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for color transfer between color images
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Abstract

Optimal transport (OT) is at present a major statistical tool to measure
similarity between features or to match and average features. How-
ever, a major drawback of this framework is the lack of regularity of
the transport map and robustness to outliers. In practice, as it has
been partially addressed in previous works, OT requires some relax-
ation and regularization to achieve these desirable properties. With
such methods, as one feature can be matched to several ones, im-
portant interpolations between different features arise. This is not an
issue for comparison purposes, but it involves strong and unwanted
smoothing for transfer applications.
In this paper, we introduce a new regularized method based on a non-
convex formulation that minimizes the transport dispersion by en-
forcing the one-to-one matching of features. After some illustrations
with 1-D histogram matching, the interest of the proposed approach
is demonstrated for color transfer. In our color transfer experiments,
we show that the minimization of the transport dispersion combined
with regularization enables to reduce color artifacts and color mixing.

1 Introduction

Many image processing applications require the modification or the prescription of
some characteristics (such as colors, frequencies, patches, or wavelet coefficients) of
a given image, while preserving other features. The statistics that have to be prescribed
may come from prior knowledge, or more generally, are learned from an example. In
such a case, another image is selected from a database to define a template.

Such a framework arises for image enhancement (considering either contrast, color, or
geometry), inpainting, colorization of grayscale or infrared images, gammut mapping,
tone mapping, color grading or color transfer. In this paper, we will focus on this last
application in the context of histogram transfer between images.
∗julien.rabin@unicaen.fr
†nicolas.papadakis@math.u-bordeaux1.fr
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1.1 Color Transfer

Color transfer consists in modifying an image to match the color palette of another
one, while preserving its geometry. In the literature, the different interpretations and
definitions of color palettes have led to various algorithms. In the following, we only
consider non supervised approaches.

Parametric modeling Following the seminal work of [22], various methods have
first been designed to transfer some simple color statistics (i.e. the mean and standard
deviation) in any color space. This strategy of parametric modeling has later been
generalized for multi-variate Gaussian [14], and Gaussian mixtures [25].

Histogram modeling More general approaches match the complete empirical distri-
bution of features from two images. When considering grayscale images, the problem
of matching the gray levels is also known as 1-D histogram specification, and can be
solved in linear time using look-up tables. Several works have been proposed to extend
this framework for color histograms, using for instance 3-D cumulative histograms or
1-D ∆E-color index [8].

Histogram matching via Optimal transportation As pointed out by [15], the
strong connection between histogram specification and the Monge-Kantorovich Op-
timal Transport framework [26] makes it possible to generalize the histogram specifi-
cation principle to any multi-dimensional histogram matching problem. The Optimal
Transport (OT) problem consists in estimating the map that transfers a source probabil-
ity distribution onto a target one, while minimizing a given cost function. The corre-
sponding transport cost –also known as the Wasserstein distance or the Earth Mover’s
distance– has been shown to produce state of the art results for the comparison of dis-
crete statistical descriptors [23]. The transport cost is in practice obtained from the
optimal transport map. This map is the key element to perform the transfer of color.
Some approaches to find fast approximate solution of OT were investigated in [15, 21].

Spatial information Unfortunately, as pointed out by [18, 16], the exact transfer of
color palette is generally not satisfying for practical applications in image processing.
Indeed, the color distributions to be matched may have very different shapes, so that
outliers generally appear in the processed image. Moreover, as the transfer is per-
formed in the color space, it does not take into account the fact that coherent colors
should be transferred to neighboring pixels, resulting in undesirable artifacts, such as
JPEG compression blocks, enhanced noise, saturation, contrast inversion and color in-
consistencies [15, 17, 24]. As a consequence, various models have been designed to
consider the spatial nature of images [12] and to incorporate some regularity priors on
the image domain, such as Total Variation [10]. Similarly to previous works on image
enhancement, color transfer may be formalized [13, 20] as a variational problem in the
image domain, in order to directly incorporate a spatial regularization of colors. A post-
regularization of the image color is nevertheless required to restore the fine details and
the grain of the original image [15, 17].

