 ). Also, by virtue of the Shannon-Nyquist sampling theorem, 2𝐵𝑊 refers to the maximum
number of samples that are sent per second which can be identified to 1

MT as we effectively send one sample
during MT seconds. We thus obtain Fitts’ Formula [15]:

MT = 1
𝐶

ID,

but without intercept. Interestingly, Fitts did not refer to an intercept in his 1954 article. He introduced it
later to make the model more flexible for experimental data. The interpretation of the intercept has been
debated many times (e.g. [51, 59]). Although our formula seems to comfort those who believe the intercept
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reflects the non-informational part of pointing [59], intercepts can also arise between two equivalent indices
(see Corollary 4.6).

5 COMPUTING CAPACITY IN THE PRESENCE OF TARGET MISSES

In a Fitts’ law experiments the outcome of a pointing act can be either measured as an error, i.e., a distance
from end-point to target center, or categorized in an all-or-none way as a hit versus a miss. Information
theory offers a useful distinction between transmission errors (the received symbol is wrong) and erasures
(the received symbol is empty), see Section 2. This distinction seems to have escaped attention so far in HCI,
where it has been a solid tradition, since MacKenzie [32], to measure movement endpoints from the center
of the target and, assuming that the distributions of these measures is normal, to compute an effective index
of difficulty IDe.

The goal of a Fitts’ law experiment being to observe and study the speed-accuracy tradeoff, the choice of
the metrics used to measure speed and accuracy is critical. While there has been unanimous agreement in
the literature that movement times provide a satisfactory measure of speed, the measure of accuracy has
been controversial from the outset [10]. Only recently was the adjustment for target misses standardized
by ISO [1, 51], through the effective index of difficulty IDe. Unfortunately, as we will show below, the
standardized method is not compliant with information theory.

Our uniform channel model predicts a null error rate, and is therefore sufficient as a description in a
paradigm that does not allow mistakes, such as Fitts’ pin and disc transfer experiments [15, Experiments 2
and 3]. However, in the majority of Fitts’ law experiments target misses do occur, and so an extension of
the model is needed.

There are three different ways of handling mistakes:

∙ Ignoring the mistakes. Fitts, who did not measure actual amplitudes, classified the movements in a
dichotomous way as hits and misses. Although he did tabulate the (variable) error rates he obtained
in his stylus-pointing experiments, he felt in a position to leave them aside because of the “small
incidence” of target misses [15, p. 265].

∙ Taking the error rate into account. To our knowledge, Crossman [10] was the first to try to incorporate
the error rate information into his ID measure, leveraging the standard Gaussian distribution model.

∙ Taking the spread of endpoints into account. This is the standardized way of measuring accuracy in
Fitts’ law [1, 51]. Recourse to the standard deviation as a measure of accuracy has the implication
that the magnitude of the metrical error (the distance from target center) matters in the upcoming
analysis: regardless of whether the outcome is a hit or a miss, the farther the endpoint from target
center, the worse the performance. It also implies that there is equivalence between two movements
hitting the target if and only if they end up at exactly the same distance from the center of the
target (which, strictly speaking, never happens).

The ISO standard and Fitts’ law literature in general treats pointing mistakes as errors, by referring to
the standard deviation of the endpoints distribution—either by direct estimation or through a calculation
from error rates. Thus in the error concept, the accuracy depends on the (continuous) distance between the
movement endpoint and the target center.
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This approach is not quite consistent with the all-or-none logic of Fitts’ experimental paradigm: in an
experiment that asks participants to hit the target 96 percent (or so) of the time, all movements that end
up inside the 𝑊 interval should be recognized as equivalent from the point of view of accuracy. The same
equivalence is true in real-world interfaces: what matters is not precisely where the click takes place, but
rather whether or not the click falls in the intended area. This corresponds to the information-theoretic
concept of erasures described in Section 2.

Thus there is a conceptual mismatch between the standardized measurement of accuracy and the reality of
the pointing task in both controlled experiments and real-world target acquisition tasks. But the established
computation of IDe suffers from other deficiencies.

