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MODULAR PERIODICITY OF THE EULER NUMBERS
AND A SEQUENCE BY ARNOLD

SANJAY RAMASSAMY

Abstract. For any positive integer q, the sequence of the Euler
up/down numbers reduced modulo q was proved to be ultimately
periodic by Knuth and Buckholtz. Based on computer simulations,
we state for each value of q precise conjectures for the minimal
period and for the position at which the sequence starts being
periodic. When q is a power of 2, a sequence defined by Arnold
appears, and we formulate a conjecture for a simple computation
of this sequence.

1. Introduction

The sequence of Euler up/down numbers (En)n≥0 is the sequence
with exponential generating series

(1)
∞∑
n=0

En
n!
xn = secx+ tanx.

It is referenced as sequence A000111 in [Slo17] and its first terms are

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, . . .

The numbers En were shown by André [And79] to count up/down
permutations on n elements (see Section 3).

Knuth and Buckholtz [KB67] proved that for any integer q ≥ 1, the
sequence (En mod q)n≥0 is ultimately periodic. For any q ≥ 1 we
define :

• s(q) to be the minimum number of terms one needs to delete
from the sequence (En mod q)n≥0 to make it periodic ;
• d(q) to be the smallest period of the sequence (En mod q)n≥s(q).

For example, the sequence (En mod 3) starts with

1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, . . .

so one might expect to have s(3) = 1 and d(3) = 4. Clearly s(1) = 0
and d(1) = 1. In the remainder of this paper, we formulate precise
conjectures for the values of s(q) and d(q) for any q ≥ 2.
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Organisation of the paper. In Section 2 we reduce the problem to
the case when q is a prime power and we conjecture the values of s(q)
and d(q) when q is an odd prime power. In Section 3 we conjecture the
values of s(q) and d(q) when q is a power of 2, after having introduced
the Entringer numbers and a sequence defined by Arnold describing the
2-adic valuation of the Entringer numbers. In Section 4, we provide a
simple construction which conjecturally yields the Arnold sequence.

2. Case when q is not a power of 2

The following lemma implies that it suffices to know the values of
s(q) and d(q) when q is a prime power in order to know the values of
s(q) and d(q) for any q ≥ 2.

Lemma 1. Fix q ≥ 2 and write its prime number decomposition as

(2) q =
k∏
i=1

pαi
i ,

where k ≥ 1, p1, . . . , pk are distinct prime numbers and α1, . . . , αk are
positive integers. Then

s(q) = max
1≤i≤k

s(pαi
i )(3)

d(q) = lcm(d(pα1
1 ), . . . , d(pαk

k )).(4)

The proof is elementary and uses the Chinese remainder theorem.
When q is an odd prime power, Knuth and Buckholtz [KB67] found

the following :

Theorem 2 ([KB67]). Let p be an odd prime number.

(1) If p ≡ 1 mod 4, then

d(p) = p− 1.

(2) If p ≡ 3 mod 4, then

d(p) = 2p− 2.

(3) For any k ≥ 1,

s(pk) ≤ k.

(4) For any k ≥ 2,

d(pk)|pk−1d(p).

We conjecture the following for the exact values of s(q) and d(q)
when q is an odd prime power :

Conjecture 1. Let p be an odd prime number.
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(1) For any k ≥ 1,

s(pk) = k.

(2) For any k ≥ 2,

d(pk) = pk−1d(p).

Conjecture 1 is supported by Mathematica simulations done for all
odd prime powers q < 1000.

3. Entringer numbers and case when q is a power of 2

Formulating a conjecture analogous to Conjecture 1 for powers of 2
requires to define, following Arnold [Arn91], a sequence describing the
behavior of the 2-adic valuation of the Entringer numbers.

3.1. The Seidel-Entringer-Arnold triangle. The Entringer num-
bers are a refined version of the Euler numbers, enumerating some sub-
sets of up/down permutations. For any n ≥ 0, a permutation σ ∈ Sn
is called up/down if for any 2 ≤ i ≤ n, we have σ(i − 1) < σ(i) (resp.
σ(i − 1) > σ(i)) if i is even (resp. i is odd). André [And79] showed
that the number of up/down permutations on n elements is En. For
any 1 ≤ i ≤ n, the Entringer number en,i is defined to be the number
of up/down permutations σ ∈ Sn such that σ(n) = i. The Entringer
numbers are usually displayed in a triangular array called the Seidel-
Entringer-Arnold triangle, where the numbers (en,i)1≤i≤n appear from
left to right on the n-th line (see Figure 1).

1

0 1

1 1 0

0 1 2 2

5 5 4 2 0

Figure 1. First five lines of the Seidel-Entringer-Arnold triangle.