Approximate and regularized matching While spatial regularization manages to
suppress small artifacts due to exact histogram specification, it cannot handle very
strong artifacts due to an irregular transport map [20]. To tackle this problem, Fer-
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radans et al. [6] introduced a new variational framework for the regularization of op-
timal assignment between point clouds. The exact matching constraint is relaxed to
enforce robustness to outliers. Instead of providing one-to-one assignment, this re-
laxed approach enables one-to-many correspondences by using capacity variables. It is
demonstrated that the additional introduction of regularity priors on the gradient of the
average transport map produces smoother and more robust transport maps for image
processing applications. This work has been recently extended in [19] for histogram
matching problem, where spatial information is used to drive the regularization of color
transfer, together with an automatic estimation of the relaxation capacity variables. In-
dependently, Cuturi [5] also introduced a new variational framework for smooth optimal
transport between histograms based on entropy prior. The proposed approach, which
makes it possible to design very fast algorithms for intensive histogram comparison,
also yields one-to-many correspondences between histogram bins, and is proven to be
more robust to outliers.

Color dispersion Due to the one-to-many relaxation and the fact that only the gradi-
ent of the average transport flow is penalized, the regularization does not prevent the
transport map to associate very different colors to a single pixel or cluster. This leads to
undesirable results such as color mixing or color inconsistencies in the modified image.

1.2 Contributions and outline

In this paper, we propose a new model that takes into account the aforementioned issues.
We also relax and regularize the transport map and introduce a non-convex constraint
that minimizes the variance of colors assigned to each cluster. We also rely on a fast
proximal splitting algorithm in order to compute the transport map that is finally used
for color transfer purposes.

The organization of the paper is as follows. Background on OT is given in Section 2.
The proposed model is introduced in Section 3 and experimented in Section 4.

2 Color transfer via Optimal Transport

From now on, we refer to u as the input image to be modified, and to v as an exem-
plar image v provided by the user. For mandatory efficient computation and compact
representation, we consider clustered feature distributions, which may be seen as multi-
dimensional histograms or discrete probability distribution (for instance color palettes,
patch dictionaries, wavelet coefficient histograms). We refer to hu =

∑
i hu[i]δXi

as
the histogram of features X := {Xi ∈ Rd}i≤n ∈ Rn×d from the input image, so that∑n
i=1 hu[i] = 1. The histogram is thus composed of n features, each of them being

of dimension d. In the same way, hv =
∑m
j=1 hv[j]δYi

is the target distribution of the
desired features Y := {Yj ∈ Rd}j≤m ∈ Rm×d. We do not assume anything about
the way those histograms are built (uniform quantization, k-means, mean-shift, image
segmentation, etc). This means that we have a quantized version of our image, for in-
stance using Nearest-Neighbor interpolation (w.r.t a metric d, that will be the quadratic
L2 distance in the following):

ũi = XI(i) where I(i) = argminI d(u(i), XI).
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2.1 Optimal transport of histogram (histogram specification)

The optimal transport of hu onto hv is obtained by estimating the optimal transport
matrix:

P ? ∈ argmin
P∈Phu,hv

C(P ) := 〈P, CX,Y 〉 (1)

with the histogram constraint set Phu,hv
= {Rn×m, Pi,j ∈ [0, 1], P1m = hu, P

T1n =
hv} where 1N ∈ RN is the unit vector, and the cost matrix CX,Y is generally defined
from quadratic distances (CX,Y )i,j = ‖Xi − Yj‖2.

Sinkhorn distance A variant approach, based on entropy regularization of this frame-
work, has been studied by Cuturi in [5]

P ?γ ∈ argmin
P∈Phu,hv

C(P )− γh(P ) where h(P ) = −
∑
i,j

Pi,j logPi,j . (2)

This formulation enables the use of the fast Sinkhorn algorithm while providing smooth
transfer matrix which turns out to be more robust to outliers. Observe that setting γ = 0
boils down to solve the original optimal transport problem (1), while using γ = ∞
yields P ?γ = huh

T
v (uniform transport flow that maximizes entropy).

