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Abstract

Miquel dynamics is a discrete-time dynamical system on the space of
square-grid circle patterns. For biperiodic circle patterns with both peri-
ods equal to two, we show that the dynamics corresponds to translation
on an elliptic curve, thus providing the first integrability result for this
dynamics. The main tool is a geometric interpretation of the addition law
on the normalization of binodal quartic curves.

1 Introduction
Miquel dynamics was introduced by the second author in [14], following an orig-
inal idea of Richard Kenyon [10], as a discrete-time dynamical system on the
space of square-grid circle patterns. It was then conjectured that for biperi-
odic circle patterns, Miquel dynamics belongs to the class of discrete integrable
systems, which contains among others the dimer model [6] and the pentagram
map [12, 13, 15]. In this article, we show that in the particular case when both
periods are equal to two, Miquel dynamics corresponds, in the right coordinates,
to translation on an elliptic curve. This is the first integrability result estab-
lished for Miquel dynamics. An important observation we make to prove this
is a simple geometric interpretation of the addition law on the normalization of
algebraic curves of degree four with two nodes.

1.1 Circle patterns and Miquel dynamics
A square grid circle pattern (abbreviated as SGCP) is a collection of points
(Si,j)(i,j)∈Z2 in the plane R2 such that for any (i, j) ∈ Z2, the points Si,j , Si+1,j ,
Si,j+1 and Si+1,j+1 are pairwise distinct and concyclic, with the circle going
through them denoted by Ci,j . The circles are colored in a checkerboard pattern:
the circles Ci,j with i+ j even (resp. odd) are colored black (resp. white). The
center of the circle Ci,j is denoted by Oi,j . We define two maps µw and µb,
respectively called white mutation and black mutation, from the set of SGCPs
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to itself. For any SGCP S, the SGCP T := µw(S) is obtained as follows: for
any (i, j) ∈ Z2 such that i+ j is even (resp. odd), Ti,j is obtained by reflecting
Si,j through the line (Oi,jOi−1,j−1). (resp. (Oi−1,jOi,j−1)). It follows from
Miquel’s six-circles theorem [11] that T is indeed a circle pattern, with the same
black circles as S but with potentially different white circles. Similarly, for any
SGCP S, the SGCP T ′ := µb(S) is obtained as follows: for any (i, j) ∈ Z2 such
that i+ j is even (resp. odd), T ′i,j is obtained by reflecting Si,j through the line
(Oi−1,jOi,j−1). (resp. (Oi,jOi−1,j−1)). Each mutation is an involution. Miquel
dynamics is defined as the discrete-time dynamical system obtained by applying
alternately µw followed by µb. Note that this dynamics is different from the one
on circle configurations studied by Bazhanov, Mangazeev and Sergeev [1], which
uses a different version of Miquel’s theorem.

Given two positive even integers m and n and two non-collinear vectors ~u
and ~v in R2, an SGCP S is said to be (m,n)-biperiodic with monodromies ~u
and ~v if for any (i, j) ∈ Z2, the following two conditions hold:

1. Si+m,j = Si,j + ~u ;

2. Si,j+n = Si,j + ~v.

We denote by Sm,n the set of all (m,n)-biperiodic SGCPs (with arbitrary
monodromies). This set is stable under both black mutation and white muta-
tion. Miquel dynamics on Sm,n is conjectured to be integrable in some sense.
In this paper we provide a first integrability result in the case when m = n = 2.
For the remainder of the paper, all SGCPs will be in S2,2.