The Entringer numbers can be computed using the following recur-
rence formula (see for example [Sta97]). For any n ≥ 2 and for any
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1 ≤ i ≤ n, we have

(5) en,i =

{∑
j<i en−1,j if n is even∑
j≥i en−1,j if n is odd

.

3.2. Arnold’s sequence. Replacing each entry of the Seidel-Entringer-
Arnold triangle by its 2-adic valuation, we obtain an infinite triangle
denoted by T (see Figure 2).

0

∞ 0

0 0 ∞

∞ 0 1 1

0 0 2 1 ∞

Figure 2. First five lines of the triangle T of 2-adic
valuations of the Entringer numbers.

We read this triangle T diagonal by diagonal, with diagonals parallel
to the left boundary. For any i ≥ 1, denote by Di the i-th diagonal
of the triangle T parallel to the left boundary. For example D1 starts
with 0,∞, 0,∞, 0, . . .. For any i ≥ 1, denote by mi the minimum
entry of diagonal Di. Arnold [Arn91] observed that the further away
one moves from the left boundary, the higher the 2-adic valuation of
the Entringer numbers becomes. In particular, he observed (without
proof) that the sequence (mi)i≥1 was weakly increasing to infinity. He
defined the following sequence : for any k ≥ 1,

uk := max {i ≥ 1|mi < k} .

In other words, uk is the number of diagonals containing at least one
entry that is not zero modulo 2k. The sequence (uk)k≥1 is referenced as
the sequence A108039 in OEIS [Slo17] and its first few terms are given
in Table 1.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
uk 2 4 4 4 8 8 8 8 10 12 12 16 16 16 16 16 18 20

Table 1. The first few values of uk.
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Note that the first few terms given by Arnold were incorrect, be-
cause the entry 4 appeared four times, whereas it should be appearing
only three times. We also remark that we cannot define any sequence
analogous to (uk) when studying the p-adic valuations of the Entringer
numbers for odd primes p. Indeed, the p-adic valuation 0 seems to
appear in diagonals of arbitrarily high index.

3.3. Case when q is a power of 2. Using the sequence (uk)k≥1, we
formulate the following conjecture for s(q) and d(q) when q is a power
of 2 :

Conjecture 2. For any k ≥ 1, we have

(6) s(2k) = uk.

Furthermore, if k ≥ 1 and k 6= 2, we have

(7) d(2k) = 2k.

Finally, we have d(4) = 2.

Numerical simulations performed on Mathematica for k ≤ 12 sup-
port Conjecture 2.

4. Construction of Arnold’s sequence

In this section we provide a construction which conjecturally yields
Arnold’s sequence (uk)k≥1.

We denote by Z+ the set of nonnegative integers and we denote by

S :=
⊔
d≥1

Zd+

the set of all finite sequences of nonnegative integers. We define a
map f : S → S, which maps each Zd+ to Z2d

+ , as follows. Fix x =
(x1, . . . , xd) ∈ S. If all the xi’s are equal to xd, we set

f(x) = (xd, . . . , xd, 2xd, . . . , 2xd),

where xd and 2xd both appear d times on the right-hand side. Other-
wise, define

s := max {1 ≤ i ≤ d− 1|xi 6= xd}
and set

f(x) = (x1, . . . , xd, x1 + xd, . . . , xs−1 + xd, 2xd, . . . , 2xd),

where 2xd appears d−s+1 times on the right-hand side. For example,
we have

(8) f((2, 4, 4, 4)) = (2, 4, 4, 4, 8, 8, 8, 8)



6 SANJAY RAMASSAMY

and
(9)
f(2, 4, 4, 4, 8, 8, 8, 8) = (2, 4, 4, 4, 8, 8, 8, 8, 10, 12, 12, 16, 16, 16, 16, 16).

By iterating this function f indefinitely, one produces an infinite se-
quence :

Lemma 3. Fix d ≥ 1 and x ∈ Zd+. There exists a unique (infinite)
sequence (Xk)k≥1 such that for any k ≥ 1 and for any n ≥ log2(k/d),
Xk is the k-th term of the finite sequence fn(x).

This infinite sequence is called the f -transform of x. The lemma
follows from the observation that for any ` ≥ 1 and for any y ∈ Z`+, y
and f(y) have the same first ` terms.

We can now formulate a conjecture about the construction of the
sequence (uk)k≥1 :

Conjecture 3. Arnold’s sequence (uk)k≥1 is the f -transform of the
quadruple (2, 4, 4, 4).

Conjecture 3 is supported by the estimation on Mathematica of uk
for every k ≤ 512.
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