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Infinitely ramified point measures
and branching Lévy processes

Jean Bertoin∗ Bastien Mallein∗

May 28, 2018

Abstract
We call a random point measure infinitely ramified if for every n ∈ N,

it has the same distribution as the n-th generation of some branching
random walk. On the other hand, branching Lévy processes model the
evolution of a population in continuous time, such that individuals move
in space independently, according to some Lévy process, and further beget
progenies according to some Poissonian dynamics, possibly on an every-
where dense set of times. Our main result connects these two classes of
processes much in the same way as in the case of infinitely divisible dis-
tributions and Lévy processes: the value at time 1 of a branching Lévy
process is an infinitely ramified point measure, and conversely, any in-
finitely ramified point measure can be obtained as the value at time 1 of
some branching Lévy process.

1 Introduction
The classical works of Lévy, Khintchin, Kolmogorov and Itô have unveiled the
fine structure of infinitely divisible distributions on Rd, and their connections
with processes with independent and stationary increments. In short, the pur-
pose of this work is to develop an analogous theory in the setting of point mea-
sures and branching processes. Let us start by recalling some of the well-known
connections between infinitely divisible laws, random walks and Lévy processes.
The formulation is tailored to fit our purposes; we also refer to [Sat99] for a
textbook treatment of this topic.

For the sake of simplicity, we focus on the dimension d = 1 and work with
[−∞,∞) as state space, where the boundary point −∞ serves as cemetery
state. We call a discrete time process (Sn : n ∈ Z+) with values in [−∞,∞)
and started from S0 = 0 a random walk, if for every integers n, k ≥ 0, one can
express Sn+k in the form Sn+k = Sn+S′k, where S′k has the same law as Sk and
is further independent of σ(Si : 0 ≤ i ≤ n). A distribution on [−∞,∞), say %,
is then called infinitely divisible if for every n ∈ N, there is a random walk such
that Sn has the law %.

This naturally leads us to consider random walks indexed by dyadic rational
times. Specifically, we write

D =
{
k2−n : n, k ∈ Z+

}
∗Institut für Mathematik, Universität Zürich, Switzerland.
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for the set of dyadic rational times and consider a process (ξt : t ∈ D) such
that for every s, t ∈ D, one has ξt+s = ξt + ξ′s, where ξ′s has the same law as
ξs and is independent of σ(ξr : r ∈ D, r ≤ t). Equivalently, the discrete time
skeletons (i.e. the processes (ξk2−n : k ∈ Z+) for all integers n) are random
walks. Excluding implicitly the degenerate case when ξ1 = −∞ a.s., ξ1 then
has an infinitely divisible distribution, and conversely, any infinitely divisible
distribution on [−∞,∞) which is not degenerate (i.e. not the Dirac mass at
−∞) can be obtained in this setting. Further, one can extend the process ξ
to non-negative real times and get a process (ξt : t ∈ R+) with càdlàg paths
a.s. The latter is a Lévy process, possibly killed at some constant rate, and its
structure is described by the celebrated Lévy-Itô decomposition. This identifies
the continuous part of ξ as a Brownian motion with constant drift and its jumps
as a Poisson point process whose intensity is determined by the so-called Lévy
measure of ξ.

We next turn our attention to random point measures, and first introduce
some notation in this setting. We write P for the space of point measures on R
that assign a finite mass to semi-infinite intervals. Specifically, µ ∈ P if and
only if µ is a measure on R with integer-valued tail:

µ(x) := µ((x,∞)) ∈ Z+ for every x ∈ R.

Repeating the atoms of µ according to their multiplicity and ranking them in
the non-increasing order yields a sequence x = (xn : n ∈ N), called the ranked
sequence of atoms of µ, where we set xn = −∞ for n > µ(R). We shall therefore
often identify µ with the ranked sequence of its atoms, and thus P with the space
of non-increasing sequences x in [−∞,∞) with limn→∞ xn = −∞. That is, we
shall use indifferently the notation µ or x, in the sense that then

µ =
∞∑
n=1

δxn ,

with the convention that the possible atoms at −∞ are discarded, i.e. δ−∞ = 0.
In particular, the zero measure is identified with the sequence ∅ := (−∞, . . .).
We further denote by τ the translation operator on P, setting

τyx = x + y = (xn + y : n ∈ N)

for every y ∈ [−∞,∞), and equivalently

τyµ =
∑
n≥1

δxn+y.

Observe that for y = −∞, by our convention, τ−∞µ = ∅ for any µ ∈ P.
A branching random walk is a process in discrete time (Zn : n ∈ Z+) with

values in P and Z0 = δ0 a.s., such that for every n, k ≥ 0, the point measure
Zn+k can be expressed in the form

Zn+k =
∞∑
i=1

τxiZ
i
k, where x = Zn,

with (Zik : i ∈ N) i.i.d. copies of Zk which are independent of σ(Zj : 0 ≤ j ≤ n).
This condition is referred to as the (simple) branching property.
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In order to ensure that the number of particles in semi-infinite intervals never
explodes in finite time, that is Zn ∈ P a.s. for all n ≥ 1, one usually further
requests non-degeneracy of the Laplace transform of the intensity. Namely, one
assumes that

there exists θ ≥ 0 such that 0 < E(〈Z1, eθ〉) <∞, (1.1)

with the notation

〈µ, f〉 =
∫
R
fdµ =

∑
i∈N

f(xi) and eθ : y ∈ R 7→ eθy,

and the convention that f(−∞) = 0. The requirement that θ ≥ 0 in (1.1) is of
course just a matter of convenience, since the case θ < 0 follows by reflexion with
obvious modifications. There exist non-exploding branching random walks for
which (1.1) fails; however most works in that field rely on such non-degeneracy
assumption. The condition E(〈Z1, eθ〉) > 0 is equivalent to Z1 6= ∅ with positive
probability, which is simply a non-degeneracy assumption.

Our first object of interest in the present work is the family of infinitely
ramified point measures, formed by the random point measures Z which have
the property that for every n ∈ N, Z has the same distribution as the n-th
generation of some branching random walk. Throughout this article, we restrict
our attention to random point measures satisfying (1.1).

