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A B S T R A C T 

 

We report on the self-assembly behavior of poly(2-methyl-2-oxazoline)–block–poly(2-octyl-2-

oxazoline) comprising different terminal perfluoroalkyl fragments in aqueous solutions. As reported 

previously [Kaberov et al. (2017)] such polyphiles can form a plethora of nanostructures depending of 

the composition and on the way of preparation. Here we report, for the first time, detailed information 

on the internal structure of the nanoparticles resulting from the self-assembly of these copolymers. 

Small-angle neutron and X-ray scattering (SANS/SAXS) experiments unambiguously prove the 

existence of polymersomes, wormlike micelles and their aggregates in aqueous solution. It is shown 

that increasing content of fluorine in the poly(2-oxazoline) copolymers results in a morphological 

transition from bilayered or multi-layered vesicles to wormlike micelles for solutions prepared by 

direct dissolution. 

In contrast, nanoparticles prepared by dialysis of a polymer solution in a non-selective organic solvent 

against water are characterized by SAXS method. The internal structure of the nanoparticles could be 

assessed by fitting of the scattering data, revealing complex core-double shell architecture of spherical 

symmetry. Additionally, long range ordering is identified for all studied nanoparticles due to the 

crystallization of the poly(2-octyl-2oxazoline) segments inside the nanoparticles. 

 

 

 



1. Introduction 

Owing to their versatile properties, poly(2-alkyl/aryl-2-oxazoline)s (PAOx) and their derivatives 

currently receiving significant scientific attention [1–3]. Due to their biocompatibility and nontoxicity, 

PAOx are widely studied as materials for biomedical applications such as drug, protein, radionuclide 

or gene delivery [4–7] as well as for the preparation of non-fouling surfaces that resist non-specific 

adsorption of proteins, bacteria, and higher organisms [8]. Living cationic ringopening polymerization 

(CROP) is usually used for the synthesis of polyoxazolines [9,10] and allows not only controlling the 

molecular weight and dispersity of the resulting polymers but also to obtain PAOx of desired 

architecture. One can vary the nature and ratio of monomers, use different functional initiators or 

terminate agents thereby introducing fragments with different functionality and controlling the 

hydrophilic to hydrophobic balance [11–13]. 

Varying the ratio and the order of hydrophilic and hydrophobic blocks constituents of amphiphilic 

PAOx leads to a plethora of self-assembled structures such as spheres [14], vesicles [15], rod- or 

wormlike micelles, cylinders and corresponding aggregates in solution. Usually, poly(2-methyl-2-

oxazoline) (MeOx) or poly(2-ethyl-2-oxazoline) (EtOx) are used to build hydrophilic blocks since 

these are biocompatible and reveal “stealth-like” behavior [16–18]. More complex structures, for 

example, multicompartment micelles, could be obtained upon self-assembly of triblock terpolymers in 

water or organic solvents [19,20]. Especially interesting are the so-called polyphiles - triblock 

copolymers that combine hydrophilic, hydrophobic and fluorophilic blocks [21–25]. Due to the 

immiscibility of the lipophilic and fluorophilic hydrophobic segments the resulting copolymers can 

form particles of complex morphologies depending on the polymer architecture and solvent [20,26,27]. 

Such nano- and microparticles containing fluorinated fragments are of high interest for potential 

application as magnetic resonance imaging contrast agents [28,29]. 

While the synthesis and the self-assembly behavior of di- and triblock PAOx containing hydrophilic 

and hydrophobic blocks were widely studied, there is not much information about triblock PAOx that 

contain fluorinated moieties. Schubert and co-authors reported on the investigation of nanostructures 

formed by triblock terpolymers consisting of poly[2-ethyl-2-oxazoline-block-2-(1-ethylpentyl)-2-

oxazolineblock-2-(Xfluorophenyl)-2-oxazoline] (X =di, tri, tetra and penta). The authors studied the 

influence of the fluorination degree of these polymers on their self-assembly ability. A transition from 

rod-like micelles to highly complex round-shaped super-aggregates was observed by cryo-TEM with 
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increasing fluorine content [30]. Water-soluble polymer surfactants based on 2-methyl-2-oxazoline 

with both fluorinated terminal group C8H17CH2CH2 (constant length) and hydrocarbon terminal group 

of different lengths CnH2n+1 (n = 6,8,…,18) were synthesized by Nuyken and co-authors [31]. It was 

shown by the fluorescence spectroscopy of polymer solutions with solubilized pyrene that micelle core 

composition and first micellization point depends on the ratio between hydrophobic and fluorocarbon 

parts of polymer. 

Recently we reported on the synthesis and solution properties of a novel quasi-triblock fluorine-

containing copolymers based on 2-oxazolines [32]. Our synthetic approach provides an easy way to 

attach a 

CnF2n+1 perfluorinated terminal chain to a poly(2-methyl-2-oxazoline)–block–poly(2-octyl-2-

oxazoline) (PMeOx-b-POctOx) dilock copolymer through termination and to combine hydrophilic, 

hydrophobic and fluorophilic moieties along one polymer chain. Preliminary investigations of the self-

assembly of the synthesized polymers in water using dynamic light scattering and cryo-TEM revealed 

the coexistence of bilayer and multi-layer vesicles as well as rod-like micelles. The shape and the size 

of the nanoparticles in solution could be controlled by the way of preparation. Spherical micelles with 

diameters ranging from 15 to 20 nm were observed in solution for the polymers assembled by solvent 

exchange. However, more detailed insights into the internal structure (size of the core and the shell 

thickness) of the formed nanoparticles and their dependence on the length of the fluorinated fragment 

or the method of preparation were not investigated. 