5.1 Information-Theoretic Critique of IDe

The effective width IDe is defined as log2 (1 +𝐷/𝑊𝑒), where 𝐷 corresponds to the average covered distance,
and 𝑊𝑒 is the effective width (to be detailed just below). It is used as a replacement to ID in the movement
time equation (Equation 2). The computation of effective width is detailed in [51]. Let 𝜎 denote the standard
deviation of the end-point distribution, and 𝜀 the error rate, i.e., the proportion of target misses:

∙ If 𝜎 is available:
𝑊𝑒 = 4.133𝜎. (14)

∙ Otherwise:

𝑊𝑒 =

⎧⎨⎩𝑊 · 2.066
𝑧(1−𝜀/2) if 𝜀 > 0.0049%

0.5089 · 𝑊 otherwise.
(15)

The received justification is as follows [32, Section 2]:

“The entropy (H), or information, in a normal distribution is 𝐻 = log2
(︀
(2𝜋𝑒)

1
2 𝜎

)︀
=

log2 (4.133𝜎), where 𝜎 is the standard deviation in the unit of measurement. Splitting the
constant 4.133 into a pair of z-scores for the unit-normal curve (i.e., 𝜎 = 1), we find that
the area bounded by z = ±2.066 represents about 96 % of the total area of the distribution.
In other words, a condition that target width is analogous to the information-theoretic
concept of noise is that 96 % of the hits are within the target and 4 % of the hits miss
the target [. . . ]. When an error rate other than 4% is observed, target width should be
adjusted to form the effective target width in keeping with the underlying theory.”

This methodology raises three issues:

(1) The computation of 𝑊𝑒 as 4.133𝜎 as well as the computation leading to Equation 15 presumes a
Gaussian distribution of endpoints [51]. This is somewhat unsafe as the validity of this hypothesis
has been questioned empirically (e.g., [15] [55, Discussion]).

(2) To our knowledge Information Theory provides no justification to the relation 𝑊𝑒 = 4.133𝜎. When
Crossman [10] calculated the expression for 𝑊𝑒 from the area under the standard normal curve, he
took the 5% value as an arbitrary “permissible” error rate. MacKenzie [32] noticed that by changing
the arbitrary rate from 5% to 3.88% (approximately 4%), the entropy of the rectangular distribution
of width 𝑊𝑒 would equal the entropy of the Gaussian distribution of standard deviation 𝜎 (see
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Appendix), but this is no more than a coincidence: we can see no information-theoretic reason to
equalize these two entropies.14.

(3) The threshold of error rate placed at 0.0049% (Equation 15) is arbitrary. Even with a Gaussian
distribution of endpoints, the one-to-one relationship between standard deviations and error rates
is only true for strictly positive error rates. Indeed, when the error rate vanishes, so does the
standard deviation, and so IDe tends to infinity. To prevent this from happening, Soukoreff and
MacKenzie [51] have recommended that below a certain error rate (0.0049%), IDe should be kept
constant. The justification of the threshold error rate of 0.0049% is that it “rounds to 0.00”. As
shown below, the existence of such a threshold and its value of 0.0049% is in fact adverse to the
theory.

The standardized index of difficulty IDe is thus questionable. It relies on the unsafe Gaussian hypothesis,
two arbitrary constants, and one coincidence. Even more importantly, it has never been shown to be the
correct expression of the capacity of a human-motor channel—the expected rationale behind Fitts’ law if
one chooses the information-theoretical framework.

We now propose a new effective index ID(𝜀) that is compliant with Fitts’ experimental design, does not
rely on the Gaussian hypothesis and is justified theoretically as a channel capacity, through an extension to
the model of Section 4.

5.2 A Compliant Index of Difficulty: ID(𝜀)

As noted above, treating target misses as transmission errors is not adapted to Fitts’ paradigm—these
events should rather be viewed as erasures. In fact, the design of the experiment entails a binary decision:
there is a target and the movement either finishes inside (a hit) or outside (a miss). This is consistent with
the instruction “try to hit the target” as opposed to “try to hit the center of the target”. We now extend
the model that does not allow or account for mistakes of the previous section with a channel which allows
erasures.

Consider a channel that oscillates randomly between a good (G) state and a bad (B) state, with probability
𝜀 of being in state 𝐵 and probability 1 − 𝜀 of being in state 𝐺. When the channel is in its good state, it
corresponds to the channel of capacity log2

(︀
1 + 𝐷

𝑊

)︀
that we derived in Section 4, which we will refer to as

the Fitts channel. However, when the channel is in its bad state it can only produce erasures—we call it an
erasure channel. In Information Theory this configuration (Figure 7) is known as a compound channel [20].