Our second object of interest is the family of branching Lévy processes that
we introduce only informally here, postponing the rigorous construction to Sec-
tion 5. Loosely speaking, a branching Lévy process is a particle system in
real time, starting from a single particle located at 0, where particles evolve
in [−∞,∞) independently and according to some (possibly killed) Lévy pro-
cess. They further beget children in a Poissonian manner, where the location
of birth of each child is given by some random shift of the location of its par-
ent at the time of the birth event. Branching Brownian motions with constant
drift (see, for instance, Chapter 5 in Bovier [Bov16]) form the class of branch-
ing Lévy processes with continuous ancestral trajectories. Some fairly general
instances of branching Lévy processes with discontinuous ancestral trajectories
have appeared the study of so-called homogeneous fragmentations [BR05] and
compensated fragmentation [Ber16].

Similarly to Lévy processes, the distribution of a branching Lévy process is
characterized by a triple (σ2, a,Λ), where

• σ2 ≥ 0 is the variance of the Brownian component of the motion of typical
individuals;

• a ∈ R is the drift coefficient of that motion;

• Λ is a sigma-finite measure on P, referred to as the Lévy measure (of the
branching Lévy process).

Further, the Lévy measure Λ has to satisfy certain requirements that are better
understood if we view a ranked sequence x = (xn : n ∈ N) in P as a pair
x = (x1,x2), where x2 := (xn+1 : n ∈ N). Recall also that ∅ = (−∞, . . .), so
(0,∅) = (0,−∞, . . . ) is the ranked sequence of atoms of the Dirac point mass
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at 0. The first requirement for Λ to be a Lévy measure is

Λ({(0,∅)}) = 0 and
∫
P

(1 ∧ x2
1)Λ(dx) <∞. (1.2)

Next, for some parameter θ ≥ 0, Λ has to fulfil a pair of integrability conditions,
namely ∫

P
1{x1>1}eθx1Λ(dx) <∞, (1.3)

and ∫
P

∞∑
k=2

eθxkΛ(dx) <∞, (1.4)

with the convention that eθx = 0 when x = −∞.
The first requirement enables us to view the image measure Λ1 of Λ by the

first projection x 7→ x1 as the Lévy measure of a Lévy process. We stress that
Λ1 may have an atom at −∞: Λ1({−∞}) = Λ({∅}) is always finite by (1.2), but
may be strictly positive, and then should be viewed as a pure death rate. The
possibly killed Lévy process that governs the motion of particles has Gaussian
coefficient σ2 and Lévy measure Λ1. Note also from (1.3) that this Lévy process
has a finite exponential moment of order θ. In turn, the image measure Λ2
of Λ by the second projection x 7→ x2 and restricted to the space of non-zero
point measures, describes the intensity of the relative positions at birth of the
newborn children. We will prove later on that assumptions (1.3) and (1.4) are
in fact equivalent to the requirement that the one-dimensional marginals of the
branching Lévy process satisfy the condition (1.1).

More precisely, given a Brownian motion B and an independent Poisson
point process N on R+×P with intensity dtΛ(dx), the initial individual in the
branching Lévy process moves as a Lévy process with Brownian component B.
For each atom (t,x) of N , this individual makes a jump of size x1 at time t,
and simultaneously produces1 offspring around its pre-jump position according
to the sequence x2. The full trajectory of the ancestor is a Lévy process with
characteristics (σ2, a,Λ1).

We say that a branching Lévy process has finite birth intensity if (1.4) holds
with θ = 0. In that case, this process can be seen as a special case of a branching
Markov process in continuous time, as introduced by Hering [Her71]: each in-
dividual moves independently according to a Lévy process, and at independent
exponential times, they are replaced by a family of children positioned around
their parent according to an i.i.d. copy of a point measure. Roughly speaking,
branching Lévy processes with infinite birth intensity can be constructed as
the increasing limit of a sequence of branching Lévy processes with finite birth
intensity; the condition (1.4) ensures that no explosion in finite time occurs.

Our main result can be stated as follows.

Theorem 1.1. (i) Let Z be an infinitely ramified point measure. Assume
that

0 < E(〈Z1, eθ〉) <∞ (1.5)
1We stress that, alike Crump-Mode-Jagers generalized branching processes, and contrary

to descriptions of Galton-Watson type, individuals do not die at the times when they beget
children.
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holds for some θ ≥ 0. Then there exists a branching Lévy process (Zt :
t ≥ 0) with

Z (d)= Z1.

(ii) Reciprocally, let (Zt : t ≥ 0) be a branching Lévy process with character-
istics (σ2, a,Λ) satisfying (1.2), (1.3) and (1.4). Then Z1 is an infinitely
ramified point measure that fulfills (1.1). Further, for every t ≥ 0 and
z ∈ C with <z = θ, one has

E(〈Zt, ez〉) = exp(tκ(z)),

where

κ(z) := σ2

2 z2 + az +
∫
P

 ∞∑
j=1

ezxj − 1− zx11|x1|<1

Λ(dx).

The proof of Theorem 1.1(i) relies on the construction of an intermediary
process in dyadic rational times, (Zt : t ∈ D), called a nested branching random
walk, meaning that each discrete-time skeleton is a branching random walk.
We prove that to each infinitely ramified point measure is associated a nested
branching random walk such that Z (d)= Z1, and that for each nested branching
random walk, there exists a unique triplet (σ2, a,Λ) such that the restriction of
a branching Lévy process with these characteristics to dyadic rational times has
the law of that nested branching random walk.

There are two aspects of Theorem 1.1 that may seem unsatisfactory when
one compares with the classical analog for infinitely distributions and Lévy pro-
cesses. First, this result holds under the non-degeneracy assumption (1.5); we
have already argued that this is however a very natural and common hypothesis
in the framework of branching random walks. Second, we have been unable to
establish uniqueness of the distribution of branching Lévy processes associated
to an infinitely ramified point measure. In the classical framework, it is known
that the characteristic function of an infinite divisible law is never 0 and thus
possesses a unique continuous complex n-th root, which is then the characteris-
tic function of the unique n-th root of that law in the sense of the convolution
operation. Unfortunately, this argument cannot be transferred to the frame-
work of point measures. We were only able to prove the existence of an n-th
root2 of an infinitely ramified point measure Z using a compactness argument
that relies again crucially on (1.5). The lack of a handy characterization of such
an n-th root in terms of the law of Z hindered us from tackling the issue of
uniqueness. We stress that nonetheless, uniqueness of the characteristic triplet
(σ2, a,Λ) of a branching Lévy process holds, see the forthcoming Remark 6.7.

Organisation of the paper. The existence of an embedding of an infinitely
ramified point measure into a nested branching random walk is proven in Sec-
tion 2. Roughly speaking, the key issue is to establish that every infinitely
ramified point measure has the same law as the second generation of a branch-
ing random walk whose reproduction law is also given by an infinitely ramified

2In the sense induced by the branching operation, that is, an n-th root of Z is the repro-
duction law of a branching random walk (Zn : n ≥ 0) such that Zn

(d)
= Z.
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point measure. This will be achieved by compactness arguments on the space
of probability distributions on P.