Here, we report on the in depth evaluation of the internal structure of nanoparticles formed by the 

self-assembly of quasi-triblock fluorinecontaining copolymers, namely PMeOx-POctOx-C8F17, 

PMeOx-POctOxC10F21, PMeOx-POctOx-C12F25, as well as the non-fluorinated PMeOx-bPOctOx 

reference diblock copolymer. We describe the influence of the length of the perfluorinated terminal 

chain and of the preparation methods on the features of the self-assembled polymers. To achieve a 

comprehensive characterization of the morphology of the resulting nanoparticles, we combined both 

small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) experiments. 

2. Experimental section 

2.1. Materials 

2-Methyl-2-oxazoline (MeOx, 99%, Acros Organics) was dried over BaO and distilled before use. 

2-(n-octyl)-2-oxazoline (OctOx) was synthesized according to procedure described elsewhere [32]. 

Perfluorinated acids (nonanoic, undecanoic, tridecanoic) and p-toluenesulfonate were purchased from 

Sigma-Aldrich and used as received. Acetonitrile (ACN, Lachner) was dried by refluxing over BaO 

and distilled before use. Water was deionized with a MilliPore Milli-Q® gradient installation. All other 

chemicals were used as received. 



2.2. Polymer synthesis 

All copolymers were synthesized separately by the CROP. The detailed procedure was described in 

our previous work [32]. In brief, the first monomer MeOx and the initiator (p-toluenesulfonate) were 

dissolved in acetonitrile and stirred at 140 °C in pressure reactor under 

 

Scheme 1. Chemical structure of quasi-triblock copolymers, n =8, 10 or 12. 

Table 1 

Composition and characteristics of fluorinated quasi-triblock poly(2-oxazolines) and reference 

nonfluorinated diblock copolymer. 

Polymer Composition Mn, g/mol Ð 

P0 PMeOx30-b-

POctOx20 

6300 1.11 

P1 PMeOx30-b-

POctOx20-C8F17 

6000 1.08 

P2 PMeOx30-b-

POctOx20-C10F21 

5000 1.09 

P3 PMeOx30-b-

POctOx20-C12F25 

5000 1.14 

inert atmosphere for 35 min (≈98% of conversion). After cooling down the reaction mixture, the 

second monomer OctOx was added and the mixture was stirred at 140 °C for another 45 min to form 

diblock copolymer. 

The perfluoroalkyl fragments were attached to copolymers by termination of polymerization with 

corresponding perfluorinated carboxylic acids in the presence of triethylamine at 70 °C. To obtain the 

model PMeOx-b-POctOx diblock copolymer, the polymerization was quenched with 1 M KOH in 

methanol. 

The chemical structures of the polymers are shown in Scheme 1. The molecular weights of the 

polymers range from 5 to 6 kDa, and the polydispersities of the samples according to the reference 

[32] in range from 1.08 to 1.14 (Table 1). 

2.3. Preparation of samples 

All solutions for SAXS experiments were prepared using deionized water in the range of 

concentrations from 0.1 to 5 wt%. All solutions for SANS experiments were prepared using D2O 

(99.9%, Sigma-Aldrich) as solvent to reduce the incoherent scattering. The concentration of all SANS 

solutions was 2 wt%. Scattering from pure H2O or D2O was measured separately and subtracted from 

solution scattering data. 
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O 
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Samples for SAXS and SANS experiments were prepared in two ways: by direct dissolution in H2O 

or D2O or by solvent exchange. 

2.3.1. Solvent exchange method 

Briefly, 5 mL of 2.5 wt% polymer solution in methanol was placed in dialysis tubing with MWCO 

3.5–5 kDa (Spectra/Por, Spectrum Laboratories, Inc.) and dialyzed against 5 L of deionized water with 

mild stirring at 25 °C. The deionized water was refreshed 5 times and the total dialysis time was 24 h. 

Samples were stored in sealed containers at 4 °C. 

2.4. Small-angle X-ray scattering 

SAXS experiments for samples prepared by direct dissolution were performed on the high brilliance 

beamline ID02 at ESRF (Grenoble, France). The SAXS setup utilizes a pinhole camera with a beam 

stop placed in front of a two-dimensional Frelon CCD detector. The X-ray scattering patterns were 

recorded for sample-to-detector distances of 2.5 and 31 m, using a monochromatic incident X- ray 

beam with an energy of E =12 460 eV (λ =0.1 nm). The available scattering vector range was q = 

0.001–2.76 nm−1 (q = 4π sin θ/λ, where 2θ is the scattering angle). Online corrections were applied for 

the detector, and the sample-to-detector distance, center, transmission, and incident intensity were 

calibrated. The isotropic scattering was azimuthally regrouped to determine the dependence of the 

scattered intensity I(q) on the scattering vector q in absolute units. The scattering from a capillary filled 

with Milli-Q water was measured as a background and subtracted from the scattering signals of the 

samples. Prior to the experiment, a representative sample was checked to ensure lack of radiation 

damage. 

