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Abstract Although the first-order pattern of present-day deformation is relatively well resolved across the
Himalayas, irregular data coverage limits detailed analyses of spatial variations of interseismic coupling. We
provide the first GPS velocity field for the Bhutan Himalaya. Combined with published data, these observations
show strong east-west variations in coupling between central and eastern Bhutan. In contrast with previous
estimations of first-order uniform interseismic coupling along the Himalayan arc, we identify significant lateral
variations: In western and central Bhutan, the fully coupled segment is 135-155 km wide with an abrupt
downdip transition, whereas in eastern Bhutan the fully coupled segment is 100-120 km wide and is limited
updipand downdip by partially creeping segments. Thisis the first observation of decoupling on the upperramp
along the Himalayan arc, with important implications for large earthquake surface rupture and seismic hazard.

1. Introduction

In the Himalayas, as in all active tectonic regions, strain budget on the main seismogenic faults during large
earthquakes and over interseismic periods is a key element to improve seismic hazard assessment. The first-
order present-day crustal deformation along the Himalayan arc is now relatively well constrained from level-
ing data [Jackson and Bilham, 1994], interferometric synthetic aperture radar observations [Grandin et al.,
2012], and GPS measurements [e.g., Bettinelli et al., 2006; Jade et al., 2011; Vernant et al,, 2014]. Altogether,
these observations show that nearly all of the present-day convergence is accommodated along the Main
Himalayan Thrust (MHT), which reaches the surface at the Main Boundary Thrust (MBT) and Main Frontal
Thrust (MFT). However, data coverage remains irregular, and areas such as Bhutan Himalaya are poorly con-
strained. This lack of data results in significant limitations in the interseismic strain analysis. Although the MHT
is considered as fully locked along its entire length without any aseismic barrier [Stevens and Avouac, 2015],
small-scale decoupled or aseismic region might exist in regions such as Bhutan, where the geodetic data are,
up to now, limited to a few stations [Vernant et al,, 2014].

Here we provide the first detailed GPS velocity solution for the region of Bhutan Himalaya, consisting in (1)
north-south profiles composed of nineteen campaign stations installed and surveyed in western, central, and
eastern Bhutan since 2003, (2) nine new campaign stations deployed in central and eastern Bhutan in 2012,
and (3) eight permanent stations distributed across the country and operating since 2011 (except for two older
stations that operated from 2003 to 2008). Combined with published data, these new GPS observations are used
to improve the assessments of interseismic coupling along the MHT and of the first-order geometry of the
unlocked portions of the fault at depth. After a brief presentation of the GPS data, we describe the modeling
approach and discuss its results and implications in terms of east-west lateral variations of present-day
interseismic strain buildup.

2. Methodology
2.1. GPS Data

We extend the GPS data published for the Kingdom of Bhutan by Vernant et al. [2014] with (1) nine new
campaign sites installed in 2013 and 2014 in central and eastern Bhutan, surveyed between 2013 and
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Figure 1. New GPS velocity field for Bhutan Himalaya relative to stable India (as defined by Ader et al. [2012]). Blue and red vectors show campaign and permanent
GPS data from this study, respectively. Black vectors are from Banerjee et al. [2008], Bettinelli et al. [2006], Gahalaut et al. [2013], Gan et al. [2007], Jade [2004], Jade et al.
[2007], Jade et al. [2014], Liang et al. [2013], Mahesh et al. [2012], Mukul et al. [2010], Tang et al. [2010], and Vernant et al. [2014]. Ellipses indicate 15 confidence regions.

2016, (2) four campaign sites installed and surveyed in 2003 and reoccupied between 2013 and 2016, and (3)
six permanent sites installed in 2011 and 2012 by the National Land Commission (NLC) of Bhutan. The full
network comprises 28 campaign stations and 8 permanent sites (Figure 1). The continuous site data span
2003-2008 (TIMP and RBIT) and 2011-2016 (new NLC sites). Data for the campaign sites range between
2003 and 2016, with a minimum of two surveys over 2 years for the newest sites (Table S1 in the supporting
information). Campaign and permanent sites are instrumented with geodetic-grade receivers and antennas,
and campaign sites were surveyed at the same period (March-April) for at least 24 h (commonly over 48 h) for
each campaign.