Let us now evaluate the Shannon capacity of this compound channel. This will serve as a common ground
to compare the performance of different participants operating at different accuracy levels (with different
values of 𝜀). The channel capacity corresponds to the maximum transmission rate that the participants
would have achieved with an arbitrarily small error rate (refer to the Channel coding theorem of Section 2).
We thus adjust the rate, to obtain the one that the participants would have had, had they never missed the
target. Shannon’s capacity of the compound channel of Figure 7 is given by the following theorem.

14Incidentally, these entropies can both be negative. Information Theory distinguishes the (discrete) entropy of a discrete
random variable, which is non-negative and serves as a measure of information, and the (so-called differential) entropy of a
continuous random variable such as a normal random variable, which is positive for large variances and negative for small
variances and thus cannot be interpreted as a measure of information [9].
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𝑋

1 − 𝜀

𝜀

Good(G)

Bad(B)

Fitts channel

Erasure channel

Fig. 7. Compound channel for an aiming task with target misses.

Theorem 5.1 (Compound Channel Capacity). Consider a compound channel as in Figure 7, with
probability 𝜀 of being in state 𝐵 and probability 1 − 𝜀 of being in state 𝐺. The capacity of such a channel is
given by

𝐶 = (1 − 𝜀) log2

(︁
1 + 𝐷

𝑊

)︁
.

As expected, the obtained capacity is lower than the capacity log2
(︀
1+ 𝐷

𝑊

)︀
that would have been achieved

with 100% hitting success (𝜀 = 0).
The formal information-theoretic proof is known [9] and summarized in the Appendix for completeness,

but it is easy to sketch the reasoning: The participant is effectively time sharing both channels. With Fitts’
channel, the transmitted information is log2

(︁
1 + 𝐷

𝑊

)︁
bits and with the erasure channel the transmitted

information is 0 bit, so that, on average, 𝐶 = (1 − 𝜀) × log2

(︁
1 + 𝐷

𝑊

)︁
+ 𝜀 × 0. In line with Fitts’ parallel

between capacity and ID, our new effective index is

ID(𝜀) = (1 − 𝜀) log2

(︁
1 + 𝐷

𝑊

)︁
where 𝜀 is no other than the traditional ‘error rate’ more cautiously designated here as the percentage of
target misses.

5.3 Comparing the Two Indices

We now provide an analytical comparison of IDe and ID(𝜀). The behavior of the standardized IDe for
vanishing error rates is problematic. The inverse Gauss error function15 (see Appendix) erf-1 (1 − 𝜀) tends to
+∞ as 𝜀 vanishes, so that we should normally have

lim
𝜀→0

IDe =∞.

Due to the 0.0049% bounding, however, instead we obtain

lim
𝜀→0

IDe = log2

(︁
1 + 𝐷

0.5089𝑊

)︁
≃ log2

(︁
1 + 2𝐷

𝑊

)︁
= 1 + log2

(︁1
2 +

𝐷

𝑊

)︁
,

15The inverse Gauss error function erf-1 has the following relation to the z-score: 𝑧(𝑥) =
√

2 erf-1 (2𝑥 − 1)
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which is equivalent to the Welford index of difficulty [54], by direct application of corollary 4.6. The arbitrary
choice to bound the index at the 0.0049% rate results in the index coincidentally tending to the Welford ID,
not the MacKenzie ID. Thus there is no continuity16 as epsilon approaches zero for IDe.

In contrast, ID(𝜀) does have the property of continuity towards zero since obviously ID(0) = ID.
Figure 8 shows the two indices ID(𝜀), IDe as well as the unbounded 𝑢-IDe (for which the 0.0049%

distinction is not made) for 𝐷/𝑊 = 15 as a function of 𝜀 in the interval [0 − 1]. The difference IDe − ID(𝜀)

between IDe and ID(𝜀) is lowest around 𝜀 = 0.1. With higher values of 𝜀, the difference increases but such
high errors rates are not common. However, for very small values of 𝜀, ID(𝜀) can be up to 1 bit smaller than
IDe. Thus the difference between ID(𝜀) and IDe can be non-negligible for very careful participants or in
conditions with a high emphasis on accuracy.
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Fig. 8. Comparison of ID(𝜀) and IDe for erasure rate in [0, 1], for 𝐷
𝑊
= 15. 𝑢-IDe refers to IDe where the 0.0049%

distinction is not made. The scale is lin-lin left and lin-log right.