Let S ∈ S2,2 be an SGCP. We will denote its vertices in the fundamental
domain {0, 1, 2}2 as follows (see Figure 1 for an illustration):

A = S0,0 B = S1,0 C = S2,0
D = S0,1 E = S1,1 F = S2,1
G = S0,2 H = S1,2 I = S2,2

Figure 1: Illustration of the notation for a biperiodic circle pattern with both
periods equal to two.
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Set Sw := µw(S) and Sb := µb(S). We will denote their vertices in the fun-
damental domain {0, 1, 2}2 respectively by Aw, . . . , Iw and Ab, . . . , Ib. Instead of
looking at the absolute motion of the points, we consider the relative motion of
points with respect to one another. To do so, we introduce the pattern S′w (resp.
S′b) which is obtained from Sw (resp. Sb) by applying the translation of vector
−−−→
AwA (resp. −−→AbA). We call renormalized white mutation µ′w (resp. renormalized
black mutation µ′b) the map which to S associates S′w (resp. S′b). We denote
the vertices of S′w and S′b in the fundamental domain {0, 1, 2}2 respectively by
A′w, . . . , I

′
w and A′b, . . . , I

′
b. It was shown in [14] that both points E′w and E′b

lie on some explicit quartic curve QS , which also contains the points A,C,E,G
and I (see Section 2 for a precise definition of QS). In other words, the relative
motion of the point in position (1, 1) with respect to the point in position (0, 0)
lies on this curve QS . The curve QS has, in an appropriate coordinate system,
an equation of the form

(x2 + y2)2 + ax2 + by2 + c = 0, (1.1)

with (a, b, c) ∈ R3. See Figure 2 for an example. We call a Miquel quartic a
quartic curve which has an equation of the form (1.1). As a special case of
Miquel quartics, when a+ b = 0, we obtain the family of Cassini ovals [18].

Figure 2: Example of a quartic curve QS , with the center Ω, the foci P and P ′
and the neutral element for addition N all lying on the horizontal coordinate
axis. The curve QS may have either one or two ovals.

1.2 Addition on binodal quartic curves
A complex quartic curve in CP2 is called binodal if it has two nodes, i.e. sin-
gularities at which two regular local branches intersect transversally. A bin-
odal quartic curve is called non-degenerate if it has no other singularities. The
projective closure in CP2 of a Miquel quartic is generically a non-degenerate
binodal quartic curve, with its two nodes being the circular points at infinity
(also called isotropic points) with homogeneous coordinates (1 : ±i : 0), which
lie on the infinity line C∞ = CP2 \ C2 (see also Lemma 4.2 for a more precise
statement). Every non-degenerate binodal quartic has an elliptic normalization,
that is a holomorphic parametrization by an elliptic curve that is bijective out-
side the nodes. Thus, its normalization has a natural group structure, which
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is unique once the neutral element is chosen. Everywhere below, whenever we
write about the addition law on a non-degenerate binodal quartic, we mean the
addition law on its elliptic normalization. By an abuse of notation, the points
on a non-degenerate binodal quartic and their lifts to the elliptic normalization
will be denoted by the same symbols.

We will show that, for Miquel dynamics, the motion of the point in position
(1, 1) induced by the composition of a black and a white renormalized mutation
corresponds to an explicit translation on the normalization of QS . Another
geometric interpretation of translation on certain binodal quartic curves, in
terms of foldings of quadrilaterals, was introduced by Darboux [4] and studied
more recently in [2, 9]. In order to state our translation result, we first give
a geometric interpretation of the addition on non-degenerate binodal quartic
curves.

The elliptic curve group law has a well-known geometric interpretation in
the case of smooth cubic curves. In recent years, other geometric interpretations
have arisen in the case of quartic curves, such as Edwards curves, later gener-
alized to twisted Edwards curves [5, 3, 8], and Jacobi quartic curves [17]. For a
non-degenerate binodal quartic curve, we obtain the addition law by fixing an
arbitrary base point and declaring that, whenever a conic passes through both
nodes and the base point, the other three intersection points of the conic with
the quartic have zero sum. More specifically, we have the following theorem.