In Section 3, we shall start by proving that a nested branching random walk
Z always possesses an a.s. càdlàg extension in real time. We also establish a
many-to-one formula for one-dimensional distributions in this framework, and
extend the simple branching property to stopping times.

Section 4 is devoted to nested branching random walks with finite birth
intensity. Analyzing the first branching time naturally yields the notion of
branching Lévy process in this simple case, and Theorem 1.1 is then easily
checked in this setting.

General branching Lévy processes are constructed in Section 5 as increasing
limits of branching Lévy processes with finite birth intensity, adapting argu-
ments in [Ber16]. One readily observes that these processes satisfy the branching
property as well as (1.1), which establishes Theorem 1.1 (ii).

Our main task in Section 6 is to equip nested branching random walks with
a natural genealogy. This enables us to define ancestral lineages and establish a
pathwise version of the many-to-one formula. This further allows us to introduce
a censoring procedure, by killing certain individuals depending on the behavior
of their ancestral lineage. The upshot is that this yields an approximation of a
nested branching random walk by a sequence of nested branching random walks
with finite birth intensities, which in turn enables us to complete the proof of
Theorem 1.1.

2 From infinitely ramified point measures to
nested branching random walks

A nested branching random walk is a P-valued process (Zt : t ∈ D) with Z0 = δ0
that satisfies the simple branching property:

(B) For every s, t ∈ D, we have

Zt+s =
∞∑
n=1

τxnZ
n
t , where x = Zs,

with (Znt : n ∈ N) a family of i.i.d. copies of Zt, independent of Fs,

where Fs := σ(Zr : r ∈ D, r ≤ s) denotes the natural filtration of Z. The
terminology refers to the fact that (B) is equivalent to the requirement that the
discrete time skeletons (Zk2−n : k ∈ Z+) of Z are branching random walks.

The main purpose of this section is to establish the following embedding
property of infinitely ramified point measures into nested branching random
walks. We will then prove that nested branching random walks possess a unique
càdlàg extension to real times (Zt : t ∈ R+), and that the branching property
holds more generally at stopping times.

Proposition 2.1. Let Z be an infinitely ramified point measure satisfying (1.5).
There exists a nested branching random walk (Zt : t ∈ D) with

Z (d)= Z1.
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Let Z be an infinitely ramified point measure (recall that we always assume
that (1.5) holds). In words, for every n ∈ N there exists a branching random
walk such that the n-th generation of that process has same law as Z. In this
section, we fix θ ≥ 0 such that (1.5) is fulfilled, so

κ(θ) := lnE (〈Z, eθ〉) ∈ R.

We introduce the θ-exponentially weighted intensity of Z, say mθ, which is the
probability measure on R defined by

〈mθ, f〉 := e−κ(θ) E (〈Z, eθf〉) ,

where f ∈ L∞(R) denotes a generic bounded measurable function.
One of the key tools for the study of branching random walks is the well-

known many-to-one formula, that can be traced back at least to the early work
of Kahane and Peyrière [KP76, Pey74]; see Theorem 1.1 in [Shi15]. This result
enables us to identify mθ as the distribution of a real-valued random walk eval-
uated after n steps. Hence, the assumption that Z is an infinitely ramified point
measure implies that mθ is infinitely divisible. We write Ψ for its characteristic
exponent, that is Ψ : R → C is the unique continuous function with Ψ(0) = 0
such that

〈mθ, eir〉 = e−κ(θ) E (〈Z, eθ+ir〉) = eΨ(r) , r ∈ R. (2.1)

This enables us to introduce a Lévy process (without killing) ξ = (ξt : t ∈ R+)
with characteristic exponent Ψ, i.e. satisfying E(eirξt) = etΨ(r) for all r ∈ R
and t ≥ 0. Note that the law of ξ is determined by the law of Z. In the sequel,
it will be convenient to use the notation

κ(θ + ir) := κ(θ) + Ψ(r) for every r ∈ R,

and refer to κ as the cumulant of Z.
A special case of the many-to-one formula for Z, which will be useful in this

section, can be stated as follows.

Lemma 2.2 (Many-to-one formula). For any n ∈ N, if (Z(n)
k : k ∈ Z+) is a

branching random walk such that Z(n)
n has same law as Z, then for all measur-

able functions f : R→ R+ and all integers j ∈ N, we have

E
(
〈Z(n)

j , f〉
)

= eκ(θ)j/n E
(
e−θξj/nf(ξj/n)

)
.

Proof. Applying the many-to-one formula to the branching random walk Z(n),
there exists a random walk S(n) such that

E
(
〈Z(n)

n , eθf〉
)

= eκ(θ) E
(
f(S(n)

n )
)
,

for all measurable positive functions f . Therefore, S(n)
n has the same law as

ξ1, from which we conclude that S(n)
j has same law as ξj/n. Using again the

many-to-one formula, we have

E
(
〈Z(n)

j , f〉
)

= eκ(θ)j/n E
(
e−θξj/nf(ξj/n)

)
for all non-negative measurable functions f , concluding the proof.
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The rest of this section is devoted to establish Proposition 2.1. The proof
relying on compactness arguments, we carefully introduce the topological spaces
we will be using. To start with, let

Pθ := {µ ∈ P : 〈µ, eθ〉 <∞}

be the subspace of point measures µ such that eθµ is a finite measure; we
henceforth view Z as a process with values in Pθ. The space of finite measures
on R is naturally endowed with the topology of weak convergence, and the
set {eθµ : µ ∈ Pθ} is a closed subset thereof. We thus say that a sequence
(µn : n ∈ N) in Pθ converges to µ ∈ Pθ and write

lim
n→∞

µn = µ in Pθ

if and only if
∀f ∈ Cb, lim

n→∞
〈µn, eθf〉 = 〈µ, eθf〉,

where Cb is the set of continuous bounded functions on R. Plainly, convergence
in Pθ is stronger than vague convergence, or convergence of tail functions (point-
wise, except possibly at discontinuity points of the limit). In turn, the latter is
also equivalent to the simple convergence of the ranked sequence of the atoms.
As a point measure µ ∈ Pθ can be identified with the finite measure eθ.µ on R,
we note that Pθ can be seen as a closed subspace of the set of finite measures
on R endowed with the topology of the weak convergence. Therefore, the space
Pθ endowed with this topology is a Polish space (see, for instance, Lemma 4.5
in Kallenberg [Kal17]).

