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Biggins’ Martingale Convergence
for Branching Lévy Processes

Jean Bertoin∗ Bastien Mallein†

December 17, 2017

Abstract

A branching Lévy process can be seen as the continuous-time version
of a branching random walk; see [BM17]. It describes a particle system
on the real line in which particles move and reproduce independently
one of the others, in a Poissonian manner. Just as for Lévy processes,
the law of a branching Lévy process is determined by its characteristic
triplet (σ2, a,Λ), where the Lévy measure Λ describes the intensity of
the Poisson point process of births and jumps. We establish a version of
Biggins’ theorem [Big77] in this framework, that is we provide necessary
and sufficient conditions in terms of the characteristic triplet (σ2, a,Λ) for
additive martingales of branching Lévy processes to have a non-degenerate
limit. The proof is adapted from Lyons [Lyo97].

Keywords: Branching Lévy process, additive martingale, uniform integrability,
spinal decomposition.

AMS subject classifications: 60G44, 60J80.

1 Introduction and main result
We start by introducing some notation. We denote by x = (xn)n≥1 a generic
nonincreasing sequence in [−∞,∞) with limn→∞ xn = −∞. We view x as a
ranked sequence of position of particles in R, with the convention that possible
particles located at −∞ should be thought of as non-existing (so particles never
accumulate in R and the number of particles may be finite or infinite). We
thus often identify x with a locally finite point measure on R,

∑
δxn , where, by

convention, the possible atoms at −∞ are discarded in this sum. We write P
for the space of such sequences or point measures.

Then let (Zn)n≥0 be a branching random walk with reproduction law π,
where π is some probability measure on P. In words, this process starts at
generation 0 with a single atom at 0 and the law of Z1 is given by π. For every
atom at generation n ≥ 1, say x ∈ R, the sequence of the children of x is given
by x+Y , where Y has the law π and to different atoms correspond independent
copies with law π.
∗Institute of Mathematics, University of Zurich, Switzerland.
†LAGA - Institut Galilée, Université Paris 13, France.
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Next fix some θ ≥ 0 and assume that

m(θ) :=
∫
P
〈x, eθ〉π(dx) <∞, (1.1)

where 〈x, eθ〉 =
∑

eθxn . The process

Wn := m(θ)−n〈Zn, eθ〉, n ≥ 0

is a nonnegative martingale; the question of whether its terminal value W∞ is
non-degenerate has a fundamental importance and was solved by Biggins [Big77]
under the additional assumption that

m′(θ) :=
∫
P

∑
xjeθxjπ(dx) exists and is finite. (1.2)

Specifically, E(W∞) = 1, that is, equivalently, the martingale (Wn)n≥0 is uni-
formly integrable, if and only if

θm′(θ)/m(θ) < logm(θ) and
∫
P
〈x, eθ〉 log+ 〈x, eθ〉π(dx) <∞, (1.3)

and otherwise W∞ = 0 a.s.
Recall that, by log-convexity of the function m, the first inequality of (1.3)

entails that m(0) = E(Z1(R)) > 1, i.e. Z is supercritical. Biggins [Big77]
further pointed out, that when the martingale (Wn)n≥0 is uniformly integrable,
the event {W∞ > 0} actually coincides a.s. with the non-extinction event
{Zn(R) 6= 0 for all n ≥ 0}, which has a positive probability. This result has
later been improved by Alsmeyer and Iksanov [AI09], who obtained a necessary
and sufficient condition for the uniform integrability of (Wn)n≥0 without the
additional integrability condition (1.2).

The purpose of this work is to present a version of Biggins’ martingale con-
vergence theorem for branching Lévy processes, a family of branching processes
in continuous time that was recently introduced in [BM17]. Branching Lévy
processes bear the same relation to branching random walks as Lévy processes
do to random walks: a branching Lévy process (Zt)t≥0 is a point-measure valued
process such that for every r > 0, its discrete time skeleton (Znr)n≥0 is a branch-
ing random walk. This is a natural extension of the notion of continuous-time
branching random walks1 as considered by Uchiyama [Uch82]; another subclass
also appeared in the framework of so-called compensated-fragmentation pro-
cesses, see [Ber16].

