
HAL Id: hal-01689790
https://hal.science/hal-01689790v1

Submitted on 22 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Analyze of a Private Access Control Protocol to
a Cloud Storage

Narjes Ben Rajeb, Mouhebeddine Berrima, Matthieu Giraud, Pascal
Lafourcade

To cite this version:
Narjes Ben Rajeb, Mouhebeddine Berrima, Matthieu Giraud, Pascal Lafourcade. Formal Analyze
of a Private Access Control Protocol to a Cloud Storage. 14th International Conference on Security
and Cryptography SECRYPT 2017, Jul 2017, Madrid, France. �10.5220/0006461604950500�. �hal-
01689790�

https://hal.science/hal-01689790v1
https://hal.archives-ouvertes.fr

Formal Analyze of a Private Access Control Protocol to a Cloud Storage

Narjes Ben Rajeb1, Mouhebeddine Berrima2, Matthieu Giraud3, and Pascal Lafourcade3

1LIP2, Université Tunis El Manar, Tunis, Tunisia
2LIP2, Université de Monastir, Tunis, Tunisia

3LIMOS, Université Clermont Auvergne, Aubière, France
1narjes.benrajeb@gmail.com, 2berrima.mouheb@gmail.com, 3{first.last}@uca.fr

Keywords: Cloud storage, formal methods, attribute based signature, attribute based encryption, data and user privacy.

Abstract: Storing data in the Cloud makes challenging data’s security and users’ privacy. To address these problems
cryptographic protocols are usually designed. Cryptographic primitives have to guarantee some security prop-
erties such that data and user privacy or authentication. Attribute-Based Signature (ABS) and Attribute-Based
Encryption (ABE) are very suitable for storing data on an untrusted remote entity. In this work, we formally
analyze the Ruj et al. protocol of cloud storage based on ABS and ABE schemes. We clarify several ambigui-
ties in the design of this protocol and model the protocol and its security properties with ProVerif an automatic
tool for the verification of cryptographic protocols. We discover an unknown attack against user privacy. We
propose a correction, and automatically prove the security of the corrected protocol with ProVerif.

1 INTRODUCTION

Cloud storage refers data storage services hosted over
the Internet. The cloud users store data online, so that
they or any other authorized users can access them
from any location via the Internet. However, the share
of the sensitive data on a third party through a pub-
lic network brings some security challenges. In par-
ticular, there are concerns with the privacy of users
and data. Protecting privacy in cloud is more difficult
than in traditional environments, because sensitive
data may be disseminated and stored over many exter-
nal location, managed by external service providers
(Wang et al., 2010), and both cloud and user can
be malicious (Mulazzani et al., 2011; Zhang et al.,
2012). User privacy is required in many applica-
tions when users store sensitive information like fi-
nancial or health data (Tang et al., 2012). There
are two important privacy requirements when a user
stores data on the cloud: anonymity and unlinkabil-
ity. The ISO/IEC standard (governmental organisa-
tions, 2009) define anonymity as the property ensur-
ing that a user may use a service or a ressource with-
out disclosing his (or her) identity. However, preserv-
ing the anonymity property may still release informa-
tion about a user by allowing an adversary to track
several uses of a resource by the same user. Such in-
formation might allow an adversary to deduce or at
least restrict the possible identities of a user. There-

fore, the unlinkability property is required, ensuring
that the different uses of a service or a ressource for
the same user should not be linked by an adversary.
On the other hand, the Cloud Service Provider (CSP)
must authenticate the user to be sure that he has the
right to store data on the cloud, moreover this authen-
tication must be done without reveal any information
about his identity. Attribute-Based Signature (ABS)
is a cryptographic scheme privacy-preserving authen-
tication. Indeed, in ABS the verifier of a signature can
only check if the message is signed by authorized one
without knowing any information about its identity.