We write Pθ for the set of probability measures on Pθ, which is also endowed
with the topology of the weak convergence. We give a simple condition for a
subset of Pθ to be compact. We call that a continuous function f : R→ (0,∞)
norm-like if

lim
x→∞

f(x) = lim
x→−∞

f(x) =∞,

and observe that any family F of finite measures on R is tight if and only if
there exists a norm-type function f with supm∈F 〈m, f〉 < ∞; see e.g. Lemma
D 5.3 in Meyn and Tweedie [MT09].

Lemma 2.3. Let K be a closed non-empty subset of Pθ. If there exists a
continuous norm-like function f satisfying

sup
P∈K

∫
〈ν, eθf〉P (dν) <∞,

then K is compact.

Proof. Up to multiplying f by a constant, we may assume that f ≥ 1. Let
ε ∈ (0, 1), and for any n ∈ N, set

Kn,ε := {x ∈ R : f(x) ≤ n2n/ε} .

which is a compact subset of R, and

Lε =
{
ν ∈ Pθ : 〈ν, eθ〉 ≤ 1/ε, ∀n ∈ N, 〈ν, eθ1Kc

n,ε
〉 ≤ 1/n

}
.
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By definition, Lε is tight and obviously closed. Hence by Prokhorov’s theorem,
this is a compact subset of Pθ. Moreover, for any P ∈ K, we have

P (Lcε) ≤ P ({ν ∈ Pθ : 〈ν, eθ〉 > 1/ε})

+
∞∑
n=1

P
({
ν ∈ Pθ : 〈ν, eθ1Kc

n,ε
〉 > 1/n

})
.

By Markov inequality,

P ({ν ∈ Pθ : 〈ν, eθ〉 > 1/ε}) ≤ ε
∫
〈ν, eθf〉P (dν),

and
∞∑
n=1

P
({
ν ∈ Pθ : 〈ν, eθ1Kc

n,ε
〉 > 1/n

})
≤

∞∑
n=1

n
ε

n2n

∫
Pθ
〈ν, eθf〉P (dν)

≤ ε sup
Q∈K

∫
〈ν, eθf〉Q(dν),

which enables us to conclude the proof using again Prokhorov’s theorem.

We next introduce a convolution-type operation on Pθ, related to the dy-
namics of branching random walks. By analogy with the convolution operation
associated to the random walk, for any pair P,Q ∈ Pθ, we denote by P ~ Q
the distribution of the first generation of a branching random walk with repro-
duction law Q and started from a random point measure distributed according
to P . In other words, writing µ for a random point measure with law P , x for
its ranked sequence of atoms, and (νj : j ∈ N) for i.i.d. random point measures
with law Q, then P ~ Q is the law of the random measure

∑
j∈N τxjνj . By a

straightforward computation, there is the identity∫
〈µ, eθ〉P ~Q(dµ) =

∫
〈µ, eθ〉P (dµ)×

∫
〈ν, eθ〉Q(dν), (2.2)

which ensures that P ~Q ∈ Pθ for any P,Q ∈ Pθ such that the right-hand side
in (2.2) is finite. We now study the regularity of this operator.

Lemma 2.4. Let (Pn : n ∈ N) and (Qn : n ∈ N) be two sequences in Pθ such
that

lim
n→∞

Pn = P and lim
n→∞

Qn = Q in Pθ.

If
sup
n∈N

∫
〈ν, eθ〉Qn(dν) <∞, (2.3)

and further, there exists a continuous norm-like function g such that

sup
n∈N

∫
〈µ, eθg〉Pn(dµ) <∞, (2.4)

then
lim
n→∞

Pn ~Qn = P ~Q in Pθ.
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Proof. By Skorohod’s representation theorem, we construct random point mea-
sures µn, µ, νn and ν in Pθ, with laws Pn, P,Qn and Q respectively, and such
that

lim
n→∞

µn = µ and lim
n→∞

νn = ν a.s. in Pθ.

We introduce a sequence
(((

νjn
)
n∈N , ν

j
)

: j ∈ N
)

of i.i.d. copies of ((νn)n∈N, ν)
that are further independent of ((µn)n∈N, µ), and write

%n =
∑
j∈N

τxn
j
νjn and % =

∑
j∈N

τxjν
j ,

where xn = (xnj : j ∈ N) and x = (xj : j ∈ N) are the ranked sequence of atoms
of µn and µ, respectively. Then %n has law Pn ~ Qn, % has law P ~ Q, and
we aim at proving that limn→∞ %n = % in probability in Pθ. That is, by an
argument of separability, that for every function f ∈ Cb,

lim
n→∞

〈%n, eθf〉 = 〈%, eθf〉 in probability. (2.5)

Without loss of generality, we may focus henceforth on the case 0 ≤ f ≤ 1.
To start with, recall that convergence in Pθ is stronger than pointwise con-

vergence of the ranked sequences of atoms. Hence, for any fixed k ∈ N and any
f ∈ Cb, we have

lim
n→∞

〈τxn
k
νnk , eθf〉 = 〈τxkνk, eθf〉 a.s. (2.6)

Next, fix a large integer N and for every n ∈ N and a > 0, introduce the event
Λn(N, a) := {xnN < −a}. Plainly, on that event, there is the inequality

0 ≤ 〈%n, eθf〉 −
N∑
k=1
〈τxn

k
νnk , eθf〉 ≤

∞∑
k=1
〈τxn

k
νnk , eθ〉1{xnk<−a}.

By (2.2), the expectation of the right-hand side equals∫
〈µ, eθ1(−∞,−a)〉Pn(dµ)×

∫
〈ν, eθ〉Qn(dν).

By the elementary inequality,

〈µ, eθ1(−∞,−a)〉 ≤ 〈µ, eθg〉/ inf{g(x) : x < −a},

we see that (2.3), (2.4) and the fact that g is norm-like ensure that for every
ε > 0, we can choose a > 0 sufficiently large such that

E

( ∞∑
k=1
〈τxn

k
νnk , eθf〉1{xnk<−a}

)
≤ ε2 for all n ∈ N.

A fortiori, by the Markov inequality, we have

P

( ∞∑
k=1
〈τxn

k
νnk , eθf〉1{xnk<−a} > ε

)
≤ ε for all n ∈ N.
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We next bound the probability of the complementary event Λn(N, a)c using
again Markov’s inequality:

P(xnN ≥ −a) = P(µn([−a,∞)) ≥ N) ≤ eθa

N
E(〈µn, eθ〉).