6 PERFORMANCE FRONTS FOR FITTS’ LAW

Fitts’ law has always been considered as a law of average performance. Although the notation does not make
it explicit, MT, the dependent variable of Equation 2, typically denotes the mean of samples of movement
time measures. Soukoreff and MacKenzie [51] state that “ Each condition must be presented [...] many [...]
times, so that the central tendency of each subject’s performance [...] can be ascertained”.17

Researchers have “agreed to disagree” on many issues of Fitts’ law, e.g. on which formulation for the index
of difficulty to use, on how to account for errors, and on the meaning of the intercept. However, almost all
Fitts’ law students have apparently agreed on recourse to linear regression to describe the relation between
ID and MT. That technique provides both an estimate of parameters 𝑎 (intercept) and 𝑏 (slope) and a
measure of goodness of fit, through the r-squared coefficient, in a very simple and rapid manner.

Likewise, the ISO standard’s throughput must be computed as a mean of means. Its identification to
a channel capacity seems, therefore, problematic since the channel capacity concept has nothing at all to
16Not in the sense of a mathematical continuity, but in the sense that there is switch from one index to an other.
17emphasis added.
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do with average information transmission performance: only the best transmission schemes are capacity
achieving.

In this Section, we build on recent work by Guiard and colleagues [23, 24], who challenged the common
view that Fitts’ law characterizes average movement time. These authors put forward the view that only the
best movement times can serve to infer Fitts’ law.

6.1 Fitts’ Law as a Performance Limit

We see two reasons for which Fitts’ law should be viewed as a performance limit rather than a law of average
performance.

(1) Fitts’ information-theoretic rationale for aiming considers the transmission of information about
the target through a human motor channel, and as we have shown Fitts’ law can be derived
by computing the capacity of this channel, which is a theoretical upper bound—the maximum
amount of information that can be transmitted reliably—and which is accordingly calculated as
an extremum through the Channel Coding Theorem—the maximum of mutual information over
all input distributions. Thus, only movements that maximize transmitted information should be
relevant for the derivation of Fitts’ law, i.e. those movements that for a fixed ID achieve the lowest
MT, or conversely those that for a fixed MT achieve the highest ID;

(2) Guiard and Rioul [24] have shown that three paradigms, the time minimisation paradigm of Fitts [15],
the spread minimisation paradigm of Schmidt et al. [47], and the dual minimisation paradigm
of Guiard et al. [23] can receive a unified account provided that the participants are assumed to
invest less than 100 percent of their resource in their performance.18 Accordingly, only the best
performing samples should be expected to describe the speed-accuracy tradeoff, and Guiard and
Rioul could then merge the linear law of Schmidt et al. [47] and the logarithmic description of Fitts’
law as different regions of the same speed-accuracy tradeoff function.

To understand the constraints on movement, one should consider the movements that are most constrained:
one can only hope to model what can be modeled. In the real world, movements are weakly constrained, if
not at all. One rarely tries to point as fast and as accurately as possible. Even in a controlled experiment,
the participants’ attention fluctuates. As we will now demonstrate, the front of performance is the most
natural technique to reveal Fitts’ law.

6.2 A Field Study Example

An example will help illustrate the front of performance approach. The data come from a pointing study
run “in the wild” by Chapuis et al. [8]. While delivering very large data sets, field experiments (as opposed
to controlled experiments) provide a beneficial magnification of the fact that not all resources are invested
by participants for each movement.

For several months Chapuis et al. [8] unobtrusively logged cursor motion from several participants using
their own hardware. The authors were able to identify offline the start and end of movements as well as the
target information, for several hundreds of thousands of click-terminated movements. With this information,
18Not only does the less-than-total resource investment assumption match common sense, it matches the information-theoretic
concept of capacity. The capacity is reached at the limit of a (perfectly) optimal coding scheme, channel bandwidth being
exploited in full. Anything less will give lower transmitted information.
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Fig. 9. Movement time as a function of task difficulty in one representative participant of Chapuis et al. [8]. Shown are
over 90,000 individual movement measures. Above: MT up to 16 s. Below : MT up to 4 s. Cut-offs are here arbitrary but
necessary as some movement times lasted minutes.