Theorem 1.1. Let Γ ⊂ CP2 be a non-degenerate binodal quartic curve with
nodes T1 and T2, and let P ∈ Γ \ {T1, T2} be a base point. Consider the two-
dimensional family CP of conics through the three points T1, T2, P . Any conic
c ∈ CP intersects Γ at three additional points Xc, Yc and Zc, which need not be
distinct and may coincide with T1, T2 or P . Then one can choose a neutral
element NP for the addition law on the normalization Γ̂ of Γ such that Xc +
Yc + Zc = 0 for every c ∈ CP .

Theorem 1.1 easily follows from the classical theory of adjoint curves (see for
example [16, section 49]). However, it does not seem to be explicitly stated in
the literature. This result generalizes the geometric interpretation of addition
for twisted Edwards curves in terms of intersections with hyperbolas [8].

We use the above theorem to construct the group law on Miquel quartics.
We denote by S0

2,2 ⊂ S2,2 the subset of patterns S such that the binodal quartic
QS is non-degenerate. We will see in Lemma 4.2 that a Miquel quartic with an
equation of the form (1.1) is non-degenerate if and only if 4c /∈

{
0, a2, b2} and

a 6= b, so that S0
2,2 is Zariski-open in S2,2.

Proposition 1.2. Let S ∈ S0
2,2. We pick N to be an intersection point of

QS with the x-axis. One can consider the group law on QS as constructed in
Theorem 1.1 with N being both the base point and the neutral element. The
inverse is given by reflection through the x-axis. The sum of two points P1
and P2 is given by taking the circle going through P1, P2 and N and reflecting
through the x-axis the fourth point of intersection P3 of this circle with QS.

Theorem 1.3. Using the group law on QS defined in Proposition 1.2 and the
notation for A,C,E,E′w and E′b defined above, we have for any S ∈ S0

2,2

E′w = −E − 2A (1.2)
E′b = −E − 2C. (1.3)
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In particular, the composition of a renormalized white mutation followed by a
renormalized black mutation produces a translation by 2(A− C).

It follows from [14] that the space S2,2 is of real dimension 9. It was also
shown there that, after application of the composition µ′w ◦ µ′b of renormalized
black and white mutations, the point A, the vectors −→AC and −→AG as well as
the angles ∠CBA and ∠ADG do not change (see also Subsection 2.2). These
provide eight real conserved quantities. Once we fix the values of these eight
conserved quantities, we obtain a one-parameter family of possible patterns,
parametrized by the position of E on a quartic curve of Miquel type. The-
orem 1.3 shows that Miquel dynamics induces a translation on that quartic
curve. This is a sign of integrability of Miquel dynamics for (2, 2)-biperiodic
circle patterns, with the quartic curve playing, in a sense, the role of a Liou-
ville torus. It also reinforces the conjecture about the integrability of Miquel
dynamics for general (m,n)-biperiodic circle patterns.

We conclude this introduction by deriving, as a consequence of Theorem 1.3,
a measure on Miquel quartics which is invariant under Miquel dynamics.
Corollary 1.4. Let Q be a non-degenerate Miquel quartic with an equation of
the form (1.1). The 1-form

ω = d(x2 + y2)
xy

(1.4)

is invariant under any translation on Q. In particular, for any S ∈ S0
2,2, the

composition µ′b ◦ µ′w induces a map for the motion of E on QS which leaves
invariant the form ω on QS. Furthermore, for such a map on QS, the modulus
|ω| is an invariant measure.

Outline of the paper
Section 2 consists in recalling several results needed from [14]: the connection
between patterns in S2,2 and five-pointed equilateral hyperbolas, the integrals
of motion for Miquel dynamics on S2,2 and the construction of the quartic curve
QS . In Section 3, we describe a simple geometric construction of E′w starting
from the curve QS and two points A and E on it. Finally in Section 4, we
prove Theorem 1.1 about the group law on non-degenerate binodal quartics
and, combining it with the geometric construction of the previous section, we
prove Theorem 1.3 and Corollary 1.4 about Miquel dynamics.