SAXS experiments for samples obtained through solvent exchange from methanol were performed 

at the beamline B21 (Diamond Light Source, Didcot, UK) using a pixel detector (2M PILATUS). The 

X-ray scattering images were recorded for a sample-to-detector distance of 3.9 m, using a 

monochromatic incident X-ray beam (λ =0.1 nm) covering the range of scattering vector 0.025 nm−1 < 

q < 4 nm−1. Most of the samples had no measurable radiation damage by the comparison of 20 

successive time frames with 50 ms exposures. The two-dimensional scattering patterns were 

 

Fig. 1. Scheme of bilayered vesicle (a), wormlike micelle (b) and sphere 

with three shells (c). 



azimuthally averaged to yield the dependence of the scattered intensity I(q) on the scattering vector q. 

Before fitting analysis, the solvent scattering has been subtracted. 

2.5. Small-angle neutron scattering 

SANS experiments for samples prepared by direct dissolution were performed at CEA-Saclay on 

the spectrometer PAXY of the Laboratoire Leon-Brillouin. Measurements were performed with a 128 

×128 multidetector (pixel size 0.5 ×0.5 cm) using a monochromatic (wavelength λ set by a mechanical 

velocity selector) incident neutron beam collimated with circular apertures for two sample-to-detector 

distances, namely, 1 m (with λ =0.6 nm) and 7 m (with λ=0.8 nm). With such a setup, the investigated 

range of scattering vector is from 5 ×10−2 to 4 × 10−1 nm−1. The two-dimensional scattering patterns 

were isotropic so that they were azimuthally averaged to yield the dependence of the scattered intensity 

I(q) on the scattering vector q. 

3. Data analysis 

The SANS and SAXS data were fitted using several models implemented in the SASfit software 

[33] (http://kur.web.psi.ch/sans1/ SANSSoft/sasfit.html). The curves were fitted using the following 

function: 

I q( ) = P q S( ) HS ( )q + PVoigt ( )q + Ibkg (1) 

where P(q) is the form factor of the scattering object, SHS(q) is the structure factor for hard sphere 

interaction (Percus–Yevick model), PVoigt(q) is Voigt peak form factor, which describes peaks in the 

high q range of scattering curves and Ibkg is the incoherent background. 

Scattering length densities (SLDs) of polymeric parts for all implemented models (Tables S2 and 

S3) were freely fitted during the fitting procedure and compared to estimated values of SLD to decide 

whether the fit results were in agreement with theoretical ones (Table S1). SLD of D2O and H2O were 

fixed to the literature values of 

6.33 ×10−4 nm−2 and 9.44 × 10−4 nm−2, respectively. 

3.1. Structure factor 

To take into account the interactions between nanoparticles we used Perkus-Yevick structure factor 

for hard spheres SHS (q) [34]: 

1 

SHS ( )q =  

1 + 24fHS G(2RHSq)/(2RHSq) 

where RHS is radius of hard sphere and fHS is hard-sphere volume fraction. The function G(x) is given 

by: 

 sinx−cosx2xsinx + (2−x2)cosx−2 

http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html
http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html
http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html
http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html


 

3.2. Bilayered vesicle 

The form factor of bilayered vesicle PBLV (q) was used for diblock copolymer PMeOx30-b-POctOx20 

and as one of the possible form factors for triblock copolymer with the shortest perfluorinated fragment 

PMeOx30-b-POctOx20-b-C8H17: 

PBLV ( )q = (K q R( , core,ηsolv−ηi) + K q R( , core + t ηo, i−ηo) + K q R( , core + ti 

+ t ηo, o−ηi) + K q R( , core + 2ti + t ηo, i−ηsolv))2 

(2) 

with 

4 3Δ 3η sinqR qR− cosqR K (q R, ,Δη) = πR 

 3 (qR)3 (3) 

where Rcore is the radius of bilayered vesicles core, which consists of solvent, to is thickness of outer 

part of bilayer, ti is thickness of inner part of bilayer. ηo, ηi, ηsolv, are SLD of outer part of bilayer, inner 

part of bilayer and solvent, respectively. The scheme of bilayered vesicle model is shown on the Fig. 

1a. To account for polydispersity, a Schulz-Zimm distribution of Rcore was included. 

For solutions with concentration below 1% no structure factor was needed and SHS(q) was set to 1. 