So by (2.4), we may choose N large enough so that P(Λn(N, a)) ≥ 1− ε for all
n ∈ N. To summarize, we have shown that for every ε > 0, we can choose N
sufficiently large so that for all n ∈ N

P

〈%n, eθf〉 − N∑
j=1
〈τxn

j
νnj , eθf〉 > ε

 ≤ 2ε.

Since (2.6) entails that for each fixed N ,

lim
n→∞

N∑
j=1
〈τxn

j
νnj , eθf〉 =

N∑
j=1
〈τxjνj , eθf〉 a.s.

and plainly

lim
N→∞

N∑
j=1
〈τxjνj , eθf〉 = 〈%, eθf〉 a.s.,

we conclude that (2.5) holds, which completes the proof.

We are now able to establish Proposition 2.1.

Proof of Proposition 2.1. We denote by P ∈ Pθ the law of the infinitely ramified
point measure Z, and introduce the space of ~-roots of P , viz.

R(P ) = {Q ∈ Pθ : Q~Q = P} .

In words, Q ∈ R(P ) if and only if the second generation of a branching random
walk with reproduction law Q has the same distribution as Z. Note that Q is
not necessarily infinitely ramified, but the main step of this proof is to show
there always exists an infinitely ramified law in R(P ).

By the many-to-one formula in Lemma 2.2, for any measurable positive
function f and Q ∈ R(P ), we have∫

〈ν, eθg〉Q(dν) = eκ(θ)/2 E(g(ξ1/2)).

Let g be any continuous norm-like function with E(g(ξ1/2)) <∞, so that

sup
Q∈R(P )

∫
〈ν, eθg〉Q(dν) <∞. (2.7)

Note that R(P ) is non-empty (as Z is an infinitely ramified point measure),
and closed. Indeed, if (Qn)n∈N is a sequence in R(P ) with limn→∞Qn = Q
in Pθ, then from (2.7), we can apply Lemma 2.4, hence Q ∈ R(P ). Further,
using again (2.7), we see that R(P ) is compact by Lemma 2.3.
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More generally, writing Q~k for the distribution of the k-th generation of
a branching random walk with reproduction law Q, the same argument shows
that if we define for every n ∈ N

Rn(P ) =
{
Q~2n : Q ∈ Pθ and Q~2n+1

= P
}
,

then
R(P ) = R0(P ) ⊇ R1(P ) ⊇ . . . ⊇ Rn(P ) ⊇ . . .

form a nested sequence of non-empty compact sets in Pθ. By Cantor’s intersec-
tion theorem, their intersection is not empty.

This proves that R(P ) always contains the law of some infinitely ramified
point measure, say P~1/2, and by iteration, we construct for every n ∈ N the
law of an infinitely ramified point measure P~2−n such that

P~2−n ~ P~2−n = P~2−n+1
.

For every n ∈ N, we then consider a branching random walk indexed by
2−nZ+ with reproduction law P~2−n , say (Z(n)

t : t ∈ 2−nZ+). The restriction
of Z(n+1) to 2−nZ+ has the same law as Z(n), and we can thus construct by
Kolmogorov’s extension theorem a process (Zt : t ∈ D) indexed by dyadic
rational times, such that for every n ∈ N, the restriction of Z to 2−nZ+ has
the same law as Z(n). That is, Z is a nested branching random walk, and by
construction, Z1 has the same law as Z.

Remark 2.5. With a similar reasoning, one can also prove for instance that an
integer-valued random variable having for all n the same distribution as the
n-th generation of some Galton-Watson branching process can be viewed as the
value at time 1 of a continuous-time branching process.

We now conclude this section with the analogue of a well-known result in
the theory of infinitely divisible laws: if (S(n) : n ∈ N) is a sequence of random
walks such that S(n)

n converges, say in distribution, then the limit is infinitely
divisible. This is also the case for branching random walks, when we assume
convergence in the Pθ topology.

Corollary 2.6. Let (Z(n) : n ∈ N) be a sequence of branching random walks
such that for some θ ≥ 0, the law of Z(n)

n converges in Pθ toward the law of
some random point measure Z. If further

lim
n→∞

E(〈Z(n)
n , eθ〉) = E(〈Z, eθ〉) ∈ (0,∞), (2.8)

then Z is an infinitely ramified point measure.

Proof. The convergence in law of Z(n)
n toward Z implies that for every f ∈ Cb,

limn→∞ 〈Z(n)
n , eθf〉 = 〈Z, eθf〉 in distribution, and by standard arguments of

uniform integrability, (2.8) then ensures that

lim
n→∞

E(〈Z(n)
n , eθf〉) = E(〈Z, eθf〉).

We set A = E(〈Z, eθ〉) > 0 and introduce a random variable ξ such that

AE(f(ξ)) = E(〈Z, eθf〉) for all f ∈ Cb.

12



On the other hand, using the many-to-one formula, we get that for every n ∈ N,
there exists κn(θ) ∈ R and a random walk S(n) such that

E (〈Zn, eθf〉) = enκn(θ) E(f(S(n)
n )).

Hence we have limn→∞ nκn(θ) = lnA and limn→∞ S
(n)
n = ξ in law. In partic-

ular, it follows that ξ is infinitely divisible, hence there exists a Lévy process
(ξt : t ≥ 0) such that ξ1 = ξ in law.

This also yields that for all k ∈ N,

lim
n→∞

nκnk(θ) = lnA
k

and lim
n→∞

S(kn)
n = ξ1/k in law. (2.9)

In particular, by Prohorov’s theorem, the sequence (S(kn)
n : n ∈ N) is tight, and

there exists a positive continuous norm-like function g such that

sup
n∈N

E
(
〈Z(nk)

n , eθg〉
)
≤ sup
n∈N

enκnk(θ) × sup
n∈N

E(g(S(nk)
n )) <∞.

Therefore (Z(nk)
n : n ∈ N) is tight in Pθ, thanks to Lemma 2.3, and we can

extract a subsequence that converges in law, say toward Z̃k. Moreover, by
Lemma 2.4, writing P kn for the law of Z(nk)

n , P̃ k for the law of Z̃k and P for the
law of Z, we get that

P = lim
n→∞

(P kn )~k = (P̃ k)~k.

This result being true for all k ∈ N, we conclude that Z is infinitely ramified.

3 Càdlàg extension of nested branching random
walks and the strong branching property

Throughout this section, Z = (Zt : t ∈ D) denotes a nested branching ran-
dom walk with Z (d)= Z1. In particular, its discrete time skeletons are branching
random walks; recall also that we assume (1.1). As in the previous section,
we denote by ξ a Lévy process with characteristic exponent Ψ and reformulate
Lemma 2.2 as follows.