.

one can then represent the movements in a MT versus ID graph, as normally done in a controlled Fitts
law study. To compute task difficulty in the 2D space of computer screens they followed the suggestion of
MacKenzie and Buxton [34] and chose

ID = log2

(︁
1 + 𝐷

min(𝐻, 𝑊 )

)︁
,

where 𝐻 and 𝑊 are the height and width of the target, respectively. Whenever an item was clicked , it was
considered the target, meaning the rate of target misses was 0 percent and hence ID(𝜀) = ID(0) = ID.
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Figure 9 shows the data from one representative participant (P3) of Chapuis et al. [8]. The ID axis is
truncated at 6 bits because beyond that level of difficulty the density of data points dropped dramatically.
Obviously, the data obtained with no speeding instructions (and no experimenter to recall them) exhibits a
huge amount of stochastic variability along both dimensions of the plot. While in the 𝑋 dimension, most
ID values fell in the range from 0.5 to 6 bits (presumably a reflection of the geometric composition of the
graphical user interface), the variability along the 𝑌 dimension is extremely high. Judging by linear regression
on this raw data, we find that movement time and the index of difficulty are essentially uncorrelated since
the r-squared coefficient is very close to 0 (𝑟2 = 0.034). Thus, at first sight, this data fails to confirm Fitts’
law, but it is important to realize that this first impression is quite false.

In the lower panel of Figure 9 which ignores all MT data above 4 s and thus zooms-in on the 𝑌 -axis
towards the bottom of the plot, one can distinctly see that the bottom edge of the cloud of data points does
not touch the 𝑋 axis. Rather, in the downward direction, the density drops sharply: no matter the ID region
considered, the distribution of performance measures has an unending tail above and what we call a front
below, the latter being very steep in comparison with the former. The unending tail is understandable as
“it is always possible to do worse” [24]. In contrast, the movement time cannot be reduced below a certain
strictly positive critical value which accurately defines the front.

A closer look at the lower panel of Figure 9 reveals that the bottom edge of the scatter plot is approximately
linear : this linear edge is what justifies Fitts’ law. In other words, the empirical regularity in Fitts’ law is,
in essence, a front of performance, a lower bound that cannot be passed by human performance. Such a
front of performance is observable in data from the field study of Chapuis et al. [8] because unsupervised
everyday pointing does offer, albeit in a minority of cases, opportunities to perform with high levels of
speed and accuracy. The difference between a field and a controlled experiment is thus one of degree, not of
nature. Experimenters have recourse to pressurizing speed/accuracy instructions simply to get rid of endless,
uninformative, tails in their distributions of MT measures.

Figure 10 shows the same plot with the 𝑌 axis zoomed-in further so that the range of MT measures
approaches that commonly obtained in a typical controlled experiment. Even though the front edge is
incomparably sharper than the tail edge, the zoomed-in view of Figure 10 reveals a number of presumable
fast outliers. Many reasons may explain why a small proportion of data points “cross” the frontier, seemingly
violating the theoretical lower bound. Some data points may just correspond to unreasonably fast but lucky
movements, others to failures of the analysis software, which may have wrongly classified as target-directed
movements which terminated with accidental clicks. Yet another possibility is that targets lying at the edge
of the screen can be aimed at with a purely ballistic throw of the cursor which will remain on that edge.
An empirical scatter plot will never exhibit a perfectly neat front of performance, and so an estimation
procedure is still needed to actually estimate the front.

We devised a heuristic method to fit a straight line to the bottom of the edge of the scatter plot, robust
enough to accommodate the imperfectness of the front. Figure 10 shows the resulting front fit, in red at the
bottom edge of the plot. The obtained line is independent of slow outliers. In contrast, linear regression
lines obtained with different threshold levels [2𝑠, 3𝑠, ..., 9𝑠, 10𝑠] for outlier rejection (in white in Figure 10)
show that they are highly dependent on the threshold level.
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Fig. 10. Same data as in Figure 9, with the 𝑌 -axis cut at 1.6 s. Shown are linear fits from usual linear regression (‘linreg’
in white), using a number of different thresholds for the exclusion of outliers, as well as an estimation of the front of
performance (in red).

Thus, an interesting characteristic of the front of performance approach is that it dispenses one with
the difficult task of handling slow outliers, whose removal requires arbitrary choices. For example, some
experimenters remove values 𝑘 standard deviations away from the sample mean, 𝑘 being typically chosen
between 2 and 3. Some simply trim the data, by removing all samples above a certain limit, say MT > 2𝑠.
One issue here is that the tolerance for outliers is variable across the ID scale. As illustrated Figure 10, the
fit computed by linear regression highly depends on the arbitrary choice of tolerance. In contrast, the front
of performance by definition will not depend on slow outliers at all, and in this sense it is far more robust.