The dynamics of a branching Lévy process can be described informally as
follows. The process starts at time 0 with a unique particle located at the
origin which then moves as time passes according to a certain Lévy process,
while making children around its position in a Poissonian fashion. Each of the
newborn particles immediately starts an independent copy of this branching
Lévy process from its current position . We stress that in this process, a jump
of a particle might be correlated with its offspring generation at the same time.

The law of a branching Lévy process is characterised by a triplet (σ2, a,Λ),
where σ2 ≥ 0, a ∈ R and Λ is a sigma-finite measure on P without atom at

1Which can be thought of as branching compound Poisson processes.
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{(0,−∞,−∞, ...)}, which satisfies∫
P

(1 ∧ x2
1)Λ(dx) <∞, (1.4)

and ∫
P

1{x1>1}eθx1 +
∑
k≥2

eθxk

Λ(dx) <∞. (1.5)

The term σ2 is the Brownian variance coefficient of the trajectory of a particle,
a is the drift term, and the Lévy measure Λ encodes both the jump term of
the trajectories of generic particles and the branching rate and distribution of
their children. The integrability conditions (1.4) and (1.5) enable us to define
the cumulant

κ(θ) := 1
2σ

2θ2 + aθ +
∫
P

eθx1 − 1− θx11{|x1|<1} +
∑
k≥2

eθxk
Λ(dx). (1.6)

In terms of the (skeleton) branching random walk (Zn)n≥0 obtained by sampling
Z at integer times, there are the identities

m(θ) = exp(κ(θ)) and m′(θ) = κ′(θ) exp(κ(θ))

with

κ′(θ) = σ2θ + a+
∫
P

x1(eθx1 − 1{|x1|<1}) +
∞∑
k≥2

xkeθxk
Λ(dx),

where we implicitly assume that the integral above is well-defined and finite.
See Equation (5.4) in [BM17].

We are now able to state our version of Biggins’ martingale convergence
theorem.

Theorem 1.1. Let (Zt)t≥0 be a branching Lévy process with characteristic
triplet (σ2, a,Λ), and θ ≥ 0 such that κ(θ) and κ′(θ) are well-defined and fi-
nite. Then the martingale

Wt := exp(−tκ(θ))〈Zt, eθ〉, t ≥ 0

is uniformly integrable if and only if

θκ′(θ) < κ(θ) (1.7)

and ∫
P
〈x, eθ〉 (log 〈x, eθ〉 − 1)+ Λ(dx) <∞. (1.8)

Otherwise, the terminal value W∞ equals 0 a.s.

Remark 1.2. When the Lévy measure Λ is finite, the integrability condition
(1.8) is equivalent to the analog of (1.3), namely∫

P
〈x, eθ〉 log+ 〈x, eθ〉Λ(dx) <∞.

However, the latter is a stronger requirement than (1.8) when Λ is infinite.
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Of course, the continuous time martingale W = (Wt)t≥0 is uniformly inte-
grable if and only if this is the case for its discrete time skeleton (Wn)n≥0, and
one might expect that our statement should readily be reduced to Biggins’ the-
orem. Condition (1.7) should certainly not come as a surprise, since it merely
rephrases the first inequality in (1.3). Thus everything boils down to verifying
that Condition (1.8) is equivalent to the L log+ L integrability condition in (1.3).
However, this does not seem straightforward (at least when the birth intensity is
infinite), the difficulty stems from the fact that there is no simple expression for
the law π of Z1 in terms of the characteristics (σ2, a,Λ). Specifically, we cannot
evaluate directly E(〈Z1, eθ〉 log+ 〈Z1, eθ〉); only expectations of linear functionals
of Z1 can be computed explicitly in terms of the characteristics of the branching
Lévy process. We shall thus rather establish Theorem 1.1 by an adaptation of
the arguments of Lyons [Lyo97] for proving Biggins’ martingale convergence for
branching random walks, using a version of the celebrated spinal decomposition
and properties of Poisson random measures.
Remark 1.3. Similarly, it is well-known that for branching random walks, the
law of the terminal value W∞ is a fix point of a smoothing transform (see e.g.
Liu [Liu98]), more precisely