2 The space S2,2 and the curve QS

In this section we describe the dichotomy for patterns in S2,2, between generic
patterns and trapezoidal patterns. We provide the integrals of motion for renor-
malized mutations, which include a quartic curve. We explain how to construct
this quartic curve in both the generic and trapezoidal cases. All the statements
in this section were proved in [14].

2.1 Generic and trapezoidal patterns
Let S ∈ S2,2. Denote its vertices by A, . . . , I as on Figure 1. The pattern S
has four cyclic faces, ABED, BCFE, DEHG and EFIH. Then either all the
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faces of S are trapezoids (trapezoidal case) or no face of S is a trapezoid (generic
case). The trapezoidal case is subdivided into two subcases :

• each triple of points {A,B,C}, {D,E, F} and {G,H, I} is aligned (hori-
zontal trapezoidal case) ;

• each triple of points {A,D,G}, {B,E,H} and {C,F, I} is aligned (vertical
trapezoidal case).

We denote respectively by G, Th and Tv the classes of generic, horizontal trape-
zoidal and vertical trapezoidal patterns. It was shown that each of these three
classes is stable under Miquel dynamics.

Patterns in S2,2 enjoy a special property, formulated in terms of an equi-
lateral hyperbola. Recall that an equilateral hyperbola is a hyperbola with
orthogonal asymptotes. Degenerate cases of equilateral hyperbolas correspond
to the union of two orthogonal lines.

Proposition 2.1 ([14]). Fix S ∈ S2,2. There exists an equilateral hyperbola H
going through the points B,D,E, F , and H. Furthermore, H is non-degenerate
if and only if S ∈ G. The pattern S is in Th (resp. Tv) if and only if the points
D,E and F (resp. B,E and H) lie on one line of H and the points B and H
(resp. D and F ) lie on the other line of H.

It was actually shown in [14] that the space S2,2 is parametrized by five-
pointed equilateral hyperbolas: pick an equilateral hyperbola H (four degrees
of freedom) then pick five distinct points B,D,E, F,H on H, there is a unique
way to reconstruct a pattern S ∈ S2,2 from this data, inverting the construction
of Proposition 2.1.

The vertical trapezoidal case is handled in a similar fashion as the horizon-
tal trapezoidal case. Thus from now on, among the trapezoidal patterns we
shall only consider the horizontal trapezoidal ones and refer to the horizontal
trapezoidal case simply as the trapezoidal case, omitting “horizontal”.

2.2 Conserved quantities under renormalized mutations
We recall the results about the invariants under Miquel dynamics found in [14].
Fix S ∈ S2,2 and write S′w = µ′w(S) and S′b = µ′b(S). Denote by A′w, . . . , I

′
w

(resp. A′b, . . . , I ′b) the vertices of S′w (resp. S′b). The following statements hold :

• (A,C,G, I) = (A′w, C ′w, G′w, I ′w) = (A′b, C ′b, G′b, I ′b) ;

• ∠CBA = −∠C ′wB′wA′w = −∠C ′bB′bA′b ;

• ∠ADG = −∠A′wD′wG′w = −∠A′bD′bG′b.

Furthermore, there exists a quartic curve QS , the construction of which is
explained in the next two subsections, verifying the following properties.

Proposition 2.2 ([14]). For any S ∈ S2,2, we have QS = QS′
w

= QS′
b
. Fur-

thermore, the points A, C, G, I, E, E′w and E′b lie on QS.
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2.3 Construction of QS in the generic case
Assume S ∈ G. In this case it was shown in [14] that the angles ∠CBA and
∠ADG are not flat. Denote by OB (resp. OD) the center of the circle through
A,B and C (resp. A,D and G). Let P be the intersection point of the parallel
to (AG) through OB and the parallel to (AC) through OD. Let P ′ be the
symmetric of P across Ω, where Ω is the center of the parallelogram ACIG.
Define

λ := PA2P ′A2 − PC2P ′C2

ΩA2 − ΩC2

and
k := ΩA2PC2P ′C2 − ΩC2PA2P ′A2

ΩA2 − ΩC2

Then we define QS be to the following locus of points in R2 :

QS :=
{
M ∈ R2|PM2P ′M2 − λΩM2 = k

}
. (2.1)

The points P and P ′ are called the foci of the quartic QS (see Figure 2). Taking
coordinates centered at Ω and such that P lies on the x-axis, we obtain for QS

an equation of the form (1.1).