GPS daily positions in the International GNSS Service reference frame IGb08 are calculated with the CSRS-
Precise Point Positioning v1.5 software [Héroux and Kouba, 2001] using the approach described in
Marechal et al. [2015]. Velocities are estimated by a least squares inversion weighted by the position formal
uncertainties. The inverted model comprises a linear term (velocity) and, for the permanent stations, an
annual sinusoid to account for seasonal effects, mostly related to the load variations of the Brahmaputra
River alluvial plain. The final velocities (Table S1) are expressed relative to stable India using the
India/International Terrestrial Reference Frame rotation defined by Ader et al. [2012]. We do not apply
corrections for transient events such as coseismic displacements, which are not significant in Bhutan
[Vernant et al., 2014].
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Velocity uncertainties are calculated using the formulation of Mao et al. [1999] assuming that the campaign
and permanent data are characterized by a “white + flicker” colored noise model. Long gaps in the Bhutan
permanent time series preclude a robust noise analysis of the local data. Thus, we use analyses of permanent
data with similar PPP processing in western Europe and North America [Marechal et al,, 2015; Nguyen et al.,
2016] to define average noise model parameters. We derive scaling coefficients between the time series
root-mean-square dispersion and white and flicker noise amplitudes for these data sets, which are then
applied to the Bhutan permanent and campaign data. This approach puts an emphasis on both the length
and number of data points of the time series, with mean horizontal velocity standard errors of 3.5-4.5 mm/yr
for data spanning 2-3years versus 1.0-1.5 mm/yr for longer data sets (Table S1).

2.2. Modeling Approach

The most conventional approach used to reproduce interseismic GPS velocities and assess interseismic
coupling is the back slip dislocation model [Savage, 1983], which considers virtual normal faulting along
the seismogenic portion of the MHT [e.g., Stevens and Avouac, 2015]. However, the back slip formulation is
only rigorously correct for a purely planar fault or a fully locked fault [Vergne et al,, 2001]. Hence, although
back slip models can provide a good fit to geodetic data, it cannot be used to assess potential partial coupling
along the Bhutanese MHT, which is well known for its flat and ramp geometry [e.g., Long et al., 2011; Coutand
et al, 2014; Le Roux-Mallouf et al., 2015].

Here we favor the use of a dislocation model of buried reverse faults associated with aseismic slip, allowing us
to assess simultaneously the convergence rate, potential partial coupling, and the geometry of the unlocked
portions of the MHT [e.g., Vergne et al., 2001; Kanda and Simons, 2010]. Because the three-dimensional geo-
metry of the MHT remains poorly constrained in our study region, we use a two-dimensional approach along
three north-south profiles, orthogonal to the regional MFT direction, in western, central, and eastern Bhutan
(Figure 1). We project the GPS velocities along the profiles and only consider the component of coupling
parallel to the profile directions, thus neglecting the small oblique component of the regional convergence.

For each profile, the geometry of the MHT is defined by the coordinates of six breakpoints that allow to model a
complex ramp-flat system and to take into account slip rate variations with depth (Figure 2a and Table S2).
Assuming that the depth of the MHT increases northward, these coordinates are treated as dependent para-
meters. Furthermore, available geological and geophysical data along our study profiles are used as a priori knowl-
edge of these coordinates [Coutand et al,, 2014; Le Roux-Mallouf et al,, 2015]. This includes (1) the location of the
emergence of the MHT at the surface with a maximum dip angle of 50° [Long et al,, 2011], (2) a subhorizontal sec-
tion at a depth of 10-15 km [Bhattacharyya and Mitra, 2009; Acton et al,, 2011; Long et al,, 2011; Tobgay et al., 2012],
(3) a maximum dip angle of 30° for crustal ramp(s) as imaged by seismic experiments in Garhwal, Nepal, and
Sikkim [Ndbélek et al,, 2009; Acton et al,, 2011; Caldwell et al,, 2013], and (4) a depth of ~ 40 km of the southernmost
point imaged beneath southern Tibet from the INDEPTH experiment (International Deep Profiling of Tibet and the
Himalaya) [Hauck et al,, 1998]. We also assume a convergence of 15 to 25 mm/yr for the three profiles, consistent
with the estimate across western Bhutan from GPS observations [Vernant et al,, 2014].

In order to solve the nonlinear equations linking surface displacements with fault slip rate and geometry at
depth [e.g., Okada, 1985], data inversion is performed using a pseudorandom walk through the parameter
space, which consists of 14 parameters including the slip rates for the five fault segments (u; to us) as well
as the depth and distance along the profile of the six breakpoints (Figure 2a and Table S2). Following
Mosegaard and Tarantola [1995], a Markov Chain Monte Carlo technique is used to generate a large
collection of 108 models with stochastic sampling that depends on the posterior probability of the model
likelihood. This pseudorandom walk is controlled by the following rules for the transition from model m; to
model m;:

1. If L(im)) > L(m;) then accept the proposed transition from i to j,

2. If L(m)) < L(m;) then the proposed transition from i to j has a probability L(m)/L(m)),

where L(m)) and L(m)) are the likelihood of the old and the new models, respectively. We define the likelihood
function L of a model m as