W∞
(d)=
∑
j∈N

eθxj−tκ(θ)W (j)
∞ , (1.9)

where x = (xn) is a random variable in P with same law as Z1, and (W (j)
∞ ) are

i.i.d. copies ofW∞ independent of x. As observed above, the law of Z1 cannot be
obtained as a simple expression in terms of the characteristic of a branching Lévy
process. However, one can still obtain, using classical approximation techniques,
a functional equation for the Laplace transform of W∞. More precisely, setting
w(y) = E

(
exp

(
e−θyW∞

))
, (1.9) yields

∀y ∈ R, w(y) = E

∏
j∈N

w(y − xj + tcθ)

 ,

with x sampled again with same law as Z1 and cθ = κ(θ)
θ . Using approximation

by branching Lévy processes with finite birth intensity, one can then check that
w is a solution of the equation
1
2σ

2w′′(y)+(cθ−a)w′(y)+
∫
P

∏
j∈N

w(y−xj)−w(y)+x11{|x1|<1}w
′(y)Λ(dx) = 0,

i.e. a travelling wave solution of a generalised growth-fragmentation equation.
We refer to Berestycki, Harris and Kyprianou [BHK11] for a detailed study in
the framework of homogeneous fragmentations. In particular, observe that the
law of W∞ does not depend on the value of characteristic a of the branching
Lévy process.

In the same vein, recall from Theorem 1 of Biggins [Big92] that for p ∈ (1, 2],
the martingale W converges in p-th mean whenever

E(W p
1 ) <∞ and κ(pθ) < pκ(θ).

The same approach also enables us to make this criterion explicit in terms of
the Lévy measure Λ.
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Proposition 1.4. Let p ∈ (1, 2]. If κ(pθ) < pκ(θ),∫
P
〈x, eθ〉p1{〈x,eθ〉>2}Λ(dx) <∞, (1.10)

and κ(qθ) <∞ for some q > p, then the martingale W is bounded in Lp.

Remark 1.5. When the Lévy measure Λ is finite, (1.10) is equivalent to the
simpler

∫
P 〈x, eθ〉

pΛ(dx) <∞. However, when Λ is infinite, one always has that
Λ(1/2 ≤ 〈x, eθ〉 ≤ 2) = ∞, which explains the role of the indicator function
in (1.10). The rather mild additional assumption that κ(qθ) < ∞ for some
q > p is also needed to bound the contribution of the infinitely many birth
events with 〈x, eθ〉 ≤ 2.

We do not address here the issue of uniform convergence in the variable θ; see
Biggins [Big92] for branching random walks, and further Theorem 2.3 in Dadoun
[Dad17] in the setting of compensated fragmentations. However, Proposition 1.4
is a key step in this direction; see [Big92].

The two statements of this Introduction will be established in the next sec-
tion.

2 Proofs
In this section, we start by summarising the construction of the branching Lévy
process with characteristics (σ2, a,Λ) as a particle system, referring to Sections
4 and 5 in [BM17] for a detailed account. We shall then present a version of the
spinal decomposition tailored for the purpose of this proof, and finally adapt
the approach of Lyons [Lyo97] to establish Theorem 1.1 and Proposition 1.4.

We first consider a Poisson point process N (dt, dx) on [0,∞) × P with
intensity dt⊗Λ(dx), and an independent Brownian motion (Bt)t≥0. Thanks to
the assumptions (1.4) and (1.5), we can define

ξt := σBt + at+
∫

[0,t]×P
x11{|x1|<1}N (c)(ds,dx) +

∫
[0,t]×P

x11{|x1|≥1}N (ds,dx)

for every t ≥ 0, where the first Poissonian integral is taken in the compensated
sense. So (ξt)t≥0 is a Lévy process with characteristic exponent Φ given by the
Lévy-Khintchin formula

Φ(r) := −σ
2

2 r2 + iar +
∫
P

(
eirx1 − 1− irx11{|x1|<1}

)
Λ(dx), r ∈ R,

in the sense that E(exp(irξt)) = exp(tΦ(r)).
One should view (ξt)t≥0 as describing the trajectory of the Eve particle.