2.4 Construction of QS in the trapezoidal case
Assume S ∈ Th. Take coordinates centered at the center Ω of the parallelo-
gram ACIG (which is actually a rectangle in the trapezoidal case), with the
x-axis parallel to (AC). The points C,D and E have respective coordinates
(xC , yC), (xD, yE) and (xE , yE). Define the quantities

α = x2
C + y2

C + x2
E + y2

E + (xD + xC)2(x2
C + y2

C − x2
E − y2

E)
y2

C − y2
E

(2.2)

β = x2
C + y2

C + x2
E + y2

E + (xD + xC)2(x2
E − x2

C)(x2
C + y2

C − x2
E − y2

E)
(y2

C − y2
E)2 (2.3)

γ = (x2
C + y2

C)(x2
E + y2

E) + (xD + xC)2(x2
Ey

2
C − x2

Cy
2
E)(x2

C + y2
C − x2

E − y2
E)

(y2
C − y2

E)2

(2.4)

Then QS is the curve of equation

(x2 + y2)2 − αx2 − βy2 + γ = 0. (2.5)

It would be interesting to have a coordinate-free geometric construction of QS

in the trapezoidal case, as we had in the generic case.

3 Another construction of renormalized muta-
tion

The proof of statement (1.2) in Theorem 1.3 relies on a direct construction of E′w
from the points A,E, I and the quartic curve QS . Denote by OA (resp. OI) the
center of the circle CA (resp. CI) going through A (resp. I) and E and tangent
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to QS at A (resp. I). Note that the points OA and OI must be distinct, hence
the line (OAOI) is well-defined. Otherwise the circle CA = CI would intersect
the quartic curve QS in five real points counted with multiplicity, which would
contradict Bézout’s theorem, since there are already intersection points with
the circular points at infinity which both count twice. We have the following
simple construction for E′w :

Proposition 3.1. The point E′w is obtained by reflecting E through the line
(OAOI). In particular, the circle going through A, E and E′w is tangent to QS

at A.

Proof. We distinguish two cases, whether S is generic or trapezoidal. All the
computations mentioned below are easily performed on a computer algebra soft-
ware, but we do not display in this paper all the formulas obtained, since some
of them would take up to ten lines.

Generic case. Assume S ∈ G. Up to applying a similarity, one may assume
that the equilateral hyperbola going through B,D,E, F and H has equation
xy = 1. Denote respectively by b, d, e, f and h the abscissas of B,D,E, F and
H. We will successively compute several quantities in terms of b, d, e, f and h.
We first compute the coordinates of O1, O2 and O4, which are the respective
circumcenters of the triangles BDE, DEH and EFH. The points A and B are
the two intersection points of the following two circles :

• the circle centered at O1 going through B ;

• the image under the translation of vector −−→HB of the circle centered at O2
going through H.

The statement about the second circle follows from the fact that S ∈ S2,2 has
vertical monodromy equal to −−→BH. Denoting by O′2 the image of O2 under the
translation of vector −−→HB, we obtain A as the reflection of B through the line
(O1O

′
2) :

A = (b+ d+ e, b−1 + d−1 + e−1)

Applying translations of respective vectors −−→DF , −−→BH and −−→DF +−−→BH, we obtain
the coordinates of the points C,G and I :

C = (b+ e+ f, b−1 + e−1 + f−1)
G = (d+ e+ h, d−1 + e−1 + h−1)
I = (e+ f + h, e−1 + f−1 + h−1).