Data Privacy has been also gained research inter-
est because only authorized users have access to sen-
sitive data on the cloud. Data must be protected when
transmitted to CSP and during the storage. The pro-
tection is against the unauthorized users as well as
the CSP since the cloud is often assumed to be hon-
est but curious (Li et al., 2010; Yu et al., 2010). To
ensure data privacy, several works propose the stor-
age of data in encrypted form. Thus, if the storage
is compromised, then the leaked information should
be protected. Identity based cryptography is not fea-
sible in this situation because the inability of users
to share their encrypted data at a fine-grained level.
Attribute-Based Encryption (ABE), introduced by Sa-
hai and Waters (Sahai and Waters, 2005), solves
the problem of fine grained access control. There
are two complementary forms of ABE (Goyal et al.,

2006): Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) and Key-Policy Attribute-Based Encryp-
tion (KP-ABE). In CP-ABE, the users have given a set
of attributes and the data are encrypted under an ac-
cess policy described as Boolean formula. Only users
having the attributes satisfying the access policy can
decrypt the ciphertext. In KP-ABE, the situation is re-
versed: users are associated with access policies and
ciphertexts are encrypted with sets of attributes.

Related Work: (Bertino et al., 2009; Angin et al.,
2010; Chow et al., 2012; Ren et al., 2006) pro-
posed approaches to deal with security and privacy.
In (Bertino et al., 2009), the privacy of users is pre-
served with zero-knowledge proof protocols while it
is based on anonymous identification in (Angin et al.,
2010). Recently, taking advantages of ABS and ABE
has emerged as a widely accepted approach by the
cloud security community (Ruj et al., 2012; Dahshan
and Elkassass, 2014; Wang et al., 2014; Li et al.,
2010; Zhao et al., 2011; Ruj et al., 2011). The
ABS is used to ensure the authentication while hiding
anonymity, and the ABE allows a fine-grained access
control to data. The cloud storage protocol proposed
by (Ruj et al., 2012) is among the pioneering works to
use ABS and ABE. The protocol uses the SSH proto-
col to secure all the communication between the users
and the cloud, and supports reading and writing data
stored in the cloud.

Contributions: We analyze the Ruj et al. pro-
tocol (Ruj et al., 2012) which we abbreviate
RSN’12 protocol. We model it in the applied π-
calculus (Abadi and Fournet, 2001). We use ProVerif
tool (Blanchet et al., 2001) to analyze cryptographic
protocols (Puys and Lafourcade, 2015; Cremers et al.,
2009). For sake of simplicity, we consider one at-
tribute in our modeling of the ABE and ABS schemes.
We formalize and verify the fundamental security
properties of the protocol. In writing mode, we verify
the writer authentication and writer privacy which is
expressed by the anonymity of writer’s identity and
unlinkability, that is a user who stores data on the
cloud. While in reading mode, we check the required
property that is data privacy. We show that the un-
linkability of a writer is not satisfied against an attack
in which the adversary delays the messages of some
writers. Then, we propose a fix, which prevents this
attack. We also discuss some ambiguous aspects of
RSN’12 protocol.

Outline: We give a description of SSH protocol, ABS
and ABE schemes and RSN’12 protocol in Section 2.
We model RSN’12 protocol in Section 3 and analyze
the security properties in Section 4. Finally, we con-
clude in Section 5.

2 RSN’12 PROTOCOL
DESCRIPTION

In (Ruj et al., 2012) the authors propose a proto-
col for reading and writing data stored in the cloud
which is based on the decentralized approach of CP-
ABE (Lewko and Waters, 2011) and ABS (Maji et al.,
2008) where many authorities distribute secret keys
associated to attribute. Using ABS the cloud verifies
the authenticity of a user without knowing his identity
before storing data. Using ABE only valid users are
able to decrypt the stored data. The protocol makes
the following assumptions:
1. The CSP is honest-but-curious, i.e. it tries to

derive some information from the messages he
learned during the execution of the protocol, but
cannot modify the user’s content.

2. Users can have a read or/and write access to a file
stored in the CSP.

3. All the communications between participants are
secured by SSH (Secure Shell) protocol.
The RSN’12 protocol involves a user who may be

a writer or/and a reader, a Trusty Authority (TA) reg-
istering users, one or more Key Distribution Center
(KDC) issuing the secret keys associated to users’ at-
tributes, and a CSP. TA and KDC are trusted entities
while CSP is semi-trusted. Some users can be ma-
licious and thus are considered as untrusted entities.
The protocol is composed of three sub-protocols.

CSP User

TAKDC

12
3

4

write

read

Figure 1: RSN’12 protocol.