Further, for each atom of N , say (t,x), we view t as the time when the Eve
particle begets a sequence of children located at ξt− + x2, ξt− + x3, . . .. Then,
using independent copies of (N , B), we let in turn each newborn particle evolves
(starting from its own birth time and location) and gives birth to its own progeny
just as the Eve particle, and so on, and so forth. The branching Lévy process
Z = (Zt)t≥0 is then obtained by letting Zt denote the random point measure
whose atoms are given by the positions of the particles in the system at time t.
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We then introduce the tilted Lévy measure

Λ̂(dx) := 〈x, eθ〉Λ(dx), x ∈ P,

and point first at the following elementary fact:

Lemma 2.1. If (1.8) is fulfilled, then it holds for every c > 0 that∫ ∞
0

Λ̂(〈x, eθ〉 > ect + 1)dt <∞;

whereas if (1.8) fails, then it holds for every c > 0 and s > 0 that∫ ∞
s

Λ̂(〈x, eθ〉 > ect)dt =∞.

Proof. Note first the identities∫ ∞
0

Λ̂(〈x, eθ〉 > et + 1)dt =
∫ ∞

0
dt
∫
P

Λ(dx)〈x, eθ〉1{〈x,eθ〉>et+1}

=
∫
P
〈x, eθ〉 (log 〈x, eθ〉 − 1)+ Λ(dx).

Since (1.4) and (1.5) readily entail Λ̂(〈x, eθ〉 > b) <∞ for every b > 1, the first
claim follows. The proof for the second is similar.

We next prepare some material for the spinal decomposition. We write P
for the law of (Zt)t≥0, (Ft)t≥0 for its natural filtration, and use the martingale
W = (Wt)t≥0 to introduce the titled probability measure

P̂|Ft = Wt.P|Ft .

We also set

â := a+ θσ2 +
∫
P

∑
k≥1

xkeθxk1{|xk|<1} − x11{|x1|<1}

Λ(dx),

where (1.4) and (1.5) ensure that the integral above is well-defined and finite.
Then let N̂ (dt, dx) be a Poisson point process on [0,∞)× P with intensity

dt ⊗ Λ̂(dx), and recall that (Bt)t≥0 denotes an independent Brownian motion.
For each atom of N̂ , say (t,x), we sample independently of the other atoms an
index n ≥ 1 with probability proportional to eθxn and denote it by ∗, omitting
the dependence in (t,x) in the notation for the sake of simplicity. In particular
P(∗ = n | N̂ ) = eθxn/〈x, eθ〉. Next note, again thanks to (1.4) and (1.5), that∫

P

∑
n≥1

eθxn(1 ∧ x2
n)Λ(dx) <∞.

This enables us to define the (compensated) Poissonian integrals below and set

ξ̂t := σBt + ât+
∫

[0,t]×P
x∗1{|x∗|<1}N̂ (c)(ds,dx) +

∫
[0,t]×P

x∗1{|x∗|≥1}N̂ (ds,dx)

for t ≥ 0. Plainly, ξ̂ is another Lévy process, which is referred to as the spine.
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Lemma 2.2. The characteristic exponent of ξ̂ is given by

Φ̂(r) := κ(θ + ir)− κ(θ), r ∈ R,

and it holds that
lim
t→∞

t−1ξ̂t = κ′(θ) a.s.

Proof. By Poissonian calculus, we get

Φ̂(r) = −σ
2

2 r2 + iâr +
∫
P

∑
n≥1

eθxn
(
eirxn − 1− irxn1{|xn|<1}

)
Λ(dx)

and the first claim follows readily by substitution. Further, the random variable
ξ̂1 is integrable with expectation

â+
∫
P

∞∑
n=1

xneθxn1{|xn|≥1}Λ(dx).

Again after substitution, we find E(ξ̂1) = κ′(θ), and we conclude applying the
law of large numbers for Lévy processes that ξ̂t ∼ κ′(θ)t as t→∞, a.s.

We can now provide a description of the spinal decomposition for the branch-
ing Lévy process, which is tailored for our purpose. In this direction, we con-
struct a particle system much in the same way as we did for branching Lévy
processes, except that we use the Poisson point process N̂ instead of N to define
the Eve particle and its offspring. Specifically, for each atom, say (t,x), of N̂ ,
we view t as the time when the spine gives birth to a sequence of children lo-
cated at ξ̂t−+x2, ξ̂t−+x3, . . .. Each of the newborn particles immediately starts
an independent copy of the original branching Lévy process Z from its current
position. Writing Ẑt for the random point measure whose atoms are given by
the positions of the particles in the system at time t, we are now able to state
a simple version of the spine decomposition, and refer to Theorem 5.2 of Shi
and Watson [SW17] for a more detailed version in the setting of compensated
fragmentations.

