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MODULAR PERIODICITY OF THE EULER NUMBERS AND A SEQUENCE BY

For any positive integer q, the sequence of the Euler up/down numbers reduced modulo q was proved to be ultimately periodic by Knuth and Buckholtz. Based on computer simulations, we state for each value of q precise conjectures for the minimal period and for the position at which the sequence starts being periodic. When q is a power of 2, a sequence defined by Arnold appears, and we formulate a conjecture for a simple computation of this sequence.

Introduction

The sequence of Euler up/down numbers (E n ) n≥0 is the sequence with exponential generating series (1)

∞ n=0 E n n!
x n = sec x + tan x.

It is referenced as sequence A000111 in [START_REF] Sloane | The online encyclopedia of integer sequences[END_REF] and its first terms are 1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, . . .

The numbers E n were shown by André [START_REF] André | Développements de sec x et de tang x[END_REF] to count up/down permutations on n elements (see Section 3). Knuth and Buckholtz [START_REF] Donald | Computation of tangent, Euler, and Bernoulli numbers[END_REF] proved that for any integer q ≥ 1, the sequence (E n mod q) n≥0 is ultimately periodic. For any q ≥ 1 we define :

• s(q) to be the minimum number of terms one needs to delete from the sequence (E n mod q) n≥0 to make it periodic ; • d(q) to be the smallest period of the sequence (E n mod q) n≥s(q) . For example, the sequence (E n mod 3) starts with 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, . . . so one might expect to have s(3) = 1 and d(3) = 4. Clearly s(1) = 0 and d(1) = 1. In the remainder of this paper, we formulate precise conjectures for the values of s(q) and d(q) for any q ≥ 2.

Organisation of the paper. In Section 2 we reduce the problem to the case when q is a prime power and we conjecture the values of s(q) and d(q) when q is an odd prime power. In Section 3 we conjecture the values of s(q) and d(q) when q is a power of 2, after having introduced the Entringer numbers and a sequence defined by Arnold describing the 2-adic valuation of the Entringer numbers. In Section 4, we provide a simple construction which conjecturally yields the Arnold sequence.

2. Case when q is not a power of 2

The following lemma implies that it suffices to know the values of s(q) and d(q) when q is a prime power in order to know the values of s(q) and d(q) for any q ≥ 2.

Lemma 1. Fix q ≥ 2 and write its prime number decomposition as

(2) q = k i=1 p α i i ,
where k ≥ 1, p 1 , . . . , p k are distinct prime numbers and α 1 , . . . , α k are positive integers. Then

s(q) = max 1≤i≤k s(p α i i ) (3) d(q) = lcm(d(p α 1 1 ), . . . , d(p α k k )). ( 4 
)
The proof is elementary and uses the Chinese remainder theorem. When q is an odd prime power, Knuth and Buckholtz [KB67] found the following : Theorem 2 ([KB67]). Let p be an odd prime number.

(1) If p ≡ 1 mod 4, then

d(p) = p -1.
(2) If p ≡ 3 mod 4, then

d(p) = 2p -2. (3) For any k ≥ 1, s(p k ) ≤ k. (4) For any k ≥ 2, d(p k )|p k-1 d(p).
We conjecture the following for the exact values of s(q) and d(q) when q is an odd prime power : Conjecture 1. Let p be an odd prime number.

(1) For any k ≥ 1,

s(p k ) = k.
(2) For any k ≥ 2,

d(p k ) = p k-1 d(p).
Conjecture 1 is supported by Mathematica simulations done for all odd prime powers q < 1000.

3. Entringer numbers and case when q is a power of 2 Formulating a conjecture analogous to Conjecture 1 for powers of 2 requires to define, following Arnold [START_REF] Vladimir | Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics[END_REF], a sequence describing the behavior of the 2-adic valuation of the Entringer numbers.

3.1. The Seidel-Entringer-Arnold triangle. The Entringer numbers are a refined version of the Euler numbers, enumerating some subsets of up/down permutations. For any n ≥ 0, a permutation σ ∈ S n is called up/down if for any 2 ≤ i ≤ n, we have σ(i -1) < σ(i) (resp. σ(i -1) > σ(i)) if i is even (resp. i is odd). André [START_REF] André | Développements de sec x et de tang x[END_REF] showed that the number of up/down permutations on n elements is E n . For any 1 ≤ i ≤ n, the Entringer number e n,i is defined to be the number of up/down permutations σ ∈ S n such that σ(n) = i. The Entringer numbers are usually displayed in a triangular array called the Seidel-Entringer-Arnold triangle, where the numbers (e n,i ) 1≤i≤n appear from left to right on the n-th line (see Figure 1). The Entringer numbers can be computed using the following recurrence formula (see for example [START_REF] Richard | Enumerative combinatorics[END_REF]). For any n ≥ 2 and for any 1 ≤ i ≤ n, we have (5) e n,i = j<i e n-1,j if n is even j≥i e n-1,j if n is odd .