Registering and getting attribute secret keys. In a
first phase, a user gets attribute secret keys from the
KDCs by presenting his token obtained from TA:
• The user presents his identity to the TA, for in-

stance a federal government (1© in Fig. 1).
• TA registers the user if he is eligible and gives

him a token as described in ABS scheme (2© in
Fig. 1). TA embeds a random value in the token
which will be incorporate in the attribute secret
keys for signing to prevents collusion of the users.

• The user on presenting the token to KDC receives
secret attribute keys for signing and decryption
(3© in Fig. 1). KDC checks the validity of the

token using TA’s public key, and sends the corre-
sponding keys for signing and decryption (4© in
Fig. 1).

Writing on the cloud. To store a message MSG on
the cloud, the user proceeds as follows:
• He creates an access policy X containing all re-

quired fields, and encrypts the message MSG un-
der X as C = Encrypt(MSG,X).

• Then he calculates the message C1 = H (C)‖τ
where H is a hash function, τ is a timestamp and
‖ is the concatenation operation. The timestamp
is used to prevent the user to use stale message
back with a valid signature, when his attributes
have been revoked. Next, he generates the signa-
ture σ of C1 with a claim policy Y .

• Finally, he sends c = (C,τ,σ,Y) to the CSP. Then
CSP verifies, using Veri f y algorithm, if the mes-
sage H (C)‖τ was signed by a user satisfying the
claim policy Y .

Reading from the cloud. A user can access at any
time to the data and requests a ciphertext, then the
CSP sends the requested ciphertext using SSH. Note
that, the authors do not propose any revocation model,
but it is still possible to incorporate it. The protocol is
clear but contains some ambiguities. We discuss these
minor problems and explain how to fix them.
Timestamps. They are used to prevent the writing
when the attributes and keys of a writer have been
revoked, since a timestamp informs when the mes-
sage was created. However a writer signs its mes-
sage along with a timestamp generated by himself.
Then a verifier cannot be really sure since the signer
may include an arbitrary timestamp. In order to ad-
dress this problem it is possible to use a trusted times-
tamping described in RFC 3161 (Adams et al., 2001).
The signer sends the hash of its message to a trusted
third party (TSA-Time-Stamping Authority) which
concatenates a timestamp to the hash and calculates
the hash of this concatenation. This hash is in turn
signed with the private key of TSA. This role of TSA
can be ensured by TA in the RSN’12 protocol.
Writer and SSH connection to CSP. In writing
access, the protocol uses SSH connection between
users and the CSP which is assumed to be semi-
trusted. However, when establishing SSH connection
the CSP knows the user’s identity following the ex-
ecution of SSH authentication sub-protocol (Ylonen
and Lonvick, 2006) which compromises the user pri-
vacy against CSP. This ambiguity can be addressed
by configuring the SSH server of CSP to allow log in
without any user authentication.
Reader and SSH connection to CSP. In reading ac-
cess the SSH connection is useless because the mes-
sages are encrypted using ABE and only authorized

users can decrypt them. Hence, we can drop the SSH
connection between a reader and the CSP.

3 MODELING RSN’12
PROTOCOL

We describe the main process modeling the RSN’12
protocol. It is specified as the parallel composition of
the processes modeling the roles of writers, readers,
TA, KDC and CSP.
The main process. It is specified in Figure 2. First,
the fresh secret keys skTA, skKDC and skCSP, used
respectively by TA, KDC, and CSP for asymmet-
ric encryption and signature, are generated. Their
corresponding public keys are then sent on a public
channels, i.e. they are made available to the adver-
sary. Moreover, the fresh secret keys TSK, absASK and
abeASK used in ABS and ABE schemes, are also gen-
erated and their corresponding public keys are pub-
lished. The secret key of writer skW and reader skR
are made under replication to model an infinite num-
ber of writers and readers. The processes writer and
reader are under replication, because one user may es-
tablish many sessions with the CSP. In our modeling,
we use public keys of asymmetric encryption as iden-
tities of participants.