Optimal Mapping For transfer purposes, we need to compute a transfer map to
change the statistical distribution of u accordingly to the transport matrix P . A naive ap-
proach would be to match directly centroid features between clusters, leading to quan-
tization artifacts:

T ? : ũi = XI(i) 7→ YJ where J is such that J ∈ argmaxj P
?
I(i),j . (3)

To reduce this effect, as proposed in [25] and recently in [19], spatial information can
also be incorporated in a multivariate Gaussian mixture model to define the smoothed
mapping

S : ui 7→
1

W

∑
i

wi(ui)T (XI(i)) (4)

which average a given mapping T using adaptive weights functions wi(·) =
exp

(
− 1

2 || · −Xi||2Vi

)
, and a normalization factorW =

∑
i wi. Observe that this method

uses estimated covariance matrices Vi of clusters in spatial and color product space.

2.2 Optimal transport relaxation

As previously mentioned, one of the limitation of optimal transport (partially discussed
in [18]) comes from the exact matching constraint which is not robust to outliers. To
address this issue, a first attempt has been proposed in [23] and later in [3] to define
optimal transport between unbalanced histograms. This idea has been generalized in
[6], by making use of relaxed constraints for the optimal assignment problem, defin-
ing min/max capacities on the optimal flow. Rewriting this relaxed optimal transport
problem in our context of histogram matching gives:

P ?κ ∈ argmin
P∈Khu,hv

C(P ) (5)
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with the relaxed histogram constraint set Khu,hv
= {Rn×m, Pi,j ∈ [0, 1], P1m =

hu, κminhv ≤ PT1n ≤ κmaxhv}. This model includes two vectorial parameters,
κmin 6 1 ∈ Rm and κmax > 1 ∈ Rm, that control the proportion of the target
histogram’s bins that can be used by the color transfer. Outliers can therefore be taken
into account by taking κmin < 1. In this case, by setting κmax > 1, some colors of the
source palette will be used more frequently than in the original example image.

The limitation of this relaxed transport is that there is no statistical control of how
“close” the transported histogram is over the source one and that it is very difficult to
tune so many parameters by hand. In [19], the following extended model has been
shown to tackle these two limitations, by including the calibration of the capacity pa-
rameters within the model:

(P, κ)? ∈ argmin
P≥0∈Rn×m s.t. P1m=hu

κ≥0∈Rm s.t. 〈κ, hv〉≥1

C(P ) + ρ‖κ− 1m‖1. (6)

2.3 Optimal transport regularization

Another limitation of the optimal transport framework is the lack of control over the
regularity of the solution. In [6], the authors propose to measure the regularity of the
average transfer mapping, as detailed in this section.

Average transfer First, one considers the following definition of Posterior mean to
define a one-to-one mapping T from a transfer matrix P , instead of the NN mapping in
Eq. (3):

T (Xi) = Yi = 1∑m
j=1 Pij

∑m
j=1 PijYj = 1

hu(i)

∑
j Pi,jYj = (Dhu

PY )i, (7)

where the normalization matrix Dhu
is diagonal: (Dhu

)ii = hu(i)−1.

Gradient of flow on graph The regularity of this average transfer map is then evalu-
ated on a graph GX = (IX , EX), built from the set of input features {Xi}i. Denoting
as IX = {I1, · · · , In} the set of nodes representing the features {X1, . . . Xn}, and
EX ⊂ I2X the set of edges, the gradient GX V ∈ Rn×n×d of a multi-valued function
V = {V li } ∈ Rn×d on GX is computed at point Xi as

(GXV )i = (wij(Vi − Vj))j∈EX(i) ∈ Rn×d,

where the weight wij between features Xi and Xj relies on their similarity, i.e. using
for instance wij ∝ exp−d(Xi, Xj).

Regularized optimal transport problem The optimal transport matrix now solves
the following problem

P ? ∈ argmin
P∈Khu,hv

C(P ) + λ||GX(DhuPY −X)||, (8)

where ||GXV || can be interpreted as the TV norm of field V on the graph GX . The flow
is taken as and V = T (X) −X so that color translation are not penalized. With such
regularization, artifacts or contrast inversion are also avoided.

5



Advantage and drawback The combination of problem (8) with relaxed formula-
tion(6) yields smooth transport maps. However, as shown in the experimental section,
the regularization of the average flow encourages transport between one cluster to many.
In practice, this is undesirable for color transfer since the obtained prescribed colors are
defined from linear combination of the target color palette, resulting in false colors
artifacts and a lost of color contrast.

In this paper, we propose to solve this issue by incorporating information on the color
transfer dispersion.