Lemma 3.1 (Many-to-one formula). For all t ∈ D and f : R→ R+ measurable,
we have

E (〈Zt, f〉) = E
(

e−θξt+tκ(θ)f(ξt)
)
.

We now prove that the nested branching random walk Z possesses a càdlàg
extension. Recall that (Ft)t∈D denotes its canonical filtration, and introduce
its right-continuous enlargement

F+
t :=

⋂
s∈D,s>t

Fs , t ∈ R+.

Proposition 3.2. Almost surely, there exists a unique extension of (Zt : t ∈ D)
to a càdlàg process (Zt : t ∈ R+) with values in Pθ, and which is further adapted
to the filtration (F+

t )t≥0.
The many-to-one formula of Lemma 3.1 holds more generally for t ∈ R+.
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Proof. Recall from Lévy’s theorem that a sequence (mn : n ∈ N) of finite
measures converges weakly if and only if the sequence of Fourier transforms
m̂n : r 7→ 〈mn, eir〉 converges pointwise to some continuous function m̂. Then
m̂ is the Fourier transform of a finite measure m and limn→∞mn = m weakly.
This shows that a sequence (µn : n ∈ N) in Pθ possesses a limit in Pθ if and
only if the sequence (〈µn, eθ+ir〉 : n ∈ N) converges for every r ∈ R and the
limit is a continuous function of r.

Recall also that for every t ∈ D, we have

E (〈Zt, eθ+ir〉) = exp(tκ(θ + ir)).

Using the branching property (B), we see that the process

Mt(r) = e−tκ(θ+ir)〈Zt, eθ+ir〉, t ∈ D

is a martingale in dyadic rational times, that is

E (Mt(r)|Fs) = Ms(r) a.s. for every s ≤ t, s, t ∈ D.

Further, for each fixed t ∈ D, Mt(·) is the Fourier transform of a random finite
measure on R and is thus continuous a.s.

Fix K > 0 arbitrary, and write MK
t for the restriction to r ∈ [−K,K] of the

function r 7→Mt(r). So (MK
t : t ∈ D) is a martingale in dyadic rational times,

taking values in the separable Banach space C([−K,K],C), endowed with the
topology of the uniform convergence, and thus possesses a.s. a unique càdlàg
extension (MK

t : t ∈ R+), which is then a martingale in real time for the
filtration F+

t . See for instance Theorem 3 in [BD87].
Plainly, for K < K ′, MK

t coincides with the restriction of MK′

t to [−K,K],
thus we can define unequivocally Mt(r) = MK

t (r) for an arbitrary K > |r|. The
resulting process (Mt(·) : t ∈ R+) has a.s. càdlàg paths in C(R,C), endowed
with the topology of uniform convergence on compact intervals. This establishes
our first claim.

Finally, by the martingale property of (Mt(r) : t ∈ R+), we have that, for
every t ∈ R+:

E(〈Zt, eθ+ir〉) = etκ(θ+ir) E(Mt(r)) = et(κ(θ)+Ψ(r)).

Hence the many-to-one formula of Lemma 3.1 holds with f = eθ+ir, for all
t ∈ R+ and r ∈ R. The proof is completed by Fourier inversion.

Our next goal is to establish a stronger version of the branching property.

Proposition 3.3. Let T be an a.s. finite (F+
t )-stopping time. On a suitable

enlargement of the underlying probability space, there exists an i.i.d. sequence
(Znt : t ∈ R+)n∈N of copies of (Zt : t ∈ R+), which is independent of F+

T , such
that almost surely

∀t ∈ R+, ZT+t =
∞∑
n=1

τxnZ
n
t ,

with ZT = x = (x1, x2, . . .).

14



Remark 3.4. This result, while significantly stronger than assumption (B), is
however not the strongest version of the branching property one can look for.
In fact, one could establish a version for “stopping lines”, in the vein of Chau-
vin [Cha91]. But to state this result, one first needs a precise description of
the genealogy and the trajectory of individuals, which we are lacking so far.
Nonetheless, this result can be proved for branching Lévy processes, therefore
Theorem 1.1 implies such stronger version of the branching property holds for Z.

The rest of this section is devoted to the proof of Proposition 3.3, which
relies on a variation of Feller property that we now state. Let (Znt : t ∈ R+)n∈N
denote a sequence of i.i.d. copies of (Zt : t ∈ R+). For each point measure
µ ∈ Pθ and t ∈ R+, we consider the random point measure

Yt(µ) :=
∑
n∈N

τxnZ
n
t ,

where x = (xn : n ∈ N) = µ. One checks immediately that E(〈Yt(µ), eθ〉) <∞,
so Yt(µ) ∈ Pθ a.s., and it follows readily from Lemma 2.4 that the dependence
in µ is continuous.

Lemma 3.5. With the notation above, for every fixed t ∈ R+, the process
(Yt(µ) : µ ∈ Pθ) is continuous in probability.

Proof. Let (µn : n ∈ N) be point measures such that limn→∞ µn = µ in Pθ,
that is eθµn =⇒ eθµ as n → ∞, in the sense of weak convergence of finite
measures on R. By Prohorov’s theorem, (eθµn : n ∈ N) is tight, and thus
there exists a positive continuous norm-like function g : R → (0,∞) such that
supn∈N 〈µn, eθg〉 <∞. This enables us to apply Lemma 2.4 and our conclusion
follows.

We are now able to establish Proposition 3.3.

Proof of Proposition 3.3. Let T be an a.s. finite (F+
t )-stopping time. For every

k ∈ N, we set
Tk := 2−k

⌈
2kT + 1

⌉
.

So Tk ≥ T + 2−k, Tk is an (Ft)-stopping time with values in 2−kN, and Tk
decreases to T as k → ∞. Next consider an event A ∈ F+

T , and f : Pθ → R
a continuous bounded function. By right-continuity (see Proposition 3.2), we
have that for every fixed t ∈ R+

E(1Af(ZT+t)) = lim
k→∞

E(1Af(ZTk+t)).

Let (Znt : t ∈ R+)n∈N be a sequence of i.i.d. copies of (Zt : t ∈ R+), which
is further independent of (Zs : s ∈ D), and set

Yt(ZTk) :=
∑
n∈N

τxnZ
n
t , t ∈ R+,

where (xn : n ∈ N) denotes the ranked sequence of the atoms of ZTk . One checks
readily that A ∈ FTk for every k ∈ N. Applying (B) on the event {Tk = n2−k}
and summing over n, we get, provided that t is a dyadic rational number, that

E(1Af(ZTk+t)) = E(1Af(Yt(ZTk))).
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We then let k →∞ and use Lemma 3.5 to conclude that

E(1Af(ZT+t)) = E(1Af(Yt(ZT ))).