MainProcess ,
new skTA;new skKDC;new skCSP;
let pkTA=pk(skTA) in
let pkKDC=pk(skKDC) in
let pkCSP=pk(skCSP) in
out(ch,pkTA); out(ch,pkKDC); out(ch,pkCSP);
new TSK; new absASK;
let TPK=absPk(TSK) in
let absAPK=absPkA(TPK,absASK) in
out(ch,TPK); out(ch,absAPK)
new abeASK;
let abeAPK=abePk(abeASK) in
out(ch,abeAPK);
!(new skW;let pkW=pk(skW) in out(ch,pkW);
!Writer(skW,TPK,absAPK,abeAPK,pkTA,pkKDC,pkCSP))|
!(new skR;let pkR=pk(skR) in out(ch,pkR);
!Reader(skR,pkTA,pkKDC)) |
!TA(skTA,TSK,pkClt) |
!KDC(skKDC,TPK,absASK,abeASK,pkClt) |
!CSP(skCSP,TPK,absAPK)

Figure 2: Main process.

The writer process. The writer process given in Fig-
ure 3 models the role of a writer. The secret keys
KWTA, KWKDC and KWCL are the secret shared keys es-
tablished by SSH transport protocol respectively with
TA, KDC and CSP. After the receipt of a token form
TA, the writer sends a request to KDC to get attribute
secret key for signing, this request is encoded by the

pair (token,write). Afterwards, the writer encrypts
his message msg and signs it using the attribute secret
key absSkA.

Writer(skW,TPK,absAPK,abeAPK,pkTA,pkKDC,pkCSP),
Clt-SSH-Trans(pkTA);
Clt-SSH-Auth(skW);
in(ch,encToken);
let token = sdec(KWTA,encToken) in
Clt-SSH-Trans(pkKDC);Clt-SSH-Auth;
out(ch,senc(KWKDC,(token,write)))
in(ch,encAbsSkA);
let absSkA = sdec(KWKDC,encAbsSkA) in
let abeEncMsg = abeEnc(abeAPK,AccessP,msg) in
Clt-SSH-Trans(pkCSP);
let sigMsg=absSign(TPK,absAPK,token,absSkA,

abeEncMsg,ClaimP) in
out(ch,senc(KWCSP,(abeEncMsg,sigMsg))).

Figure 3: Writer process.

The reader process. The role of a reader is mod-
eled by reader process given in Figure 4. At first, a
reader behaves as a writer by requesting a token from
the TA and an attribute secret key for decryption from
the KDC. Next, it has access to the CSP, without se-
cure communication, to read a message stored on the
cloud. Finally, he decrypts the message read from the
CSP using his attribute secret key abeSkA, and be-
haves as RestOfReader with the received message.

Reader(skR,pkTA,pkKDC) ,
Clt-SSH-Trans(pkTA); Clt-SSH-Auth(skR);
in(ch,encToken);
let token = sdec(KWTA,encToken) in
Clt-SSH-Trans(pkKDC); Clt-SSH-Auth(skR);
out(ch,senc(KWKDC,(token,read)));
in(ch,encAbeSkA);
let abeSkA = sdec(KWKDC,encAbsSkA) in
in(c,encMsg);
let msg = abeDec(encMsg,abeSkA) in
RestOfReader.

Figure 4: Reader process.

The TA process. Trustee authority process is given
in Figure 5. After the establishment of the shared key
for symmetric encryption KWTA by SSH transport pro-
tocol, and the authentication of the user by SSH au-
thentication protocol, TA generates a token and sends
it to the user encrypted with KWTA.

TA(skTA,TSK,pkClt) ,
Ser-SSH-Trans(skTA);
Ser-SSH-Auth(pkClt);
new base;
event DelivToken(pkClt);
out(ch,senc(KWTA,absToken(TSK,base,pkClt))).

Figure 5: Trusted Authority process.

The KDC process. The KDC process is given in
Figure 6. When receiving a request from a user,

KDC checks the correctness of the token using the
public key of user pkC, used as its identity, which
was authenticated during SSH authentication proto-
col. If the token is valid, it issues an attribute secret
key for encryption or signing following the value of
AccessMode, which has two possible values: ”write”
or ”read”.

KDC(skKDC,TPK,absASK,abeASK,pkClt) ,
Ser-SSH-Trans(skKDC);Ser-SSH-Auth(pkClt);
in(ch,encToken);
let (token,AccessMode)=sdec(KWKDC,encToken) in
if absTokenCheck(TPK,pkC,token)= true then
if AccessMode = write then
event DelivKeySign(pkC);
out(ch,senc(KWKDC,absSka(absASK,absGetBase(token),

att)));
else if AccessMode = read then
out(ch,senc(KWKDC,abeSka(abeASK,pkC,att)))
else 0.

Figure 6: Key Distribution Center process.