Lemma 2.3. The process Ẑ = (Ẑt)t≥0 above has the same law as Z under P̂.

For the reader’s convenience, we sketch a proof of this statement.

Proof. We assume in a first time that Z has a finite birth intensity, in the sense
that ∫

P

∑
n≥2

1{xn>−∞}Λ(dx) <∞. (2.1)

In this case, the branching Lévy process is of the type considered by Kyprianou
[Kyp99], it can be viewed as a classical Uchiyama-type branching random walk
to which independent spatial displacements are superposed. Specifically, each
particle moves according to an independent Lévy process until an exponential
time of parameter Λ(x1 = −∞ or x2 > −∞) at which a death or reproduction
event occurs. Lemma 2.3 is then a simple instance of the spinal decomposition
for branching Markov processes, that can be found in [HH09] (see also [Mai16,
Section 3] for an overview of similar results).
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To treat the general case, we use the observation made in [BM17, Section 5]
that any branching Lévy process can be constructed as the increasing limit of
branching Lévy processes with finite birth intensity. Specifically, for any n ∈ N
and x ∈ P, we set

πn(x) = (xj −∞1{xj<−n}, j ∈ N),

that is, πn(x) is obtained from x by deleting every particle located in (−∞, n).
We denote by Z(n) the branching Lévy process obtained from Z using the image
of the point measure N by (t,x) 7→ (t, πn(x)). In words, Z(n) is obtained from
Z by killing each particle (of course together with its own descent) at the time
it makes a jump smaller than −n. We write κ(n) for the cumulant function of
Z(n) and W (n) for the additive martingale

W
(n)
t = exp(−tκ(n)(θ))〈Z(n)

t , eθ〉.

We construct Ẑ(n) in a similar way, that is by killing every particle in Ẑ at
the time it makes a jump smaller than −n. Beware that Ẑ(n) is different from
the point measure valued process Ẑ(n) which is associated the branching Lévy
process Z(n), as described earlier in this section. Nevertheless, there is a simple
connection between the two. Indeed, if we write

T
(n)
∗ := inf{t > 0 : ξ̂t − ξ̂t− < −n},

for the time at which the spine particle of Ẑ is killed in Ẑ(n), then for every
t ≥ 0, the processes (Ẑ(n)

s : 0 ≤ s ≤ t) and (Ẑ(n)
s : 0 ≤ s ≤ t) have the same law

conditionally on T
(n)
∗ > t.

The branching Lévy process Z(n) has finite birth intensity, and we now
see from its spinal decomposition that the law of Ẑ(n) on Ft conditionally on
T

(n)
∗ > t, is the same as W (n)

t .P|Ft . Since limn→∞ T
(n)
∗ = ∞ a.s., and (by

monotone convergence) limn→∞W
(n)
t = Wt in L1(P), we easily conclude that

the spinal decomposition also holds for Z.

By a classical observation (see [Lyo97]), the proof of Theorem 1.1 amounts
to establishing that P̂-a.s., lim supt→∞Wt <∞ if the conditions (1.7) and (1.8)
hold, and lim supt→∞Wt =∞ otherwise. As a consequence of Lemma (2.3), if
we write

Ŵt := e−tκ(θ)〈Ẑt, eθ〉,

then the process Ŵ has the same law as W under P̂, so the next statement
entails the second part of Theorem 1.1.

Lemma 2.4. If (1.8) fails, then lim supt→∞ Ŵt =∞ a.s.

Proof. From the construction of Ẑ, we observe for every atom (t,x) of N̂ , by
focusing on the spine and its children which are born at time t, that there is the
bound

Ŵt ≥ exp(θξ̂t− − tκ(θ))〈x, eθ〉.
Fix c > 0 with −c < θκ′(θ)− κ(θ), and recall from Lemma 2.1 that the failure
of (1.8) entails that∫ ∞

s

Λ̂(〈x, eθ〉 > ect)dt =∞ for every s > 0.
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This implies that the set of times t ≥ 0 such that the Poisson point process N̂
has an atom (t,x) with 〈x, eθ〉 > ect is unbounded a.s., and an appeal to Lemma
2.2 completes the proof.