Next, we compute the coordinates of Ew (the reflection of E through the line
(O1O4)), Aw (the reflection of A through the line going through O1 and O4+−→IA)
and finally E′w = Ew + −−−→AwA. Then we compute Ω (midpoint of [AI]) and
the foci P and P ′ of the quartic curve QS (which requires to first compute
the respective circumcenters OB and OD of the triangles ABC and ADG, as
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explained in Subsection 2.3):

Ω = (b+ d+ 2e+ f + h

2 ,
b−1 + d−1 + 2e−1 + f−1 + h−1

2 )

P = (b+ d+ e+ f + h− bdefh
2 ,

b−1 + d−1 + e−1 + f−1 + h−1 − (bdefh)−1

2 )

P ′ = (b+ d+ 3e+ f + h+ bdefh

2 ,
b−1 + d−1 + 3e−1 + f−1 + h−1 + (bdefh)−1

2 )

We also compute the real number

λ = PA2P ′A2 − PC2P ′C2

ΩA2 − ΩC2 .

The quartic QS then has an equation of the form

QS =
{
M ∈ R2|PM2P ′M2 − λΩM2 = k

}
for some real number k. Next, we compute the intersection point OA (resp. OI)
of the normal to the quartic at A (resp. I) and the perpendicular bisector of the
segment [AE] (resp. [IE]). We finally check that E′w is indeed the reflection of
E through the line (OAOI).

Trapezoidal case. Assume S ∈ Th. Up to applying a similarity, we may
assume that the degenerate equilateral hyperbola going through B,D,E, F and
H has equation xy = 0 with D,E and F lying on the line y = 0 and B and
H lying on the line x = 0. As in the generic case, we successively compute as
functions of the coordinates of B,D,E, F and H the following quantities :

1. the coordinates of A,C, I and E′w ;

2. the quantities α and β using formulas (2.2) and (2.3) ;

3. the coordinates of OA and OI .

We finally check that E′w is indeed the reflection of E through the line (OAOI).

4 The group law on non-degenerate binodal quar-
tics

We first prove Theorem 1.1 about the group law on general non-degenerate
binodal quartics in Subsection 4.1, before applying it to prove Theorem 1.3
about Miquel dynamics in Subsection 4.2. The proof of Corollary 1.4 is in
Subsection 4.3.

4.1 General non-degenerate binodal quartics
Recall that two divisors on a Riemann surface are said to be linearly equivalent
if their difference is the divisor of a meromorphic function. A complete linear
system is defined to be any set of all the divisors linearly equivalent to a given
divisor. We will deal with divisors on the elliptic normalization Γ̂ of a non-
degenerate binodal quartic Γ.
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Lemma 4.1. Let Γ ⊂ CP2 be a non-degenerate binodal quartic curve with nodes
T1 and T2. Consider the three-dimensional family C of all the conics (including
degenerations to unions of lines) passing through the nodes T1 and T2. A conic
c ∈ C intersects Γ at four additional points Xc, Yc, Zc and Wc, which need not
be distinct and may coincide with T1 or T2, and we denote by Dc the divisor
[Xc] + [Yc] + [Zc] + [Wc] on Γ̂. The set {Dc}c∈C forms a complete linear system.

Proof. This lemma is an immediate consequence of the theory of adjoint curves
developed for example in [16, section 49]. For an algebraic curve G with singu-
larities that are all nodes, an adjoint curve A to G is defined to be any curve
passing through all the nodes of G. Let DA be the divisor corresponding to all
the intersections of A with G outside of the nodes. The Brill-Noether residue
theorem [16, p.216] states that the set {DA}, where A ranges over all the adjoint
curves to G of a fixed degree d, forms a complete linear system. The lemma
corresponds to the special case with two nodes and adjoint curves of degree
d = 2.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. For any conic c ∈ CP , denote by Dc,P the divisor Dc −
[P ] = [Xc] + [Yc] + [Zc]. The linear equivalence of two effective divisors on
Γ̂ containing the base point P is equivalent to the linear equivalence of their
differences with the single-point divisor [P ], since linear equivalence classes of
divisors form an additive group. Together with Lemma 4.1, this implies that
the set {Dc,P }c∈CP