The CSP process. The CSP which is responsible of
the storage of user data, is modeled by the process in
Figure 7. SSH connection without user authentication
is established between writers. If the signature is valid
with respect to the claim policy, the CSP stores the
message that becomes immediately accessible by the
readers. Since in reading mode, there is no secure
communication between the reader and the CSP, in
our modeling the CSP outputs the incoming messages
from the writers on a public channel.

CSP(skCSP,TPK,absAPK) ,
Ser-SSH-Trans(skCSP); (*SSH with a writer*)
in(ch,encMsg);
let (msg,sigMsg) = sdec(KWCSP,encMsg) in
if absSignCheck(TPK,absAPK,msg,ClaimP,sigMsg)=true
then
event AcceptSign;
out(ch,msg).

Figure 7: Cloud Server Porvider process.

4 SECURITY ANALYSIS

We analyse the security properties of the protocol,
namely the authentication and privacy of a writer,
and the confidentiality of the data. All proofs of our
propositions are not presented because they are di-
rectly implied by our ProVerif codes∗.

∗Our ProVerif codes are avaible under request via the PC
and will be publicly available if the paper is accepted.

4.1 Confidentiality

It means that a user without valid access policy can-
not decrypt the data stored on the cloud. In applied
π-calculus this property can be expressed as a secrecy
property: it should be impossible for an adversary, in-
teracting with the protocol and without valid attribute
secret key, to learn a message which is encrypted and
stored on the cloud.
Definition 1. Given an access policy AP, a cloud
storage protocol ensures confidentiality if a secret
message stored on the cloud by an honest writer is
not deducible by an attacker without attribute secret
key satisfying AP.

Proving secrecy property is expressed by the
reachability notion. We request ProVerif to check that
a private message, encrypted using a public access
policy, cannot be deduced by the attacker. Proverif
proves this property in less one minute.
Proposition 1. RSN’12 protocol ensures the confi-
dentiality property.

This result confirms the fact that SSH communi-
cation between CSP and a reader is useless for con-
fidentiality, since our modeling does not use it and
ProVerif is able to prove the secrecy of the message.

4.2 Writer Authentication

A user can only write in the cloud if he has the
attribute validating the claim policy. Moreover, an
invalid user can not receive attribute from a KDC,
if does not have the token from TA. Authentication
property can be captured as a correspondence asser-
tion. To define the authentication of a writer, we an-
notate the protocol by the following events:
• AcceptSign: This event is placed inside CSP’s

process and emitted if the signature is valid, i.e.
absCheckSign returns true.

• DelivKeySign(IdUser): This event is placed in-
side KDC’s process and emitted when the KDC
issues an attribute secret key for signing to a user
with identity IdUser.

• DelivToken(IdUser): This event is placed inside
TA’s process and emitted when TA delivers a to-
ken to a user with identity IdUser.

Definition 2. A cloud storage protocol ensures the
authentication of a writer with identity Id if for every
execution trace of the protocol each occurrence of the
event AcceptSign is preceded by an occurrence of De-
livKeySign(Id) which is preceded by an occurrence of
DelivToken(Id).

This property can be expressed in ProVerif in
terms of nested correspondence (Blanchet, 2009)

which allows us to order events. ProVerif can auto-
matically prove the corresponding nested correspon-
dence in less one second:
event(acceptSign)⇒(event(DelivKeySign(pkwriter))

⇒ event(DelivToken(pkwriter)))

Proposition 2. RSN’12 protocol satisfies the authen-
tication of a writer.

4.3 Writer Privacy

In the context of cloud storage, writer privacy is ex-
pressed by two properties; anonymity and unlinkabil-
ity. Anonymity of a writer’s identity is ensured if it
is not possible for anyone, even the CSP, to learn the
writer’s identity of a stored message. Unlinkability
means that no one can link the messages stored on the
cloud, more precisely no one is able to decide if two
messages were stored by the same writer, or not.

Anonymity: A cloud storage system ensures
anonymity if it keeps the writer’s identity secret from
everyone. Hence, anonymity can be formalized as a
secrecy property: no one can deduce the identity of a
writer who store a message on the cloud. Since the
identities of the writers are known values, anonymity
is captured by the concept of strong secrecy. Strong
secrecy means that the adversary cannot distinguish
two instances of the same protocol with two different
values of the secret. For the precise definition, we
refer the reader to (Blanchet, 2004). In ProVerif,
strong secrecy is expressed by diff-equivalence de-
fined between processes that share the same structure
and differ only in the choice of terms representing the
secret values (Blanchet et al., 2008).