3 Non convex relaxation of color palette transport

The relaxation here considered is different from the one proposed in [6] where a ca-
pacity relaxation of the target histogram is considered. The closeness to the target
histogram is here imposed through a data fidelity term which makes easier the con-
trol of the results while simplifying the projection onto the set of acceptable transport
matrices.

By using linear programming to optimize the regularized problem ((6)) as in [6, 19],
the dimension of the variables to estimate is greatly increased as one aditional vari-
able is needed for each regularization constraint. Simplifications of the regularization
term (through the mean transport and the use of divergence) are thus needed to reduce
the complexity. Such regularizers limit the inter-cluster color dispersion but they in-
duce the creation of new drab colors since an important interpolation of the target color
palette may occur (i.e the intra-cluster color variance may be large with the one-to-many
assignment). To cope with this issue, we here propose to penalize the dispersion of as-
signed colors with a non convex constraint. We also consider a different optimization
tool which decreases the dimension of the problem with respect to linear programming,
and we only deal with the estimation of the transport matrix.

3.1 Optimization problem

In order to deal with the aforementioned limitations which are intrinsic to the optimal
transport framework, we propose the following relaxed and regularized optimal trans-
port problem:

P ? ∈ argmin
P∈Phu

{
E(P ) := C(P ) + ρF (P ) + λR(P ) + αD(P )

}
(9)

where:

• Phu = {Rn×m, P ≥ 0, P1m = hu} is the convex set of right stochastic
matrices (where each row sums to the corresponding bin value in hu).

• C(P ) = 〈CX,Y , P 〉 is the linear cost matching function;

• F (P ) is the fidelity term w.r.t the target histogram hv;

• R(P ) is the regularization prior on the average transport mapping;

• D(P ) is the dispersion term which measures the “sparsity” of average trans-
port map;
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In order to solve this problem very fast with projected gradient descent, we used smooth
(differentiable) functions detailed hereafter. Observe that other choice would lead to
different optimization algorithms.

Linear Constraint The linear constraint P ∈ Phu
may be incorporated using an

indicator function

ιPhu
(P ) =

{
0 if P ∈ Phu

+∞ otherwise

The Euclidean orthogonal projector ProjPhu
onto the simplex Phu

can be computed in
O(nm log(m)) by using, for each row of the matrix, a variant of the Euclidean projector
onto the probability simplex (see for instance [4]).

Fidelity term As the set of acceptable transport matrices Phu
does not anymore take

into account the target distribution, we have to make sure that the transported histogram
PT1n is close enough to the target histogram hv . To do so, we rely on the Pearson’s
χ2 statistics, which writes for any bistochastic matrix P ∈ Phu,hv

F (P ) = 1
2χ

2
hv

(PT1n) = 1
2 ||Dhv (PT1n − hv)||

2

= 1
2

∑
j

1
hv [j]

(
∑
i Pi,j − hv[j])

2
= 1

2

∥∥∥1TnPD1/2
hv

∥∥∥2 − 1
2 .

(10)

We assume therefore from here, without loss of generality, that hv has non empty bins.
Observe that the corresponding fidelity term can be interpreted as a weighted L2 metric,
which further penalizes bins of the target histogram that has small values. This will
prevent the model from using very rare features from the exemplar image. The gradient
then reads

∇F (P ) =

[∑
` P`,j
hv[j]

]
i,j

= 1n · (1TnPDhv
) = 1n×nPDhv

. (11)

Regularity term We consider a Tikhonov regularization of the gradient of a flow
V , incorporating spatial information from the input feature distribution in the gradient
operator GX defined on the graph of clusters GX . We measure the gradient of the mean
flow V = Dhu

PY −X and therefore define

R(P ) =
1

2
||D−1hu

GX(DhuPY −X)||2
2
, (12)

where the value of the gradient norm is weighted by the corresponding histogram bin
value: (Dhu

−1)ii = hu[i]. The derivative is related to the graph-Laplacian GTXGX :

∇R(P ) = Dhu
GTXD

−2
hu
GX(Dhu

PY −X)Y T . (13)

Dispersion term As we pointed out before, the regularized transfer induces a high
variability of color assigned to each input color. We then consider the minimization of
the variance of the flow. Denoting Y = Dhu

PY from Eq. 7, the intra-cluster variance
of the color assigned to Xi is defined as:

Var(Y )i :=

((
Y − Y i

)2)
i

= 1
hu[i]

∑
j Pi,j‖Yj − Y i‖2

=
(
Y 2
)
i
− Y 2

i = 1
hu[i]

∑
j Pi,j‖Yj‖2 −

∥∥∥ 1
hu[i]

∑
j Pi,jYj

∥∥∥2 .
7



We therefore penalize this variance with respect to each cluster weight and thus obtain
the functional term:

D(P ) :=
∑
i hu[i] Var(Y )i =

∑
i,j Pi,j‖Yj‖2 −

∑
i

1
hu[i]

∥∥∥∑j Pi,jYj

∥∥∥2
=

∑
i,j

(
Pi,j‖Yj‖2 − 1

hu[i]

∑
k Pi,jPi,kY

T
j Yk

)
=

∑
i,j Pi,jY

T
j

(
Yj − 1

hu[i]

∑
k Pi,kYk

)
= 〈P, 1n Diag(Y Y T )T −D−1hu

PY Y T 〉

(14)

where Diag : Rn×n 7→ Rn is the diagonal extraction of a square matrix, that is used
here to compute the norm vector Diag(Y Y T ) = (Y T � Y T )1d. The derivative writes

∇D(P ) = 1n Diag(Y Y T )T − 2D−1hu
PY Y T . (15)

3.2 Algorithm

Because of the variance flow penalization term, the objective function is non-convex.
Assuming that the functional of problem (9) satisfies the Kurdyka-Lojasiewicz property
(namely that the functional is not too flat in the neighborhood of its local minima), the
Forward-Backward algorithm can be used to find a critical point of this non-convex
problem [2], since it contains a convex non-smooth term (the linear constraint ιPhu

(P ))
and the sum of differentiable terms G(P ) = 〈CXY , P 〉+ λR(P ) + ρF (P ) +αD(P ).
The gradient of G is L-lipschitz, where L is proportional to ρ, λ, α and m. A fast
estimation gives us L 6 L̃ = λ‖GTXGX‖2‖Y Y

T ‖2 +ρm+ 2α‖D−1hu
‖
2
‖Y Y T ‖2. This

constant can also be estimated empirically using a few random normalized matrices P .
Then , initializing (for instance) P = P 0 as the optimal transport matrix, and taking
τ < 1

L̃
6 1

L , the algorithm reads:

P k+1 = Proj
Phu

(
P k − τ

(
C + ρ∇F (P k) + λ∇R(P k) + α∇D(P k)

))
,

A variant of the gradient descent acceleration of [9] using an inertial force has been
proposed in [11]. We therefore rely on the following inertial algorithm

P k+1 = Proj
Phu

(
P k−τ

(
C+ρ∇F (P k)+λ∇R(P k)+α∇D(P k)

)
+ β(P k−P k−1)

)
.

which converges to a local minima of the tackled problem by taking β ∈ [0; 1[ and
τ < 2(1− β)/L.

4 Experiments

4.1 Regularized 1-D histogram matching

Figure 1 illustrates the interest of the proposed approach to cancel the effect of transport
dispersion. The first row shows input and target histograms, respectively in Fig. 1a and
1b. The colormap in Fig. 1a is arbitrary, and used to illustrate the optimal transport map
in Fig. 1b. Observe that the mapping is highly irregular, sending neighboring colors
(orange) in two distant locations, as illustrated in Fig. 1f. Figures 1c and Figures 1d,
respectively proposed in [6] and [5], provides more regular mapping of the average
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flow, as illustrated in Fig. 1g and 1h, but the colors are spread out to many different
locations. The proposed model, illustrated in Fig. 1e, relax the matching constraint
while controlling the variance of the mapping and the χ2 statistics with the desired
output histogram. This leads to sparser transport flow (Fig. 1i) and almost no color
mixing. The matrices P of transport flows computed with the different methods are
illustrated in Figures 1f to 1i. The null values Pij are displayed in white color. These
matrices describe how the mass from the bins of the input histogram (in rows) are sent
to the bins of the target histogram (in columns). As a bin hu(i) corresponds to the line
i of the matrix, the variance of this bin is larger when a lot of columns j are active (i.e
Pij > 0) and correspond to very different features Yj .