In other words, we have shown that the one-dimensional dyadic rational
marginals of the conditional distribution of the process (ZT+t : t ∈ R+) given
F+
T are the same as those of (Yt(ZT ) : t ∈ R+) given ZT . By induction, it

follows that the same holds for the finite-dimensional dyadic rational marginals,
and since both processes are càdlàg a.s., we conclude that the conditional
distribution of the process (ZT+t : t ∈ R+) given F+

T coincide with that of
(Yt(ZT ) : t ∈ R+) given ZT . This in turn entails our claim.

4 Process with finite birth intensity
We say that a nested branching random walk Z has a finite birth intensity if
(1.1) is fulfilled for θ = 0. Observe that in this situation, e0 = 1, and P0 is
simply the space of finite point measures on R, or, equivalently, the space of
finite sequences of atoms in R.

Throughout this section, (Zt : t ∈ R+) denotes the càdlàg extension of
a nested branching random walk with finite birth intensity. Our goal is to
show that the law of this process can be characterized in terms of some basic
parameters, and to describe its genealogy.

4.1 The first branching time
The process of the total mass,

〈Z,1〉 = (〈Zt,1〉 : t ∈ R+),

takes finite integer values and has càdlàg paths a.s. The branching property of
Z easily transfers to 〈Z,1〉, in the sense that for every s, t ∈ R+, conditionally
on 〈Zs,1〉 = k, 〈Zt+s,1〉 is independent of F+

s and has the law of the sum of
k i.i.d. copies of 〈Zt,1〉. Using the terminology of Athreya and Ney [AN04],
〈Z,1〉 is a one-dimensional continuous time Markov branching process, i.e. a
Galton-Watson process in continuous time.

In particular, the first branching time

TB := inf{t > 0 : 〈Zt,1〉 6= 1}

has an exponential distribution with finite parameter, say β ∈ R+. For every
0 ≤ t < TB , Zt possesses a single atom in R; we denote its location by ζt (i.e.
Zt = δζt), and declare that ζt = −∞ for t ≥ TB . Because Z has càdlàg paths
in P0, ζ has also càdlàg paths during its lifetime [0, TB). At the branching time
TB , we further record the relative positions of the children with respect to that
of their parent as the point measure ∆ defined by

∆ := τ(−ζTB−)ZTB = (xn − ζTB− : n ∈ N) ,

where x = ZTB . We agree for definiteness that ∆ = ∅ (the zero point measure)
when β = 0, that is when TB = ∞ a.s. Note also that TB is an (F+

t )-stopping
time.
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Lemma 4.1. In the notation above, the following holds:

1. The process (ζt : t ∈ R+) is a Lévy process killed at rate β ≥ 0, which is
further independent of ∆.

2. The mass of ∆, i.e. the number of its atoms in R,

#∆ := Card{i ≥ 1 : ∆i ∈ R} = 〈∆,1〉

fulfills
P(#∆ = 1) = 0 and E(#∆) <∞.

Proof. As (〈Zt,1〉 : t ∈ R+) is a Galton-Watson process in continuous time,
either TB <∞ a.s. or 〈Zt,1〉 = 1 a.s. for all t > 0. We observe that Lemma 4.1
holds trivially when TB = ∞ a.s. Indeed the branching property (B) then
simply translates into independence and stationarity of the increments of the
trajectory of the only atom ζ. This proves that ζ is a Lévy process, and the
other property comes from ∆ = ∅ a.s. Therefore, we assume in the rest of the
proof that TB <∞ a.s.

1. The extended version of the branching property in Proposition 3.3 shows
in particular that for every t ∈ R+, conditionally on t < TB , the translated
process (τ−ζtZt+s : s ∈ R+) is independent of F+

t and has the same law as
(Zs : s ∈ R+). Since on that event, ∆ only depends on the translated process,
we deduce that for every bounded measurable functionals F and G, there is the
identity

E(F (ζs : 0 ≤ s ≤ t)G(∆), t < TB) = E(F (ζs : 0 ≤ s ≤ t), t < TB)E(G(∆)).

Hence ∆ is independent of (ζt : 0 ≤ t < TB).
The same argument also shows that conditionally on t < TB , ζ is a process

with independent and stationary increments on the time-interval [0, t], which is
further independent of TB − t, as the latter quantity then only depends on the
translated process. This proves our assertion that ζ is a killed Lévy process.

2. Indeed, the first assertion is plain from the definition of the first branching
time TB and the right-continuity of Z. Moreover #∆ = 〈ZTB ,1〉 is the number
of children produced by an individual in the Galton-Watson branching process
〈Z,1〉. By [AN04, Chapter 3, Theorem 2], as E(〈Z1,1〉) < ∞, #∆ has finite
expectation as well.

The distribution of the process Z up to and including its first branching
time, (Zt : 0 ≤ t ≤ TB), is thus determined by the law of the killed Lévy process
ζ and that of the independent point measure ∆. We denote the latter by %, i.e.

%(dx) := P(∆ ∈ dx)

and recall that ∆ is never a Dirac point mass. On the other hand, ζ shall
be viewed as a Lévy process ζ ′ = (ζ ′(t) : t ∈ R+) killed at an independent
exponential time TB with parameter β ≥ 0 (recall that β is the branching rate
of 〈Z, 1〉). In turn, the law of ζ ′ is classically characterized by a triple (σ2, a′, ν),
where σ2 ≥ 0 is the Brownian coefficient, a′ ∈ R the drift coefficient, and ν
the Lévy measure. The latter is a measure on R such that ν({0}) = 0 and
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∫
(1 ∧ x2)ν(dx) < ∞. Let Φ : R → C denote the characteristic exponent of ζ ′,

which is given by the Lévy-Khintchin formula:

Φ(r) = −σ
2

2 r2 + ia′r +
∫
R

(
eirx − 1− irx1|x|<1

)
ν(dx), (4.1)

so that for every t ∈ R+,

E(exp(irζ ′(t))) = exp (tΦ(r)) .

Thanks to the strong branching property stated in Proposition 3.3, the law
of the full process (Zt : t ∈ R+) is characterized by that of its restriction to the
random time-interval [0, TB ]. Indeed, for any t > 0, there is almost surely only a
finite number of reproduction events occurring before time t, so using the strong
branching property a finite number of times yields the following description.