1 n (Ucalc; — Uobs; 2
L(m) = exp <_EZI1 (7) ),
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Figure 2. Model geometry and fault slip rates. (a) Geometry used in the inversion. Orange: a priori geometry. The ranges of the fault breakpoints (blue dots and
segments) and allowed slip rates are detailed in Table S2. Dashed blue segments represent the angle constraint for points 2 and 5. Note that vertical scales are
different for the topography and at depth. (b) Horizontal velocity profiles across western, central, and eastern Bhutan (see Figure 1 for locations). Gray lines are
associated with the 100 best models. (top) GPS (circles, cf. Figure 1 for color legend) and calculated (lines) velocities. Note that GPS horizontal velocities are projected

along the profile. (bottom) Obtained fault geometry (gray lines) and overthrusting slip rates (in red rectangles). Numbers in bracket corresponds to the slip rate
uncertainties. Orange lines show the a priori model.

where n is the number of data points, Uobs; is the observed GPS velocity and o; is the velocity uncertainty,
and Ucalc; is the velocity calculated from the analytical solution given by Singh and Rani [1993] assuming a
two-dimensional dip-slip fault embedded in a homogeneous half-space.

We only use the horizontal components of the GPS velocity vectors, projected along the profile direction, due
to the limited availability of good-quality vertical velocities (see section 4 for a comparison of the models with
vertical data). The posterior probability of each model parameter is obtained from the final collection of the
sampled models (Figures 2, 3, and S1). In the following, the results of the inversion are presented in terms of
highest density probability value (preferred value) and full width at half maximum (uncertainty).

3. Results

Our results indicate a present-day far-field convergence rate ~ 16.5-17.5 mm/a, without significant lateral var-
iations along the Bhutan Himalaya arc (Figures 2b and 3), consistent with estimates of 17.6 0.9 mm/a
[Stevens and Avouac, 2015] and 15.5 &+ 1.5 mm/a [Vernant et al., 2014]. In contrast with this uniform conver-
gence rate, we highlight lateral variations of interseismic slip pattern at depth (cf. Figures 2b and 3).
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Figure 3. Slip rate posterior distributions on fault segments. uq to us are the slip rates along the fault (from south to north, cf. Figure 2a) on the western, central, and

eastern profiles.

1.

Along the western and central Bhutan profiles, slip pattern is mostly bimodal, with an abrupt decrease on
the crustal ramp from full convergence on the lower segment of the ramp (us) to near-zero slip rate on the
upper segments (u; to u4). The dense GPS coverage along these profiles (less than 30 km between sites)
allows a good definition of this abrupt transition, as shown by the tight constraints on its location
(£10km) and on the slip rates of the various segments (Table S2).

In contrast with the western and central profiles, the interseismic slip pattern on the eastern profile shows a
smoother transition on the deepest ramp with us = 10-18 mm/a (illustrating the capacity of our analysis to
resolve a gradual downdip transition). However, because of the lack of GPS coverage between 100 and
260 km north of the MFT, the precise location of this transition is poorly resolved (breakpoint 5, Figure S1d).

. Whereas the slip rate on the flat segment of the MHT is similar for the three profiles (u; and us~ 0 mm/a),

the shallow upper ramp of the eastern profile exhibits a higher slip rate with u; =5.5-14.5 mm/a. This
aseismic slip on the upper ramp is well constrained owing to very good data coverage within the
£50 km of the MFT: Specifically, the three sites located north of the MBT (NARP, PEMA, and WAMR, above
segment u;) have the same velocity and present an abrupt change of ~6 mm/a compare to the sites
directly south of the MBT (DEOT and AERO, see Figure 2b).

In our modeling approach, a fault segment with a null velocity is similar to no fault and its geometry cannot be
constrained by the inversion. However, we can obtain information on the MHT geometry for the creeping seg-
ments, albeit with variable sensitivity on the different parameters (i.e., spread of the 100 best models, Figure 2b).
This sensitivity can be assessed from the posterior probability distributions that show near-uniform probabil-
ities for segments with near-zero slip rates in contrast with sharp probability clusters for faster creeping seg-
ments (cf. Figure S1). On this basis, new constraints on the MHT geometry can be derived for the creeping
segments (Table S2).

1.

2.

3.

The deepest and northernmost limit of the fully coupled section is located 135-155 km north of the MFT
on the western and central profiles (breakpoint 5—Figures S1b and S1c) but only 120-130 km for the east-
ern profile (breakpoint 4—Figure S1d).

The deep flat-ramp transition is located 120-130 km north of the MFT in eastern Bhutan (breakpoint 4
—Figure S1d).

The depth of the flat segment is constrained to 9-12 km in eastern Bhutan (breakpoints 2, 3, and 4—
Figure S1d).