Definition 3. A cloud storage protocol ensures
anonymity of a writer’s identity if for any two writers
with identities IdW1, IdW2 and for any message msg,
an adversary cannot distinguish whether msg comes
from IdW1 or IdW2.

We request to ProVerif to check if

C[Writer(IdW1,msg)]≈C[Writer(IdW2,msg)].

with C[] is an evaluation context modeling the whole
cloud storage protocol as described in main process
with a hole for a writer process, and the process
Writer(IdW,msg) models a writer with identity IdW
storing a message msg on the cloud. ProVerif suc-
ceeds to prove this request in 3 seconds.

Proposition 3. RSN’12 protocol preserves anonymity
of writer’s identity.

Unlinkability: Informally, in cloud storage context,
unlinkability holds when the differents stored mes-
sages of the same writer can not be linked by an at-
tacker even a dishonest user (writer or reader). Thus,
unlinkability can be viewed as the secrecy of link be-
tween writer and its messages stored on the cloud.
The definition of unlikability is similar to the defi-
nition of voter privacy in e-voting protocol (Kremer
and Ryan, 2005) in the sense that we must consider
at least two honest writers. To understand this as-
sumption, consider the case where all the writers are
dishonest except one, as the stored messages on the
cloud are published by the CSP, the dishonest writers
can collude and determine the message of the honest
writer.
Definition 4. A cloud storage protocol ensures un-
linkability if for any two writers with identities IdW1,
IdW2 and for any two messages msg1 and msg2, an
adversary cannot distinguish the situation in which
IdW1 stores msg1 and IdW2 stores msg2 from the sit-
uation in which IdW1 stores msg2 and IdW2 stores
msg1.

In applied π-calculus this definition can be formal-
ized as the following equivalence:

C[Writer(IdW1,msg1)|Writer(IdW2,msg2)]
≈

C[Writer(IdW1,msg2)|Writer(IdW2,msg1)] ,
where C[] is an evaluation context modeling the
whole protocol with a hole for two writers. In
ProVerif, the above pair of process can be expressed
as single biprocess as follows:

C[Writer(IdW1,choice[msg1,msg2])] |
C[Writer(IdW2,choice[msg2,msg1])] .

ProVerif finds an attack, in which a man-in-the-
middle attacker selectively delays or delete some mes-
sages sent to the CSP by one writer until he can link
a message to somebody.
Proposition 4. RSN’12 protocol does not ensure un-
linkability property.

For this attack we consider an attacker that is a
semi-honest reader with valid attribute secret keys,
who wants link the messages to a writer. In a real
cloud storage environment, to achieve the attack, an
attacker performs the following steps:
• Access to CSP and memorize all the files stored

in the cloud.
• Listen to the network, and wait for a message send

to the CSP.
• When a new message MSG is sent, he identifies

its sender IdW and blocks all the messages sent to
CSP after the message MSG. He now has just to
wait until MSG becomes available on the CSP, i.e.
CSP appends MSG to the previous files.

• Then, he can access to the files and then learn
MSG by comparing the current contents of files
with the previous contents. Thus, he concludes
that MSG was sent by a writer with identity IdW
and can link a file to somebody.

Fixed protocol: The previously discovered attack
against unlinkability is based on the fact that an at-
tacker can instantaneously access to CSP to learn a
message just after it was sent by a writer. To fix this
problem, a solution is that CSP simultaneously pub-
lishes at least two incoming messages from different
persons. However, the messages are accessible from
a file, so if the messages are written on the file in
a deterministic order, for instance following arriving
time of the messages, the adversary can link a mes-
sage with its writer by inspecting the order of the sent
messages to the CSP on the network. Therefore, the
CSP must write the incoming messages on the files
in non-deterministic way. The new role of the CSP is
given in the Figure 8.