3.3. Wormlike micelle 

The overall scattering intensity of wormlike micelle with contour length L and Kuhn length l can be 

written as [35] 

Pwm = Nagg2 βcore2 Pcore ( )q + Naggβbrush2Pbrush ( )q + 2Nagg2 βcoreβbrushSbrush−core (q) 

+ Nagg (Nagg−1)βbrush
2Sbrush−brush ( )q , 

where Nagg
2 β

core
2 Pcore (q) is self-correlation term of the core, Naggβbrush

2 Pbrush ( )q is self-correlation 

term of the chains, 

2Nagg
2 βcoreβbrushSbrush−core (q) is the cross-term between the core and chains and Nagg (Nagg−1)βbrush2 

Sbrush−brush ( )q is the cross-term between different chains. Nagg is the aggregation number of 

polymers forming the micelle per surface area, βbrush = Vbrush (ηbrush−ηsolv) and βcore = Vcore 

(ηcore−ηsolv) are the excess scattering lengths of a block in the corona and in the core, 

respectively.Vbrush andVcore are the total volume of a block in the corona and in the core, respectively. 
η
brush and ηcore are the corresponding SLDs. Pcore ( )q is scattering of wormlike core and can be written 
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as the product of the scattering from the conformation of worm Pworm (q l L, , ) and the cross section 

scattering Pcs (q R, core, ,d Rg) 

Pcore (q R, core, , )l L = Pworm (q l L P, , ) cs (q R, core, ,d Rg) 

,where Rcore is radius of wormlike core with uniform scattering length density 

 NaggVcore 1 

Rcore =, 

 1−xsolv core, πL 

where xsolv cor,e is amount of solvent in the micellar core. 

The contribution of wormlike conformation Pworm is described by the model from Kholodenkos 

approach [36] 

l 

Pworm (q l L, , ) = I x2 ( )], where x = 

l x 

I xn ( ) =  f z z( ) n−1dz 

0 

1 sinh(Ez) 3 

⎧⎪E sinhz forq ⩽ l f ( )z = 1 sinh(Fz) 3 , 

⎨ forq > ⎪F sinhz l 

⎩ 

2 2 where E = 1−( )lq and F = ( )lq −1. 

3 3 

For the contribution of the cross section Pcs is given as 

2 Pcs (q R, core, ,d Rg) = ⎡⎢⎣2J qR1qR( corecore)⎤⎥⎦ , 

where Rg is radius of gyration of the block unit in the corona, J1 is the first order Bessel function of the 

first kind: J ( )x = (sinx−xcos )/x x2. 

The scattering intensity for the brush of wormlike micelle is given by: 

 exp(− − +x) 1 x 

Pbrush (q R, g) = 2 2 , 

x 

where x = R qg
2 2. 

The contribution of cross term between core and chains which form brush of wormlike micelle is 

calculated using equation: 

 

 
 

 
 

 

 

 
 

 
 

  



    

 2J qR1( core) 

Sbrush−core (q R, core, , ,l L R dg, ) = ψ qR( g) J q R0 [ ( core 

qRcore 

+ dRg)]Pworm (q l L, , ) 

The contribution of cross term between chains is calculated using equation: 

Sbrush−brush (q R, core, , ,l L R dg, ) = ψ2 (qR Jg) 02 [ (q Rcore + dRg)]Pworm (q l L, , ), where 

ψ(qRg) = 
1 − exp

x 
(−x) is the form factor amplitude of the chain, J0 is the zeroth order Bessel function 

of the first kind, d is parameter that accounts non-penetration of the chains into the core and should be 

mimicked by d∼1 for Rcore ≫ Rg. 

To account for polydispersity, a Schulz-Zimm distribution of Rg was included. The structure factor 

S(q) in the case of fitting with wormlike micelles model was set to 1. The model of wormlike micelle 

is presented on the Fig. 1b. 

3.4. Sphere with three shells 

The SAXS data obtained for dialyzed samples were fitted with a model ‘Sphere with 3 shells’ 

implemented in the SASFit software (Fig. 1c). To utilize this model for fitting SAXS curves of studied 

polymers the thickness of the third shell was set as 0 and its SLD was the same as SLD of H2O. The 

scattering intensity for sphere with 3 shells, PS Shell3 (q), is calculated based on the core-shell model 

[37] and is given by: 

PS Shell3( )q = (K q R( , core,ηcore−ηsh1) + K q R( , c + t η1, sh2−ηsh1) 

+ K q R( , core + t1 + t η2, sh3−ηsh2) + K q R( , core + t1 + t2 + t η3, sh3 

−ηsolv))2 

were K (q R, ,Δη) is calculated using Eq. (2), t1, t2, t3 are thicknesses of the first, second and third shell, 
η
core, 

η
sh1, 

η
sh2, 

η
sh3 are SLDs of core and shells, respectively.To account for polydispersity, a Schulz-

Zimm distribution of Rcore was included. 

3.5. Voigt peak 

Voigt function was used to describe the shape of the peaks at high q range of scattering curves. The 

amplitude version of the Voigt peak is parameterized as 

du 

 −∞ 2γσ⎝x x−2σc u
⎞⎠ V x x σ γ( , c| , ) 

VAmplitude (x A σ γ| , , ) = A 2 = A 

 du V x x σ γ( c, c| , ) 

 u 



where A is an amplitude of the Voigt peak, xc is location parameter, σ is width of Doppler contribution, 

γ is a width of Lorentzian contribution. The modified Porod function was used to describe the 

contribution of large aggregates at the lowest q range: C0 + q
c
α

1, where α is modified Porod exponent. 

4. Results and discussion 

4.1. Nanoparticles prepared by direct dissolution 

The SANS and SAXS curves of all the copolymers at a concentration of 2 wt% and 2.5 wt%, 

respectively, are presented in Fig. 2a and b. 