forms a complete linear system.
For every two divisors

∑d
j=1[Sj ] and

∑d
j=1[Tj ] of the same degree d on an

elliptic curve the equality
d∑

j=1
Sj =

d∑
j=1

Tj (4.1)

for the addition in the group law is independent on the choice of neutral element:
if it holds for the group law defined by one neutral element, then it holds for
every other neutral element. Equality (4.1) holds if and only if the corresponding
divisors are linearly equivalent. This is a particular case of Abel’s Theorem [7,
chapter 2, section 2].

Since {Dc,P }c∈CP
forms a complete linear system, for any (c, c′) ∈ (CP )2,

[Xc] + [Yc] + [Zc] is linearly equivalent to [Xc′ ] + [Yc′ ] + [Zc′ ], thus Xc + Yc +
Zc equals Xc′ + Yc′ + Zc′ for the group law on the elliptic normalization of
Γ, regardless of the choice of neutral element. By surjectivity of the tripling
map, there exists N such that 3N equals the quantity Xc + Yc + Zc, which is
independent of c ∈ CP . Taking this point N as the neutral element, we obtain
a group law on Γ̂ such that for any c ∈ CP , Xc + Yc + Zc = 0.

4.2 The group law on non-degenerate Miquel quartics
We first identify when a Miquel quartic is non-degenerate.

Lemma 4.2. A Miquel quartic Q with an equation given by (1.1) is a non-
degenerate binodal quartic curve if and only if a 6= b and 4c /∈

{
0, a2, b2}. In

that case, its nodes are the two circular points at infinity.
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Proof. The equation of Q in homogeneous coordinates is

(x2 + y2)2 + ax2z2 + by2z2 + cz4 = 0. (4.2)

A singular point of the quartic of homogeneous coordinates (x : y : z) must
satisfy (4.2) as well as the following three equations, corresponding to the van-
ishing of the three partial derivatives with respect to x, y and z of the left-hand
side of (4.2):

x(2x2 + 2y2 + az2) = 0 (4.3)
y(2x2 + 2y2 + bz2) = 0 (4.4)
z(ax2 + by2 + 2cz2) = 0 (4.5)

One checks that the two circulars points at infinity T1 and T2 of respective
coordinates (1 : i : 0) and (1 : −i : 0) satisfy equations (4.2) to (4.5) for any
choice of a, b, c. Furthermore, the Hessian of the left-hand side of (4.2) at T1 is
given by  8 8i 0

8i −8 0
0 0 2(a− b)

 ,

which has rank 2 if and only if a 6= b. Hence T1 is a node if and only if a 6= b.
The same holds for T2.

Equation (4.2) has no solution on the line at infinity z = 0 besides T1 and
T2. Distinguishing when x or y vanish, it is easy to check that for a 6= b, the
only other singularities are

• the point (0 : 0 : 1) when c = 0 ;

• the points (±
√
−a/2 : 0 : 1) when c = a2/4 ;

• the points (0 : ±
√
−b/2 : 1) when c = b2/4.

This concludes the proof.

We now use Theorem 1.1 to provide a geometric construction of the group
law on a non-degenerate Miquel quartic.

Proof of Proposition 1.2. Here N is an intersection point of the non-degenerate
Miquel quartic QS with the x-axis. Since the nodes of QS are the circular
points at infinity and the (complex) circles are exactly the conics going through
both circular points, the set CN consists in all the circles going through N . By
symmetry with respect to the x-axis, the osculating circle to QS at N has an
intersection of order 4 with QS at N . Thus N can be taken as the neutral ele-
ment for a group law on QS with base point N as constructed in Theorem 1.1.
Since both QS and any tangent circle to QS at N are symmetric with respect
to the x-axis, we deduce that the inverse for this group law is given by reflec-
tion through the x-axis. The statement about the sum of two points follows
immediately.