FixedCSP(skCSP,TPK,absAPK) ,
Ser-SSH-Trans(skCSP);
in(ch,encMsg1);
let (msg1,sigMsg1) = sdec(KWCSP,encMsg1) in
if absSignCheck(TPK,APK,msg1,ClaimP,sigMsg1)=true
then in(ch,encMsg2);
let (msg2,sigMsg2) = sdec(KWCSP,encMsg2) in
if absSignCheck(TPK,APK,msg2,ClaimP,sigMsg2)=true
then
(sync 1; out(ch,msg1) | sync 1; out(ch,msg2))

Figure 8: Fixed Cloud Server Porvider process.

The synchronisation command sync 1 in the
last line of the above CSP process is introduced to
synchronize CSP process. This means that the CSP
process waits until the two sync 1 are reached be-
fore publishing the received messages. Therefore,
the outputs out(ch,msg1) and out(ch,msg2) of the
two received messages are executed in parallel. This
parallel execution captures the non-deterministic be-
haviour of the writing of the messages on the file, be-
cause the semantic of a parallel composition P | Q al-
lows simultaneously and independently execution of
P and Q. Note that, in this case synchronisation helps
to automatically prove diff-equivalence by ProVerif,
and hence the observational equivalence of applied
π-calculus, because it allows to swap data between
processes at the synchronisation points. In fact, the
diff-equivalence is stronger than observational equiv-
alence. In particular, when proving equivalence be-
tween processes that contain several parallel compo-
nents, e.g., P | Q and P′ | Q′, diff-equivalence re-
quires that P is equivalent to P′ and Q is equivalent to
Q′. This constraint can be relaxed by swapping data

between parallel processes at synchronisation points.
For more details, we refer the reader to (Blanchet
and Smyth, 2016). Fortunately, ProVerif succeeds to
prove observational equivalence with the new role of
CSP in 28 seconds, and therefore we can conclude the
security of the fixed protocol.

Proposition 5. The revisited RSN’12 protocol en-
sures unlinkability property.

5 CONCLUSION

In this paper, we revisit the security of the protocol
of (Ruj et al., 2012).We use ProVerif to prove auto-
matically claimed security properties by the authors
in the original paper. ProVerif helps us to discover
a flaw in this protocol for the unlinkability property.
We then give a correction and prove the security of
the modified version with ProVerif. The next step is
to use our framework to model and analyze more pro-
tocols using ABE and ABS in order to discover flaws
or formally prove the security of these protocols.

REFERENCES

Abadi, M. and Fournet, C. (2001). Mobile values, new
names, and secure communication. In ACM SIGPLAN
Notices, volume 36, pages 104–115. ACM.

Adams, C., Cain, P., Pinkas, D., and Zuccherato, R. (2001).
Internet x.509 public key infrastructure time-stamp
protocol (tsp). RFC 3161, RFC Editor.

Angin, P., Bhargava, B., Ranchal, R., Singh, N., Linderman,
M., Othmane, L. B., and Lilien, L. (2010). An entity-
centric approach for privacy and identity management
in cloud computing. In Reliable Distributed Systems,
2010 29th IEEE Symposium on, pages 177–183.

Bertino, E., Paci, F., Ferrini, R., and Shang, N. (2009).
Privacy-preserving digital identity management for
cloud computing. IEEE Data Eng. Bull., 32(1):21–27.

Blanchet, B. (2004). Automatic proof of strong secrecy for
security protocols. In Security and Privacy, 2004. Pro-
ceedings. 2004 IEEE Symposium on, pages 86–100.

Blanchet, B. (2009). Automatic verification of correspon-
dences for security protocols. J. Comput. Secur.,
17(4):363–434.

Blanchet, B., Abadi, M., and Fournet, C. (2008). Auto-
mated verification of selected equivalences for secu-
rity protocols. The Journal of Logic and Algebraic
Programming, 75(1):3–51.

Blanchet, B. et al. (2001). An efficient cryptographic proto-
col verifier based on prolog rules. In CSFW, volume 1.

Blanchet, B. and Smyth, B. (2016). Automated reasoning
for equivalences in the applied pi calculus with barri-
ers. In CSF’16, pages 310–324.

Chow, S. S., He, Y.-J., Hui, L. C., and Yiu, S. M.
(2012). Spice–simple privacy-preserving identity-
management for cloud environment. In International
Conference on Applied Cryptography and Network
Security, pages 526–543. Springer.

Cremers, C. J. F., Lafourcade, P., and Nadeau, P. (2009).
Comparing state spaces in automatic security proto-
col analysis. In Formal to Practical Security - Papers
Issued from the 2005-2008 French-Japanese Collabo-
ration, pages 70–94. Springer.