For the reference PMeOx30-b-POctOx20 diblock copolymer at low q range the scattering intensity 

follow a power law of I ∼ q−2.53 ±0.02 for 

SANS and q−2.25 ±0.01 for SAXS (Fig. 3a and b). Such scaling exponent implies planar like structure. In 

the middle q range, the scattered intensity is decreasing and obeys a power law of I ∼ q−4.38 ±0.08 that 

corresponds to the scattering of compact structures with a sharp interface. The SANS and SAXS data 

were quantitatively analyzed by fitting the scattering curves with an appropriate model as shown in 

Fig. 1. 

The fitting parameters are presented in Table 2 and explained above in Data analysis section. 

The scattering data corresponding to the structures of the self-assembled diblock copolymer can be 

fitted using the bilayered vesicle form factor corrected with the Schultz–Zimm polydispersity over Ra. 

These findings are in agreement with previously reported cryo-TEM imaging of diblock copolymer 

PMeOx30-b-POctOx20, where bilayered vesicles were revealed [32]. Additionally, the contribution of 

large aggregates was added as background, which resulted in a good quality fit. The quantitative 

analysis of the SANS scattering data yields a radius of vesicle interior, Ra, consisting of solvent of 24.4 

nm and a polydispersity value of 0.26. The hydrophobic layer, ti, consists of presumably the POctOx 

block of 1.6 nm thickness, whereas the hydrophilic PMeOx layer thickness, th, is 2.48 nm. The total 

radius of the vesicle is approximately 28.5 nm according to the SANS data. These values are in 

agreement with Cryo-TEM images where polydispersed vesicles in the 
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Fig. 2. SANS (a) and SAXS (b) curves displayed by PMeOx30-b-POctOx20 (P0), PMeOx30-b-

POctOx20-C8F17 (P1), PMeOx30-b-POctOx20-C10F21 (P2) and PMeOx30-b-POctOx20-C12F25 (P3) 

aqueous solutions prepared by direct dissolution. 

range 20–50 nm are observed. 

A similar scattering pattern was obtained by the SAXS measurements (Fig. 3b). However, the SAXS 

scattered intensity has a broad secondary maximum in the q-range from 0.7 to 2 nm−1, that can be 

explained by the differences in SLD values of the inner and outer bilayer parts on the solvent side. 

Such phenomenon was experimentally observed in a variety of other reported studies [38,39]. Values 

of the bilayer and outer layer thickness are in rather good agreement with those calculated from SANS 

data (Table 2). At the highest q value, the scattering curves for higher concentrations of aqueous 

diblock copolymer solutions exhibit another peak located at q = 2.75 nm−1 (Fig. 4a 

(inset)). 

We utilized the bilayered vesicle model with Schultz −Zimm polydispersity and contribution from 

aggregates and in order to describe the small sharp peak at high q values the Voigt peak model was 

used (Ref. [40]), which can be attributed to additional internal ordering. From the position of the peak 

the repeat distance can be calculated as D =2π/q, being 2.27 nm (Table 2). This ordering can be 

explained by the crystallization of octyl chains within the inner part of the bilayered vesicle wall. Such 

crystalline properties of self-assembled comb-like polymers were also described by Plate and Shibaev, 

who reported on the tendency for crystallization in the hexagonal crystal structure of polymers with 

long hydrocarbon side chains [41]. This assumption is further supported with copolymers of shorter 

hydrophobic block length for which no peak was observed by SAXS (data not shown). The amplitude 

of the Voigt peak decreases with decreasing concentration (Fig. 4a), indicating the decreasing packing 

density within the inner bilayer. 

The scattering pattern is determined by nanoparticle form-factor only for diluted solutions. However, 

with the increase of concentration, the interparticle scattering must also be taken into consideration 

[42]. To account for these interactions in the fitting model, the Percus-Yevik structure factor was 

applied for concentrations above 1 wt%. In Fig. 4c the structure factors, S(q), for different 

concentrations of diblock copolymer are shown. The S(q) at small q decreases with increasing 

concentration from 1 wt% to 5 wt%, indicating increasing repulsive interactions between the particles. 



 

 

In a subsequent step we evaluated the structural changes in nanoparticles assembled from the 

fluorinated copolymers. One can see from the Fig. 2a that the SANS scattering curves are rather 

different from the curves obtained for the diblock copolymer P0 that does not contain a perfluorinated 

fragment. 

For comparison, the SANS and SAXS scattering curves obtained for the polymer with the C8F17 

perfluorinated alkyl chain was also fitted by a bilayered vesicle form factor. The final fit and all 

contributions are shown in Fig. 5a. While the fit of the SAXS data with a bilayered vesicle form factor 

is quite good, we could not obtain a satisfactory fit of the SANS data. The structural parameters 

calculated from SANS and SAXS data are presented in Table 2. One can see that the polydispersity 

over core radius of PMeOx30-b-POctOx20-C8F17 particles is high, which we explain by the presence of 

particles of different size and shape. Previous cryo-TEM results [32] indeed revealed the presence of 

two different species of self-assembled structures, namely bilayered vesicles and worm-like micelles. 