(a) Input histogram (b) Output histogram using OT

(c) Gradient-based Regulariza-
tion [6]

(d) Entropy-based Regulariza-
tion [5]

(e) Proposed relaxation model

(f) OT flow (g) Gradient regular-
ized OT flow [6]

(h) Entropy regular-
ized OT flow [5]

(i) Proposed model
for transport flow

Figure 1: Illustration with 1D histograms of various models for regularized optimal transport.
(Please, refer to the text for details)

4.2 Color transfer

The first step of our color transfer process consists in defining the source and target
sets X,Y , which involves spatio-color clustering on the input image u and the exem-
plar one v, respectively. Here, the clustering is performed using the fast super-pixels
method [1], with the default regularization parameter 0.02 and a raw 20× 20 seed ini-
tialization. These clusters are then used to build a weighted graph (ωi,j) and define
the transport cost matrix CXY that are involved in the minimization of the non-convex
functional (9). The color transfer is finally applied using the estimated relaxed and
regularized transport map.

As we work at a super-pixel scale to speed-up the OT computation, the last step of the
proposed approach is to synthesize a new image w from the source image u using the
new color palette. Like [25], we use maximum likelihood estimation to incorporate
geometrical information from the source image u into the synthesis process. In order to
restore the sharp details from the original image that may have been lost in the process,
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we make use of the NLMR filter from [17]. Note that this step can be approximated
and speeded up using the real time guided filter proposed by [7]. More details can be
found in [19].
Experiments As illustrated in Figure 2, when the histograms of the two images have
very different shapes, the classic OT color transfer create a lot of artifacts (Fig. 2c). The
original colors are better recovered with increasing penalization of the color variance
(Fig. 2e, 2f, 2g, 2h). Such property is illustrated in other examples in Figures 3 and 4.
When no penalization is applied to the color variance (i.e. α = 0), it corresponds to
the model of [19]. By monitoring the capacity of the target histogram and regularizing
the average flow [19], the synthesized images look more plausible (3b) but they contain
new drab colors (that do not exist in the target image) and they are over-smoothed. On
the other hand, the transfer is far better when the color variance is penalized (with high
values of α). In this case, the final images only contain the colors of the target images.

(a) Input image (b) Exemplar image (c) Raw OT transfer (d) Post-process of (c)

(e) α = 0 [19] (f) α = 10 (g) α = 30 (h) α = 50

Figure 2: Illustration of the penalization of transport variance for color transfer preservation.
Colors of image (a) are modified using image (b) as a template. Image (c) illustrates the result
obtained from of optimal transfer, without any regularization. A post-processing (d) may applied
to remove small artifacts, but large color inconsistencies still occur. The adaptive color transfer
approach recently proposed in [19], which mixes capacity relaxation and spatial regularization
yields better results (e). However, final colors may be washed-out due to the mixing of colors.
In the proposed model, the parameter α directly controls the amount of transport dispersion, as
illustrated here in (f), (g) and (h).

(a) Input (b) α = 0 [19] (c) α = 10 (d) α = 100 (e) Exemplar

Figure 3: Color transfer. The colors of the exemplar images (column (e)) are transfered to the
input images (column (a)).
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(a) Input (b) Exemplar (c) Relaxed color
palette

(d) Our method with
α = 103, λ = 800

(e) λ = 400 (f) λ = 100 (g) λ = 10 (h) λ = 1

(i) γ = 0.1 (j) γ = 0.05 (k) γ = 0.025 (l) γ = 0.01

Figure 4: Comparison of the proposed method with entropic regularization [5] and spatial
regularization [19]. First row shows the obtained color transfer (d) of (a) using (b), and the re-
laxed color palette (c) (the darker, the less a color is used). The second row illustrates the tradeoff
between spatial regularity and color fidelity when considering the method proposed in [19], de-
pending on regularization parameter λ (i.e. with α = 0 in (9)). In the last row, a similar tradeoff
is obtained with the method of [5], when tuning the regularization parameter γ in (2).

5 Conclusion and future work
In this paper, we have proposed a method for transferring color between images using
relaxed and regularized optimal transport. Our model involves a non-convex constraint
that minimizes the dispersion of the relaxed transport and prevents from creating new
drab colors. Further improvements will concern the use of faster optimization tools
and the incorporation of high-order moments (such as the covariances of the transfered
clusters) into the final synthesis.
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