Since we already know from Biggins’ theorem that W∞ = 0 a.s. when (1.7)
fails, we may now turn our attention to the situation where (1.7) and (1.8) both
hold, and recall that our goal is then to prove that lim supt→∞ Ŵt <∞ a.s. In
this direction, we first write

Ŵt = exp(θξ̂t − tκ(θ)) + (Ŵt − exp(θξ̂t − tκ(θ))). (2.2)

Thanks to Lemma 2.2, (1.7) and the law of large numbers for the Lévy process
ξ̂, we know that

lim
t→∞

exp(θξ̂t − tκ(θ)) = 0 a.s.

We then write σ̂ for the sigma-field generated by the Poisson point process N̂
and the random indices ∗ which are selected for each of its atoms. Viewing the
second term in the right-hand side of (2.2) as the contribution of the descents
of the children of the spine which were born before time t, we get from the
spinal decomposition and the martingale property of W for the branching Lévy
process, that there is the identity

W ∗t := E
(
Ŵt − exp(θξ̂t − tκ(θ))

∣∣∣σ̂)
=

∫
[0,t]×P

∑
k 6=∗

exp(θ(ξ̂s− + xk)− sκ(θ))N̂ (ds,dx). (2.3)

By the conditional Fatou lemma, it now suffices to verify that the process W ∗ re-
mains bounded a.s. The lemma below thus completes the proof of Theorem 1.1.

Lemma 2.5. If (1.7) and (1.8) both hold, then supt≥0 W
∗
t <∞ a.s.

Proof. The process W ∗ has non-decreasing paths, so we have to check that
W ∗∞ <∞ a.s.

Thanks to (1.8), we pick c > 0 sufficiently small so that θκ′(θ)− κ(θ) < −c,
and then, thanks to Lemma 2.2 and the law of large numbers for the Lévy
process ξ̂, we know that the probability of the event

Ωb := {exp(θξ̂s− − sκ(θ)) ≤ be−cs for all s ≥ 1}

converges to 1 as b → ∞. Hence we only need to check the finiteness of the
Poissonian integral ∫

[1,∞)×P
e−cs

∑
k 6=∗

eθxkN̂ (ds,dx).

In this direction, fix 0 < c′ < c. Since N̂ is a Poisson point process with
intensity ds⊗ Λ̂(dx), it follows from Lemma 2.1 that the set of times s ≥ 0 such
N̂ hat an atom (s,x) with 〈x, eθ〉 > ec′s + 1 is finite a.s., and a fortiori∫

[0,∞)×P
e−cs

∑
k 6=∗

eθxk1{〈x,eθ〉>ec′s+1}N̂ (ds,dx) <∞ a.s.
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On the other, again by Poissonian calculus,

E

∫
[0,∞)×P

e−cs
∑
k 6=∗

eθxk1{〈x,eθ〉≤ec′s+1}N̂ (ds,dx)


=
∫ ∞

0
ds e−cs

∫
P

Λ(dx)
∑
j≥1

eθxj
∑
k 6=j

eθxk1{〈x,eθ〉≤ec′s+1}

≤
∫ ∞

0
ds e−cs

∫
P

Λ(dx)1{〈x,eθ〉≤ec′s+1}

eθx1
∑
j≥2

eθxj +
∑
j≥2

eθxj 〈x, eθ〉


≤
∫ ∞

0
ds e−cs

∫
P

Λ(dx)2(ec
′s + 1)

∑
j≥2

eθxj .

The latter quantity is finite by (1.5), which completes the proof.

Finally, we turn our attention to the proof of Proposition 1.4.

Proof of Proposition 1.4. Thanks to Theorem 1 of Biggins [Big92], it is enough
to check that, under the assumptions of the statement, one has E(W p

1 ) <∞, or
equivalently, that

Ê(W p−1
1 ) = E(Ŵ p−1

1 ) <∞.

In this direction, we use the decomposition (2.2) and note first, using Lemma
2.2, that

E
(

exp((p− 1)(θξ̂1 − κ(θ))
)

= exp (κ(pθ)− pκ(θ)) < 1.

Recall that W ∗t denotes the conditional expectation of the second term of
the sum in the right-hand side of (2.2) given the sigma-field generated by the
Poisson point process N̂ and the random indices ∗ which are selected for each
of its atoms. Since 0 < p− 1 < 1, thanks to the conditional version of Jensen’s
inequality, it suffices to check that E((W ∗1 )p−1) <∞.