Therefore, we fitted the scattering curves by a combination of the wormlike micelles form factor and 

Schultz −Zimm polydispersity radius of a core. It can be seen on Fig. 5(b and d) that the wormlike 

micelles form factors fit well the scattering curves. Calculated radii of the wormlike micellar core are 

8.2 nm from SAXS and 5.2 nm 

 

Fig. 3. SANS (a) and SAXS (b) curves of PMeOx30-b-POctOx20 solutions prepared by direct 

dissolution. Symbols are experimental scattering data, and red solid lines are fits generated as 

described in the text. The black solid lines are the form factors of bilayered vesicles, the black dashed 

lines are the form factors of large aggregates and the black short dotted lines describe the Voigt peak 

contribution. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Table 2 

Comparison of structural parameters obtained from SAXS and SANS data for PMeOx30-b-POctOx20 

(P0), PMeOx30-b-POctOx20-C8F17 (P1), PMeOx30-b-POctOx20-C10F21 (P2) and PMeOx30-b-POctOx20-

C12F25 (P3). Concentrations are 2wt% for SANS and 2.5 wt% for SAXS. 

 

 Bilayered vesicle Bilayered vesicleWormlike micelleWormlike micelle Wormlike micelle 

 SAXS SANS SAXS SANS SAXS SANS SAXS SANS SAXS SANS 

Rcore (nm) 25.4 24.4 38.9 16.6 8.2 5.2 9.7 – 2.3 4.9 

                                



 

 

Sig 0.82 0.26 0.78 0.71 0.12 0.3 – – – – 

to (nm) 2.2 1.6 5.5 3.0 – – – – – – 

ti/aVbrush 

(nm) 

2.2 2.5 0.8 1.4 14.4a 18.3a 15.2a  5.6a 8.7a 

Nagg – – – – 0.12 0.16 0.2  0.19 0.24 

xsolv,core – – – – 0.03 0.01 0.12 – 0.01 0.01 

l (nm) – – – – 4 9.6 4 – 7 7 

L (nm) – – – – 53.0 87.0 65.9 – 72.2 94.0 

Rg (nm) – – – – 5.63 9.0 4.7 – 4.1 3.0 

D (nm) 2.27 – 2.27 – 2.29 – 2.3 – 2.0 – 

σ 

γ 

5 *10−3 

0.1 

– 

– 

0.14 

3* 

10−2 

– 

– 

0.14 

3 * 

10−2 

– 

– 

0.22 

1.3 * 

10−3 

– 

– 

0.2 

0.03 

– 

– 

α 2.9 2.9 2.7 3 2.8 4 2.7 – 2.6 2.8 

Rcore – core radius, Sig – value of polydispersity, to – thickness of outer shell of bilayered vesicle, ti – 

thickness of inner shell of bilayered vesicle, Vcore – volume of a block in a core, Vbrush – volume of a 

block in brush, Nagg – aggregation number per surface area, xsolv,core – amount of solvent in the micellar 

core, l – Kuhn length, L – contour length, Rg – radius of gyration of the block unit in the corona, D – 

repeating distance, σ – width of Gaussian profile, γ – width of Lorentzian profile, α – modified Porod 

exponent. 

a 

Shows values that correspond to the second 

parameter in the row. 

 

from SANS, again in good agreement with the values 

obtained from cryo-TEM (approximately 7.5 nm) 

[32]. From the calculated percentage of solvent 

inside of the wormlike micelles core of 0.03% from 

SAXS and 

0.01 from SANS (xsolv,core, Table 2), one can assume 

that the core consists of the highly hydrophobic part 

of the polymer, probably a mixture of the POctOx 

and the perfluorinated chains, whereas the outer shell 

is formed mainly by the hydrophilic PMeOx part. 

This conclusion is further supported by the fact that 

the fitted values of the SLD of the micellar core and 

shell are quite close to the theoretical ones estimated 

on a basis of their composition. However, the 

volume of the hydrophilic outer shell and the contour 

length calculated from the SANS and SAXS curves 

differs. This can be explained by the discrepancy of 

the SLD values of the core and the shell determined 

the octyl chains inside the hydrophobic micellar core 

as it was mentioned before for the bilayer vesicle 

structures. Besides, it is known that perfluorinated 

alkyl chains are quite rigid and also have a tendency 

to crystallize [43–46]. Based on this we can assume 

that there are may be two types of ordering inside the 

nanoparticles. The first one is ordering driven by 

perfluorinated alkyl chains which form the core of 

the wormlike micelle. The second one is ordering of 

the POctOx chains in the first, hydrophobic, shell of 

the wormlike micelles. 

In contrast to the polymer with the shortest 

perfluorinated fragment, the scattering curves for 

PMeOx30-b-POctOx20-C10F21 and PMeOx30-b-

POctOx20-C12F25 solutions can satisfactorily be fitted 

with the wormlike micelles form factor only. 

Scattering and fitting curves with all contributions 



 

 

by SANS and SAXS as well as by the polydispersity 

of the system. 

The polydispersity may also be explained by the 

fact that we applied only polydispersity over the core 

radius of the wormlike micelles that are also 

polydisperse in their contour length. Probably, the 

most proper way to fit these data is to combine 

bilayered vesicle and wormlike micelles form factors 

with several polydispersities in one fitting 

procedure, however we are not able to fit such a high 

number of fitting parameters. 