MARECHAL ET AL.

INTERSEISMIC COUPLING IN BHUTAN 12,403



@AG U Geophysical Research Letters 10.1002/2016GL071163

coupling(%)

q
- A 50 km
0 25 50 75100 Stevens and Avouac, 2015 ‘

BHUTAN

ARUNACHAL
PRADESH

Figure 4. Interseismic coupling of the Main Himalayan Thrust in Bhutan. Rectangles show our estimates of interseismic coupling for the different fault segments. The
hatched segment represents the flat part of the MHT constrained by the inversion. The colored base map represents the estimates of Stevens and Avouac [2015].
Dashed blue lines show the possible limits of the fully coupled zone. Green triangles show the locations of our new GPS stations. Black triangles are GPS stations used
in the solution of Stevens and Avouac [2015].

4. On the eastern profile, active faulting takes place on the MBT, i.e., 13-20 km north of the MFT (breakpoint
1—Figure S1d). On both sides and nearby the surface expression of the upper fault segment, the GPS cov-
erage is dense: DEOT and AERO, located between the MFT and MBT, have similar velocities to those south
of the MFT, and we measure an abrupt change of ~6 mm/yr across the MBT (Figure 2b). These results indi-
cate that the MBT in eastern Bhutan is currently active and that it accommodates part of the convergence
by aseismic creep.

4, Discussion

In order to compare our results with other studies, we describe the interseismic state of the MHT in terms of
coupling, defined as the ratio between the fault interseismic slip rate and the present-day far-field conver-
gence rate (us =17 = 2 mm/a). On the basis of a smooth back slip model, Stevens and Avouac [2015] conclude
that a frontal ~ 100 km large portion of the MHT is fully locked in Bhutan (coupling > 50%). They argue for an
abrupt transition to a decoupled segment along the downdip ramp, although their smoothed large-scale cou-
pling map does not clearly resolve this transition pattern (Figure 4). The addition of new GPS data in western
and central Bhutan allows us to better define this transition and its location. Our slip rate posterior distribution
(Figure 3) shows that the interseismic coupling decreases northward from 100% to 0% along the deep ramp
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segment, about 145 km north of the MFT in western and central Bhutan (Figure 4 and Table S2). Our results also
indicate a significant change in the coupling pattern between central and eastern Bhutan, with a smoother
transition (17% of coupling on the deeper ramp) and a slightly less wide coupled zone (100-120 km versus
135-155km) along the eastern profile. We show for the first time in the Himalayas that the upper ramp is
partially decoupled (40% (17-70%) of coupling), suggesting that the long-term convergence may not be fully
expressed in large earthquakes in this particular region.

The current resolution of the vertical GPS velocities remains too low to provide significant constraints to our slip
rate analysis. However, a first-order comparison of uplift rates from our campaign stations (with other 10 years
of data) versus other geological indicators shows the potential importance of these data sets for short-and
long-term uplift constraints. In western Bhutan, our vertical GPS velocities suggest a peak of 2-3.5 mm/a about
100 km north of the MFT (Figure S2), whereas Holocene denudation rates indicate a sharp peak of ~2 mm/a
130-150km north of the MFT with near-zero rates between 40 and 110km [Le Roux-Mallouf et al,, 2015;
Portengaetal., 2014; Adams et al,, 2016]. This difference in patterns likely reflects the difference in measurement
time scales: GPS data cover a decadal interseismic period and are mostly sensitive to the coupled-decoupled
transition; denudation data are representative of several thousand years over several seismic cycles and are pri-
marily sensitive to the fault geometry. A few additional years of campaign GPS data combined with longer-term
denudation and incision data may thus provide important constraints on the geometry and seismic behavior of
the MHT.

Our analysis of new GPS data in Bhutan provide three major constraints to the interseismic state of the MHT: (1)
An abrupt downdip termination of the fully coupled segment, about 145 km north of the MFT in western and
central Bhutan; (2) a less wide fully coupled segment in eastern Bhutan (~110 km), with a partially unlocked
deeper crustal ramp; (3) in this eastern region, the MBT is creeping and is part of the active thrusting front.
These observations raise questions regarding the seismic and interseismic behavior of the MHT. We infer creep
on the eastern Bhutan MBT on the basis of velocity measurements over 3 years (2013-2016); hence, we cannot
resolve whether this represents long-term creep or could potentially correspond to a transient slip episode on
the upper part of the MHT, which would contribute to release part of the interseismic stress buildup. Similarly,
our observation of partial creep on the MBT suggests that an event similar to the recent 2015 Gorkha earth-
quake occurring on the MHT could potentially not reach the surface in eastern Bhutan.
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