Theorem 1.3 is then an immediate consequence of Proposition 3.1.

Proof of Theorem 1.3. By symmetry, it suffices to prove (1.2). We consider two
circles :
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• the osculating circle to QS at N ;

• the circle going through the points A,E and E′w, which is tangent to QS

at A by Proposition 3.1.

By Lemma 4.1, the divisors [E′w] + [E] + 2[A] and 4[N ] are linearly equivalent.
For the group law on QS with N as base point and neutral element described
in Proposition 1.2, we have N = 0, hence E′w + E + 2A = 0, by an argument
similar to the one used in the proof of Theorem 1.1.

4.3 The invariant measure on Miquel quartics
Proof of Corollary 1.4. Let Q be a non-degenerate binodal Miquel quartic, with
an equation of the form (1.1). We show below that the pullback of the form
ω to the elliptic normalization of the quartic Q is a holomorphic differential.
Firstly, ω is meromorphic.

Secondly, it has no poles at the intersection points of Q with the coordinate
axes. For example, consider a point M ∈ C2 of its intersection with the y-axis.
The germ at M of the quartic is the graph of an even function y = g(x), hence
g′(0) = 0 and g(x) = g(0)+O(x2) with g(0) 6= 0, since (0, 0) /∈ Q (which follows
from the fact that c 6= 0 by Lemma 4.2). Thus, in a neighborhood of the point
M one has dy = O(x)dx and

ω = 2dx
y

+ 2dy
x

= O(1)dx.

The case of an intersection point with the x-axis is treated analogously.
Thirdly, we show below that the circular points at infinity are not poles of

the restriction of the form ω to local branches of the quartic Q at these points.
There are two local branches of the quartic at each circular point, since each
circular point is a node. Each of these local branches is regular and transverse
to the infinity line, otherwise the intersection index of the quartic with the
infinity line would be greater than 4, which would contradict Bézout’s theorem.
Take an arbitrary local branch ϕ at a circular point, say T1 with homogeneous
coordinates (1 : i : 0), and consider the restriction to it of the form ω. The
function xy is meromorphic on CP2 with a pole of order 2 along the infinity
line and the local branch ϕ is transverse to it, thus the denominator xy|ϕ has a
pole of order 2 at T1. The primitive (x2 + y2)|ϕ of the numerator has at most
first order pole at T1, since the circular points satisfy the equality x2 + y2 = 0.
In more detail, let us introduce new affine coordinates (u, v) on C2 so that
x2 + y2 = uv and the u-axis intersects the infinity line at the point T1. Define
ũ = 1

u and ṽ = v
u and observe that they are local affine coordinates centered

at T1. The coordinate ũ can be taken as a local parameter of the branch ϕ
since ϕ is transverse to the infinity line and ũ vanishes on the infinity line with
order 1. Furthermore, ṽ is holomorphic and vanishes at T1 thus ṽ = O(ũ) in a
neighborhood of T1 on ϕ. Therefore, one has

x2 + y2 = uv = ṽ

ũ2 = O( 1
ũ

)

in a neighborhood of T1 on ϕ. Hence the restriction of the form ω to a local
branch of Q has a pole of order at most 2− 2 = 0 at a circular point.
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Thus the pullback of the form ω is a holomorphic differential on the nor-
malization of Q. Recall that any holomorphic differential on an elliptic curve
is invariant by any translation defined by the group structure on the curve.
Its modulus induces a measure on the real part, which is invariant under ev-
ery translation, hence under the translation induced on E by the composition
µ′b ◦µ′w. Note in passing that, since ω has no zeros, it induces a form of constant
sign on each component of the real part of the quartic.
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