Of course, the red line is quite different from the white lines in Figure 10: Characterizing Fitts’ law by
best rather than average performances is not a minor adjustment. Even though experimenters do their best
to reduce the inherent variability of human aimed movement, a typical sample of measures exhibits quite
large dispersion. The common practice of considering averages per block, rather than raw measures, reduces
this dispersion artificially. This practice does not eliminate the fact that because of movement variability,
the quantitative difference between average fit and best-performance fit is substantial.

7 CONCLUSION

Shannon’s channel coding theorem expresses the best compromise between the rate of transmission and
the probability of errors. As such it seems well fitted to the analysis of the speed-accuracy tradeoff. But
as we have shown, existing information-theoretic derivations are compromised by the same long-standing
misunderstanding: Channel capacity results were thought of as results on information generation, rather
than on information transmission as they should be. Fitts originally derived ID as a source entropy by
analogy with Hick’s paradigm [14]. As we have shown, Fitts’ original idea can be used to derive several
known indices of difficulty (such as MacKenzie’s) for different target layouts. One year later, he derived the
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same ID by analogy with Shannon’s capacity [15] but never precisely identified the channel or the noise.
More recent attempts to use information bits were flawed because the estimate of transmitted information
did not match the correct mathematical definition of mutual information. As as consequence, until now, the
information-theoretic rationale for pointing tasks is judged “more metaphorical than mathematical” [59].

We have proposed a formal, detailed information-theoretic model for Fitts’ pointing task in order to
better understand Fitts’ law in the light of Shannon’s information theory. We showed that to ensure a
correct execution of the aiming task, the amplitude of the channel noise should be limited to half the target’s
width. This rigorously defines a transmission channel for which its capacity turns out to be exactly equal
to MacKenzie’s ID, thus legitimizing its use. In addition, that index of difficulty truly coincides with the
celebrated Shannon’s capacity formula, which legitimizes the analogy with Shannon’s Theorem 17.

In order to account for possible participant mistakes, we generalized our model to the case where targets
can be missed. Target misses, as opposed to errors, correspond to the correct information-theoretic notion
of erasure applied to Fitts’ paradigm. The channel becomes a compound channel with erasures whose
capacity is the modified index (1 − 𝜀)ID. We showed that this new index is not only more rigorous, it is also
theoretically safer than the ISO index IDe as it does not presuppose a Gaussian distribution of endpoints. It
is also more convenient in practice since it allows the researcher to dispense with an arbitrary treatment of
the 0 percent miss case and it is also much simpler to compute than the traditional IDe.

Finally, we argue that by its very definition, capacity is a law of extreme performance. This precludes
any use of linear regression to estimate Fitts’ law since regression is just an averaging method. Many
experimenters claim to measure extreme performance, but end up reporting average performance only.
Simply telling participants to do their best is not enough to ensure high-fidelity data.

We hope that this theoretical work and information-theoretic tools would eventually prove useful to the
HCI researcher. In particular, we believe that the notion of front of performance is a promising tool and not
just a theoretical curiosity, as long as efficient estimation methods can be found. In this direction, more
work should be done to find a reliable method for fitting the front of performance (we have used a heuristic
method).

APPENDIX

A.1 Proof of Theorem 4.2

The proof is based on the following lemma.

Lemma A.1. Consider an additive noise channel with input 𝑋, noise 𝑍 and output 𝑌 = 𝑋+𝑍. If the output
is uniformly distributed in [−(𝐷 +𝑊 )/2, (𝐷 +𝑊 )/2] and the noise is uniformly distributed in [−𝑊/2, 𝑊/2],
then the input must be a uniform discrete random variable in the set {−𝐷/2, −𝐷/2+𝑊, . . . , 𝐷/2 − 𝑊, 𝐷/2}.

A rigorous proof can be found in [44]. A proof sketch is as follows. The probability density function 𝑝𝑌 of
the sum of two independent random variables 𝑌 = 𝑋 + 𝑍 is a convolution product 𝑝𝑋 * 𝑝𝑍 . If 𝑋 is discrete
uniform with 𝑛 = 1 + 𝐷/𝑊 values equally spaced by 𝑊 , and 𝑍 is uniformly distributed in [ −𝑊

2 , 𝑊
2 ] (a

rectangle of width 𝑊 ), then their convolution product if the juxtaposition of 𝑛 rectangles 𝑊 apart, which is
a larger rectangle of width 𝐷 +𝑊 .
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Proof of Theorem 4.2. We can expand the mutual information 𝐼 (𝑋; 𝑌 ) as difference of differential
entropies:

𝐼 (𝑋; 𝑌 ) = 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝑋 ), (16)

= 𝐻 (𝑌 ) − 𝐻 (𝑋 + 𝑍|𝑋 ), (17)

= 𝐻 (𝑌 ) − 𝐻 (𝑍 ) (18)

= 𝐻 (𝑌 ) − log2 (𝑊 ), (19)

where (16) is by definition of mutual information, (17) is by additivity of the channel, (18) is by independence
of 𝑋 and 𝑍, and (19) is from the computation of differential entropy for a continuous uniform random
variable. Maximizing 𝐼 (𝑋; 𝑌 ) is thus equivalent to maximizing 𝐻 (𝑌 ). Because |𝑋| ≤ 𝐷

2 and |𝑍| ≤ 𝑊
2 , we

have that |𝑌 | = |𝑋 + 𝑍| ≤ |𝑋| + |𝑍| ≤ 𝐷+𝑊
2 by the triangular inequality. The maximum

𝐶′
= max

|𝑋|≤ 𝐷
2

𝐼 (𝑋, 𝑌 ) = max
|𝑌 |≤ 𝐷+𝑊

2

𝐻 (𝑌 ) − log2 𝑊 .

will be attained when 𝑌 is uniformly distributed in [−(𝐷 +𝑊 )/2, (𝐷 +𝑊 )/2] and from Lemma A.1, this is
obtained when 𝑋 is discrete uniform in the set: {−𝐷/2, −𝐷/2 +𝑊, . . . , 𝐷/2 − 𝑊, 𝐷/2}. It follows that

𝐶′
= log2 (𝐷 +𝑊 ) − log2 (𝑊 ) = log2

(︁
1 + 𝐷

𝑊

)︁
bpcu.

as claimed. □

A.2 Proof of Theorem 4.4

Proof of Theorem 4.4. Let 𝑀 be the cardinality of the set {−𝐷/2, −𝐷/2 +𝑊, . . . , 𝐷/2 − 𝑊, 𝐷/2}:

𝑀 = 1 + 𝐷

𝑊
.

The channel input’s average power is:

𝑃 = E(𝑋2) =
1

𝑀

𝑀−1∑︁
𝑘=0

(︁
𝑀 − 1

2 − 𝑘
)︁2

𝑊 2
=

1
𝑀

2𝑊 2

𝑀−1
2∑︁

𝑘=0
𝑘2
=

𝑀2 − 1
12 𝑊 2

where we have used the well-known formula for the sum of consecutive squares. The noise power 𝑁 of the
uniformly distributed distribution in [−𝑊/2, 𝑊/2] is

𝑁 =
𝑊 2

12 .

It follows that

𝐶′
= log2 𝑀 =

1
2 log2 𝑀2

=
1
2 log2 (1 +𝑀2 − 1) = 1

2 log2

(︁
1 + 𝑃

𝑁

)︁
= 𝐶.

as claimed. □

This coincidence can be explained quite easily when noticing that

1 + SNR = 𝑃 +𝑁

𝑁
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is the ratio between the power of the output 𝑌 over the power of the noise 𝑍. In our case, both output and
noise are uniformly distributed, the power is proportional to the square of the range of the distribution, so
that

𝑃 +𝑁

𝑁
=

(︁
𝐷 +𝑊

𝑊

)︁2
,

Taking the logarithm gives 𝐶′ = 𝐶.

A.3 Calculation of 𝑊𝑒

Consider the random variable for the endpoint location 𝑌 , such that 𝑌 ∼ 𝒩 (0, 𝜎2) and a target of width
𝑊 . The event |𝑌 | > 𝑊/2 defines an error. Width 𝑊 and error rate 𝜀 > 0 are related through the following
one-to-one relation

𝜀 = 1 − 2
∫︁ 𝑊

2

0

1√
2𝜋𝜎

exp
(︁

− 𝑡2

2𝜎2

)︁
𝑑𝑡 = 1 − erf

(︁
𝑊

2
√

2𝜎

)︁
or

𝑊 = 2
√

2𝜎 erf −1 (1 − 𝜀),

where erf is the gaussian error function

erf (𝑥) = 2√
𝜋

∫︁ 𝑥

0
𝑒− 𝑡2

2 𝑑𝑡.