3.2. Arnold's sequence. Replacing each entry of the Seidel-Entringer-Arnold triangle by its 2-adic valuation, we obtain an infinite triangle denoted by T (see Figure 2). 0

∞ 0 0 0 ∞ ∞ 0 1 1 0 0 2 1 ∞ Figure 2.
First five lines of the triangle T of 2-adic valuations of the Entringer numbers.

We read this triangle T diagonal by diagonal, with diagonals parallel to the left boundary. For any i ≥ 1, denote by D i the i-th diagonal of the triangle T parallel to the left boundary. For example D 1 starts with 0, ∞, 0, ∞, 0, . . .. For any i ≥ 1, denote by m i the minimum entry of diagonal D i . Arnold [START_REF] Vladimir | Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics[END_REF] observed that the further away one moves from the left boundary, the higher the 2-adic valuation of the Entringer numbers becomes. In particular, he observed (without proof) that the sequence (m i ) i≥1 was weakly increasing to infinity. He defined the following sequence : for any k ≥ 1,

u k := max {i ≥ 1|m i < k} .
In other words, u k is the number of diagonals containing at least one entry that is not zero modulo 2 k . The sequence (u k ) k≥1 is referenced as the sequence A108039 in OEIS [START_REF] Sloane | The online encyclopedia of integer sequences[END_REF] and its first few terms are given in Table 1. Note that the first few terms given by Arnold were incorrect, because the entry 4 appeared four times, whereas it should be appearing only three times. We also remark that we cannot define any sequence analogous to (u k ) when studying the p-adic valuations of the Entringer numbers for odd primes p. Indeed, the p-adic valuation 0 seems to appear in diagonals of arbitrarily high index.

k
3.3. Case when q is a power of 2. Using the sequence (u k ) k≥1 , we formulate the following conjecture for s(q) and d(q) when q is a power of 2 : Conjecture 2. For any k ≥ 1, we have

(6) s(2 k ) = u k .
Furthermore, if k ≥ 1 and k = 2, we have

(7) d(2 k ) = 2 k .
Finally, we have d(4) = 2.

Numerical simulations performed on Mathematica for k ≤ 12 support Conjecture 2.

Construction of Arnold's sequence

In this section we provide a construction which conjecturally yields Arnold's sequence (u k ) k≥1 .

We denote by Z + the set of nonnegative integers and we denote by 

Figure 1 .

 1 Figure 1. First five lines of the Seidel-Entringer-Arnold triangle.

+

  the set of all finite sequences of nonnegative integers. We define a map f : S → S, which maps each Z d + to Z 2d + , as follows. Fix x = (x 1 , . . . , x d ) ∈ S. If all the x i 's are equal to x d , we setf (x) = (x d , . . . , x d , 2x d , . . . , 2x d ),where x d and 2x d both appear d times on the right-hand side. Otherwise, defines := max {1 ≤ i ≤ d -1|x i = x d } and set f (x) = (x 1 , . . . , x d , x 1 + x d , . . . , x s-1 + x d , 2x d , . . . , 2x d ),where 2x d appears d -s + 1 times on the right-hand side. For example, we have (8) f ((2, 4, 4, 4)) = (2, 4, 4, 4, 8, 8, 8, 8)

Table 1 .

 1 The first few values of u k .

	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
	u k 2 4 4 4 8 8 8 8 10 12 12 16 16 16 16 16 18 20
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and (9)

f (2, 4, 4, 4, 8, 8, 8, 8) = (2,4,4,4,8,8,8,8,10,12,12,16,16,16,16,16).

By iterating this function f indefinitely, one produces an infinite sequence :

There exists a unique (infinite) sequence (X k ) k≥1 such that for any k ≥ 1 and for any n ≥ log 2 (k/d), X k is the k-th term of the finite sequence f n (x). This infinite sequence is called the f -transform of x. The lemma follows from the observation that for any ≥ 1 and for any y ∈ Z + , y and f (y) have the same first terms.

We can now formulate a conjecture about the construction of the sequence (u k ) k≥1 : Conjecture 3. Arnold's sequence (u k ) k≥1 is the f -transform of the quadruple (2, 4, 4, 4). Conjecture 3 is supported by the estimation on Mathematica of u k for every k ≤ 512.