In this direction, we use (2.3) and further distinguish the atoms (s,x) of N̂
depending on whether 〈x, eθ〉 ≤ 2 or not, and write

W ∗1 ≤ AB + C (2.4)

where

A = sup{exp((θξ̂s− − κ(θ)s)) : 0 ≤ s ≤ 1},

B =
∫

[0,1]×{〈x,eθ〉≤2}

∑
i 6=∗

eθxiN̂ (ds,dx),

C =
∫

[0,1]×{〈x,eθ〉>2}
exp(θξ̂s− − κ(θ)s)

∑
i 6=∗

eθxiN̂ (ds,dx).

First, it follows from Lemma 2.2 that the process

Ms = exp((p− 1)θξ̂s − (κ(pθ)− κ(θ))s), s ≥ 0
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is a martingale. From our assumption κ(qθ) < ∞ for some q > p, we further
see that

E(M (q−1)/(p−1)
1 ) <∞,

and then, from Doob’s inequality, that

E
(

sup
0≤s≤1

exp((q − 1)θξ̂s)
)
<∞.

This proves that
E(Aq−1) <∞. (2.5)

We next check that B has a finite exponential moment. Combining the for-
mula for the Laplace transform of Poissonnian integrals and Campbell’s formula
gives

logE (exp(B)) = E

∫
[0,1]×{〈x,eθ〉≤2}

exp

∑
i 6=∗

eθxi
− 1

 N̂ (ds,dx)


≤ e2 E

∫
[0,1]×{〈x,eθ〉≤2}

∑
i6=∗

eθxiN̂ (ds,dx)

 .

Since N̂ is a Poisson random measure with intensity ds×〈x, eθ〉Λ(dx), another
application of Campbell’s formula enables us to express the last quantity in the
form

e2
∫
{〈x,eθ〉≤2}

∑
k≥1

eθxk
∑
j 6=k

eθxjΛ(dx)

≤ e2
∫
{〈x,eθ〉≤2}

eθx1
∑
j≥2

eθxj +
∑
k≥2

eθxk〈x, eθ〉

Λ(dx)

≤ 4e2
∫
P

∑
j≥2

eθxjΛ(dx).

By (1.5) the last quantity is finite. This entails E(exp(B)) <∞, and a fortiori
that E(B(p−1)(q−1)/(q−p)) < ∞. We conclude by Hölder’s inequality from (2.5)
that

E((AB)p−1) <∞. (2.6)

Finally, we turn our attention to C. Since 0 < p − 1 ≤ 1 and N̂ (ds,dx) is
a (random) point measure, for every nonnegative process (Hs)s≥0, there is the
inequality (∫

[0,1]×P
HsN̂ (ds,dx)

)p−1

≤
∫

[0,1]×P
Hp−1
s N̂ (ds,dx).

Hence

Cp−1 ≤
∫

[0,1]×{〈x,eθ〉>2}
exp((p− 1)(θξ̂s− − κ(θ)s))

∑
i6=∗

eθxi
p−1

N̂ (ds,dx),
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and since the left-continuous process s 7→ exp((p − 1)(θξ̂s− − κ(θ)s)) is pre-
dictable with

E(exp((p− 1)(θξ̂s− − κ(θ)s))) ≤ 1 for all s ≥ 0,

we deduce from above by Poissonian calculus that

E
(
Cp−1) ≤

∫
{〈x,eθ〉>2}

∑
k≥1

eθxk
∑
i 6=k

eθxi
p−1

Λ(dx)

≤
∫
{〈x,eθ〉>2}

〈x, eθ〉pΛ(dx).

We conclude from (1.10) that E(Cp−1) < ∞, and hence, from (2.4) and (2.6),
that E((W ∗1 )p−1) <∞. This completes the proof.
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and branching Lévy processes. 2017. arXiv:1703.08078.

[Dad17] Benjamin Dadoun. Asymptotics of self-similar growth-fragmentation
processes. Electron. J. Probab., 22:30 pp., 2017.

[HH09] Robert Hardy and Simon C. Harris. A spine approach to branch-
ing diffusions with applications to Lp-convergence of martingales.
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