Dahshan, M. and Elkassass, S. (2014). Framework for se-
curing data in cloud storage services. In Security and
Cryptography (SECRYPT), 2014 11th International
Conference on, pages 1–8. IEEE.

governmental organisations (2009). Iso 15408-2: Common
criteria for information technology security evaluation
- part 2: Security functional components.

Goyal, V., Pandey, O., Sahai, A., and Waters, B. (2006).
Attribute-based encryption for fine-grained access
control of encrypted data. In ACM CCS’06.

Kremer, S. and Ryan, M. (2005). Analysis of an electronic
voting protocol in the applied pi calculus. In European
Symposium on Programming, pages 186–200.

Lewko, A. and Waters, B. (2011). Decentralizing attribute-
based encryption. In Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, pages 568–588. Springer.

Li, M., Yu, S., Ren, K., and Lou, W. (2010). Securing
personal health records in cloud computing: Patient-
centric and fine-grained data access control in multi-
owner settings. In International Conference on Se-
curity and Privacy in Communication Systems, pages
89–106. Springer.

Maji, H. K., Prabhakaran, M., and Rosulek, M. (2008).
Attribute-based signatures: Achieving attribute-
privacy and collusion-resistance. IACR Cryptology
ePrint Archive, 2008:328.

Mulazzani, M., Schrittwieser, S., Leithner, M., Huber, M.,
and Weippl, E. (2011). Dark clouds on the horizon:
Using cloud storage as attack vector and online slack
space. In Proceedings of the 20th USENIX Conference
on Security, SEC’11.

Puys, M. and Lafourcade, P. (2015). Evaluations of cryp-
tographic protocols: Verification tools dealing with al-
gebraic properties. In Foundations and Practice of Se-
curity - FPS 2015. Springer.

Ren, K., Lou, W., Kim, K., and Deng, R. (2006). A novel
privacy preserving authentication and access control
scheme for pervasive computing environments. IEEE
Transactions on Vehicular technology, 55(4):1373–
1384.

Ruj, S., Nayak, A., and Stojmenovic, I. (2011). Dacc: Dis-
tributed access control in clouds. In TrustCom’11,
pages 91–98. IEEE.

Ruj, S., Stojmenovic, M., and Nayak, A. (2012). Privacy
preserving access control with authentication for se-
curing data in clouds. In Cluster, Cloud and Grid
Computing (CCGrid), 2012 12th IEEE/ACM Interna-
tional Symposium on, pages 556–563. IEEE.

Sahai, A. and Waters, B. (2005). Fuzzy identity-based
encryption. In Annual International Conference on
the Theory and Applications of Cryptographic Tech-
niques, pages 457–473. Springer.

Tang, Z., Wang, X., Jia, L., Zhang, X., and Man, W.
(2012). Study on data security of cloud computing.
In Engineering and Technology (S-CET), 2012 Spring
Congress on, pages 1–3. IEEE.

Wang, B. Y., Ming, J., Zhang, S. M., Jiang, H., and Luo, H.
(2014). An access control method based on cp-abe and
abs algorithm in cloud storage. In Applied Mechanics
and Materials, volume 644, pages 1919–1922. Trans
Tech Publ.

Wang, C., Ren, K., Lou, W., and Li, J. (2010). Toward
publicly auditable secure cloud data storage services.
IEEE Network, 24(4):19–24.

Ylonen, T. and Lonvick, C. (2006). The secure shell (ssh)
authentication protocol. RFC 4252, RFC Editor.

Yu, S., Wang, C., Ren, K., and Lou, W. (2010). Attribute
based data sharing with attribute revocation. In Pro-
ceedings of the 5th ACM Symposium on Information,
Computer and Communications Security.

Zhang, G., Yang, Y., Zhang, X., Liu, C., and Chen, J.
(2012). Key research issues for privacy protection
and preservation in cloud computing. In Second Inter-
national Conference on Cloud and Green Computing,
CGC’12, pages 47–54.

Zhao, F., Nishide, T., and Sakurai, K. (2011). Realizing
fine-grained and flexible access control to outsourced
data with attribute-based cryptosystems. In Interna-
tional Conference on Information Security Practice
and Experience, pages 83–97. Springer.