The sharp peak at high q values evidences an 

additional ordering of 

for both polymers are presented in Fig. 6. As for the 

previous polymers, the final fit of the PMeOx30-b-

POctOx20-C10F21 and PMeOx30-b-POctOx20-C12F25 

scattering consists of a wormlike micelles form 

factor with contributions of large aggregates and of 

a Voigt peak. 

The calculated structural parameters are shown in 

Table 2. The corona volume for the PMeOx30-b-

POctOx20-C10F21 wormlike micelles has the highest 

value. The SLD of the core and the shell of the 

wormlike micelles formed by PMeOx30-b-

POctOx20-C10F21 are almost the same (Table S2), 

which can mean that the core of micelle contains 

high 

  10-2 10-1 100 

Fig. 4. (a) SAXS data for 0.1, 0.5, 1, 2.5, 5 wt% of PMeOx30-b-POctOx20 water solutions; (b) 2.25–

3.25 nm−1 q-range of SAXS data for 0.1, 0.5, 1, 2.5, 5 wt% of PMeOx30-b-POctOx20 water solutions; 

10 10 10 10 10   

 q, nm-1   q, nm-1 q, nm-1 



 

 

(c) structure factor, S(q), for 1, 2.5, 5% wt% of PMeOx30-b-POctOx20 water solutions at 25 °C. 

Symbols are experimental scattering data. Solid lines are fits generated as described in the text. 

 SANS SAXSFig. 5. SANS (a and b) and SAXS (c 

and d) curves of 

 
q, nm-1 

amount of water and is rather loose. This is further supported by the amount of solvent in the core of 

0.12 from SAXS (xsolv,core, Table 2) resulting from the fitting procedure. Similarly, the contour length 

of the wormlike micelles formed by PMeOx30-b-POctOx20-C10F21 is shorter compared to the polymer 

with the highest amount of fluorine: 65.9 nm for PMeOx30-b-POctOx20-C10F21 and 72.2 nm for 

PMeOx30-b-POctOx20C12F25. This difference can be explained by the increase in stiffness of the 

wormlike micelles with increasing perfluorinated chain content. 

q, nm-1 

Analysis of structural parameters obtained from the fitting procedures (Table 2) gives the possibility 

to establish the correlation between the length of fluorinated fragment of quasi-triblock poly(2-

oxazolines), and morphology of nanoparticles obtained by their self-assembly in water solutions. 

Dependences of the main parameters on the length of fluorinated fragment in triblock polyoxazolines 

solutions, prepared by direct dissolution, are presented in Fig. 7. 

The obvious changes in morphology are that: (1) the radius of the 



 

 

 

              q, nm-1 q, nm-1 
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Amont of CF2 groups in fluorinated fragment  

Fig. 7. Dependence of the radius of the wormlike micelles core (1) and contour length of the wormlike 

micelle (2) as a function of the length of fluorinated fragment in triblock polyoxazolines (solutions 

prepared by direct dissolution). 

wormlike micelles core decrease from 8.2 to 2.3 nm and (2) the contour length of the wormlike micelle 

increases from 53.0 to 72.2 nm with the increasing of fluorinated fragment length, indicating that 

wormlike micelles become more long and thin. 

4.2. Nanoparticles prepared by solvent exchange method (dialysis) 

In a second part of this work, the structures of nanoparticles prepared from the fluorinated quasi-

triblock copolymers by solvent exchange (dialysis from methanol against water) are examined. 

According to the previous DLS results [32], studied polymers present in methanol solutions as 

individual chains and no self-assembly is observed. In contrast to the results obtained for polymer 

solutions prepared by direct dissolution method, DLS and cryo-TEM studies of aqueous solution of 

quasi-triblock copolymers prepared by solvent exchange method revealed the presence of spherical 

micelles with diameter 15–20 nm. 

The obtained scattering curves are quite similar for all polymer water solutions (Fig. 8). There is no 

sign of aggregation of the selfassembled structures. For all obtained aqueous polymer solutions, the 

formed nanoparticles revealed a core–shell structure consisting of one or two layers with spherical 

symmetry. To fit the scattering data a model of sphere with two shells has, thus, been chosen. 

Despite the fact that the diblock copolymer consists of two blocks, which can form a core with just 

one shell, the model of sphere with one shell did not fit correctly the scattering curve. We assume that 

the presence of a second shell (calculated from the fitting procedure) can be related to the 

inhomogeneously distributed density of the hydrophobic and hydrophilic parts of the micelle and that 

the indistinct border between the core and the shell can affect the values of the SLD. From the 

Table 3 

Comparison of structural parameters obtained from all samples PMeOx30-b-POctOx20 

(P0), PMeOx30-b-POctOx20-C8F17 (P1), PMeOx30-b-POctOx20- C10F21 (P2) and PMeOx30-

bPOctOx20-C12F25 (P3) prepared by solvent exchange by SAXS. 
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Fitting 

parameter 

PMeOx30-

b- 

POctOx20 

PMeOx-

b- 

POctOx-

C8F17 

PMeOx-

b- 

POctOx- 

C10F21 

PMeOx-

b- 

POctOx- 

C12F25 

Rcore (nm) 5.19 4.72 3.7 3.76 

sig 0.21 0.17 0.58 0.04 

t1 3.06 2.49 9.9 7.08 

t2 6.96 6.47 3.89 5.61 

D (nm) 2.22 2.22 2.26  

σ 0.086 0.115 0.078 0.12 

γ 0.1 0.145 0.108 0.09 

α 1 1 1 1.13 

Rcore – core radius, Sig – value of polydispersity, t1 – thickness of first shell of sphere, t2 – thickness of 

second shell of sphere, D – repeat distance, σ– width of Gaussian (Doppler) profile, γ – width of 

Lorentzian profile, α – modified Porod exponent. 