These formulas are consistent with ISO’s recommendations: taking 𝑊 = 4.133𝜎, we find

𝜀 = 1 − erf
(︁2.066√

2

)︁
= 3.88%.

The multiplicative constant 𝛼 such that 𝑊𝑒 = 𝛼𝑊 , where 𝑊𝑒 = 4.133𝜎 is the width such that the error rate
is 3.88%, is given by

𝛼 =
𝑊𝑒

𝑊
=

4.133𝜎

2
√

2𝜎 erf −1 (1 − 𝜀)
=

2.066√
2 erf −1 (1 − 𝜀)

.

so that 𝑊𝑒 is be given by the following formula:

𝑊𝑒 = 𝛼𝑊 =
2.066√

2 erf −1 (1 − 𝜀)
𝑊.

To compare this to the ISO recommendation, consider the z-score related to the area under a 𝒩 (0, 1)
distribution by ∫︁ 𝑧

−∞

1√
2𝜋

𝑒− 𝑡2
2 𝑑𝑡 = 𝑥 ⇐⇒ 1 − 𝑄(𝑧) = 𝑥 ⇐⇒ 𝑧 = 𝑄−1 (1 − 𝑥)

where 𝑄 is Marcum’s 𝑄-function and 𝑄−1 the inverse Q function. The inverse Q-function can be easily
related to the inverse error function

𝑄−1 (𝑦) =
√

2 erf −1 (1 − 2𝑦),
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and by replacing 𝑦 by 1 − 𝑥, we find that

𝑧 =
√

2 erf −1 (2𝑥 − 1).

Replacing 𝑥 by 1 − 𝜀
2 gives the final result:

𝑊𝑒 =𝑊
2.066

𝑧(1 − 𝜀
2 )
=

2.066√
2 erf −1 (1 − 𝜀)

𝑊.

A.4 Proof of Theorem 5.1

Proof of Theorem 5.1. Since the only way to produce an erasure symbol is for the channel to be in
state 𝐵, we have 𝐼 (𝑋; 𝑌 ) = 𝐼 (𝑋; (𝑌, 𝐸)). This can be expanded as [9]

𝐼 (𝑋; (𝑌, 𝐸)) = P(𝐸 = 𝐺)𝐼 (𝑋; 𝑌 |𝐸 = 𝐺) + P(𝐸 = 𝐵)𝐼 (𝑋; 𝑌 |𝐸 = 𝐵)

= (1 − 𝜀) 𝐼 (𝑋; 𝑌 |𝐸 = 𝐺) + 𝜀𝐼 (𝑋; 𝑌 |𝐸 = 𝐵).

Here 𝐼 (𝑋; 𝑌 |𝐸 = 𝐺) is the mutual information computed for the uniform channel, and 𝐼 (𝑋; 𝑌 |𝐸 = 𝐵) = 0
because if the channel is in bad state, only an erasure can come out of the channel. Therefore the distribution
that maximises the mutual information for the compound channel is the same than the one that maximises
mutual information for the uniform channel. □
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This paper has never been submitted anywhere. It reports original theoretical work by the authors. Some
aspects of the work have already been published in the following papers:

∙ Gori, J., Rioul, O., & Guiard, Y. (2017). To Miss is Human: Information-Theoretic Rationale for
Target Misses in Fitts’ Law. In Proceedings of the 2017 CHI Conference on Human Factors in
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∙ Gori, J., Rioul, O., & Guiard, Y. (in press). One Fitts’ Law, Two Metrics. Human-Computer
Interaction – INTERACT 2017.

∙ Rioul, O., Magossi, J. C. (2014). On Shannon’s Formula and Hartley’s Rule: Beyond the Mathematical
Coincidence. Entropy 16(9), 4892-4910.

Section 2 explains well-known results from information theory that are needed in the remainder of the
paper but that HCI readers are unlikely to be familiar with.
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Section 4 uses some proofs that were derived by Rioul and Magossi (2014). Some of these proofs have
been added in the appendix of the submission for completeness.

Section 5 incorporates most of the content of Gori et al. (2017), although rephrased to match the context
of this more general paper.

Section 6 incorporates and extends an example taken from Gori et al. (in press).
The goal of the paper is to provide a complete information-theoretic model for aiming in Fitts’ law

paradigm, providing new results, but also synthesizing and making sense of known results. This explains
why some content has been re-used. Gori et al. (2017) provides a model and a formula for an index of
difficulty; in Section 5 of the present submission, the same formula is shown to represent a generalized model
for errorless pointing.
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