 

Amont of CF2 groups in fluorinated fragment  

Fig. 9. Dependence of the core radius (Rcore) (1), thickness (t) of the first (2) and second (3) shell on 

the length of fluorinated fragment of triblock polyoxazoline polymers (solutions prepared by solvent 

exchange method). 

position of the first minimum in the scattering curve, the radius of a sphere (R) with core-double shell 

structure could be determined to be approximately 15.2 nm using the following equation qR =4.493 

[47]. 

It is obvious from Fig. 8b that the intensity of the peak at high q values decreases with increasing 

length of the fluorinated block. This feature may be related to the presence of two types of water-

insoluble chains that both have a tendency to crystallize. While the POctOx segments form more 

strictly ordered structures due to the conditional homogeneity inside the core, the presence of 

fluorinated units penalize the homogeneity of the core and of one of the shells, thus reducing the 

ordering. 
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Fig. 8. (a) Comparison of SAXS data for PMeOx30-b-POctOx20-C12F25 (P3) prepared by direct 

dissolution and by solvent exchange; (b) Comparison of SAXS data for all polymers prepared by 

solvent exchange and (b inset) dependence of maximum amplitude of Voigt peak (calculated by fitting 

procedure) on the length of fluorinated fragment for nanoparticles prepared by solvent exchange 

method. 

Fig. 10. A proposed 

scheme of morphological 

transition of the 

fluorinated PMeOx30-b-

POctOx20-CnF2n+1 

nanoparticles (prepared 

by direct dissolution and 

by solvent exchange 

method) with increasing 

length of fluorinated 

fragment summarizing 

the SAXS and SANS 

results, where: 1 – 

scheme of the inner 

structure of bilayered 

vesicle formed by 

PMeOx30-b-POctOx20 

and PMeOx30-b-

POctOx20-C10F21; 2 – scheme of the inner structure of wormlike micelle and core-shellshell sphere 

formed by PMeOx30-b-POctOx20CnF2n+1; 3 – scheme of the sphere with core-shell inner structure. 

Dependences of the main structural parameters (Table 3) obtained from the fitting procedure on the 

length of fluorinated fragment are presented in the Fig. 9. 

One can see that the thickness of the second shell, consist of poly(2methyl-2-oxazoline) block, varies 

only slightly, while thickness of the first shell increase with the increasing of the length of fluorinated 

fragment. At the same time core radius decreases with the increasing of the fluorinated part length. It 

can be explained by the assumption that for copolymer PMeOx30-b-POctOx20-C8F17 with the shortest 

fluorinated fragment poly(2-octyl-2-oxazoline) block is more hydrophobic then fluorinated part. That 



 

 

is why the core the sphere for PMeOx30-bPOctOx20-C8F17 consists of the poly(2-octyl-2-oxazoline) 

block as it was for diblock copolymer. With increasing of the length of fluorinated fragment its 

hydrophobicity increase and for PMeOx30-b-POctOx20- 

C10F21 and PMeOx30-b-POctOx20-C12F25 the core is formed mainly by fluorinated groups. We can 

also assume that the first hydrophobic shell consist of poly(2-octyl-2-oxazoline) block with partially 

involved fluorinated fragment. 

The proposed scheme of morphological transition observed in this study is presented in the Fig. 10. 

It can be concluded from the comparison of the SAXS and SANS results as well as of DLS and cryo-

TEM results presented recently [32] that shape and inner structure of fluorinated quasi-triblock poly(2-

oxazolines) can be easily controlled by the changing of terminal fluorinated group as well as by the 

method of preparation. 

5. Conclusions 

Aqueous self-assembly of quasi-triblock copolymers composed of hydrophilic, hydrophobic and 

perfluorinated blocks was studied at room temperature using SAXS and SANS analysis. Detailed 

information about the shape and the internal structure of the self-assembled nanoparticles as function 

of their composition and fluorine content was obtained and compared with previously obtained cryo-

TEM data. Nanoparticles formed by the reference diblock PMeOx30-b-POctOx20 without fluorinated 

segment could be described by a bilayered vesicle form factor in combination with a Percus-Yevick 

structure factor. SANS and SAXS experiments revealed the morphological transition of micelles from 

bilayered vesicles to wormlike micelles with increasing length of the perfluorinated fragment of the 

quasi-triblock PAOx. It was further found that the preparation method influences the nanoparticles’ 

shape and internal structure: with solvent displacement it becomes independent of the fluorine content 

and the SAXS curves could be fitted with a core–shell-shell form factor. Additional ordering was 

identified within the inner layer of bilayered vesicles, core of wormlike micelles as well as inside of 

the core of spheres, probably due to the crystallization of the POctOx and perfluorinated segments, 

and was described with a Voigt peak model. 
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