During the time interval [0, TB), the point measure Zt consists of a single
individual which starts from 0 and moves in R according to ζ ′. At time TB ,
which has an exponential distribution with parameter β and is independent of ζ ′,
this individual dies at location ζ ′(TB) and simultaneously gives birth to children
at locations ζ ′(TB) + ∆(1), ζ ′(TB) + ∆(2), . . . , where ∆ = (∆(i) : i ∈ N) is a
random finite point measure. More precisely, we know from Lemma 4.1 that ∆
is independent of ζ ′ and the lifetime TB . In turn, conditionally on the birth
locations, each child evolves after its birth according to the same Lévy dynamics,
independently of the other children. At death, these children produce children
of their own around their position just before death, according to independent
copies of ∆, and so on and so forth.

We stress that this description involves a richer structure than that contained
in the sigma-algebra generated by the sole process Z; namely, it is not always
possible to recover the ancestral lineages from the latter. Indeed, think for
instance of a birth event such that a child is born at the same location as
another individual. Then, in general, one cannot discriminate the trajectory of
each of these two individuals observing only the process Z.

Putting things together, the distribution of a nested branching random walk
with finite birth intensity Z is determined by the parameters (Φ, β, %), which
are henceforth called the parameters of Z.

4.2 Branching Lévy processes with finite birth intensity
In this section, we introduce formally branching Lévy processes with finite birth
intensity by rephrasing technically the verbal description of the dynamics of a
nested branching random walk with finite birth intensity. Actually, this is merely
an adaptation of Definition 1 in [Ber16] in a slightly more general setting.

To start with, let Φ be the characteristic exponent of a Lévy process, β ≥ 0
and % a probability measure on P∗0 , where

P∗0 := {x ∈ P0 : #x 6= 1}

denotes the subspace of finite point measures which are not Dirac masses. We
further suppose that ∫

P0

#x %(dx) <∞,
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and that % = δ∅ if β = 0. We stress that we do not assume a priori that (Φ, β, %)
is the triple that characterizes the law of some nested branching random walk
with finite birth intensity.

We then need to label individuals and therefore introduce the set of all finite
sequences of integers, a.k.a. the Ulam tree,

U =
⋃
n≥0

Nn.

In particular, the empty sequence ∅ represents the ancestor3. We shall use some
further notation in this setting. If u ∈ Nn, we write

• |u| = n the generation of u;

• u = (u(1), . . . , u(n)), such that u(k) is the k-th term of the sequence u;

• uk = (u(1), . . . , u(k)) the ancestor at generation k ≤ n of u;

• for j ∈ N, u.j = (u(1), . . . , u(n), j) the j-th child of u.

Each individual has a birth-time bu, a death-time du, and a spatial location
`u(t) ∈ R for t ∈ [bu, du) which are random and constructed as follows. Let
(Tu)u∈U, (ζ ′u)u∈U and (∆u)u∈U are three independent processes such that:

• (Tu)u∈U is a family of i.i.d. exponential variables with parameter β,

• (ζ ′u)u∈U is a family of i.i.d. Lévy processes with characteristic exponent Φ
given by (4.1),

• (∆u)u∈U is a family of i.i.d. random point measures in P0, each distributed
according to %.

The variable Tu corresponds to the lifetime of the individual labelled by u. The
birth-time bu and death-time du of this individual are thus given by

bu =
|u|−1∑
j=0

Tuj and du = bu + Tu. (4.2)

In turn, the process ζ ′u governs the motion of the individual u during its life, and
∆u = (∆u(1),∆u(2), . . .) specifies the ranked sequence of the relative positions
of the children of u with respect to the location of the individual u at death.
Specifically, we have

`u(t) = ζ ′u(t− bu) +
|u|−1∑
j=0

(
ζ ′uj (Tuj ) + ∆uj (u(j + 1))

)
, bu ≤ t < du.

In particular, for u = ∅, b∅ = 0 and (`∅(t) : 0 ≤ t < d∅) has the same law as
(ζt : 0 ≤ t < TB).

3Beware that we use a different although seemingly similar notation ∅ for the zero point
measure.
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Definition 4.2. The point measure valued process

Zt :=
(∑
u∈U

1bu≤t<duδ`u(t) : t ∈ R+

)

(recall our convention that atoms at −∞ are always discarded), is called a
branching Lévy process with finite birth intensity and parameters (Φ, β, %).

For instance, a binary branching Brownian motion is a branching Lévy pro-
cess with finite birth intensity; its parameters are Φ(r) = − 1

2σ
2r2, β ∈ R+ and

% is the Dirac mass at the point measure µ = 2δ0 (i.e. at x = (0, 0,−∞, . . .)).
More generally, recall that branching random walks in continuous time, as they
were considered first by Uchiyama [Uch82] and then by many authors (see e.g.
[Kyp99] and references therein), can be constructed as follows. We first endow
the edges of the Ulam tree U with lengths, such that the length of the edge
between a parent u and its child u.j is given by Tu for all j ∈ N, and then assign
to that child a weight ∆u(j). We assume that the families (Tu)u∈U and (∆u)u∈U
are random and distributed as before. The point process obtained at time t by
cutting the tree at height t and summing weights on each branch to the root is
then a branching random walk in continuous time. We now see that branching
Lévy processes with finite birth intensity simply result from the superposition
of independent Lévy motions to a branching random walk in continuous time.
Remark 4.3. We stress that the structure of a branching Lévy process with
finite birth intensity is richer than that of the sigma-algebra generated by the
sole point measure process in Definition 4.2, in the sense that by construction,
it is equipped with a genealogical tree.

The next two statements essentially rephrase the second part of Theorem
1.1 in the case of finite birth intensity. The first claim of the proposition below
should be plain from the discussion at the end of the preceding section. In turn,
the second claim should be fairly obvious, even if providing full details of the
proof would unavoidably be tedious and therefore is left to scrupulous readers.

Proposition 4.4. 1. The càdlàg extension (Zt : t ∈ R+) of a nested branch-
ing random walk with finite birth intensity and parameters (Φ, β, %) is a
branching Lévy process with finite birth intensity and parameters (Φ, β, %),
and possibly constructed on some enlarged probability space.

2. Conversely, let Φ be the characteristic exponent of a Lévy process, β ≥ 0
and % a probability measure on P∗0 with∫

P0

#x %(dx) <∞,

and such that % = δ∅ if β = 0. The restriction to dyadic rational times of a
branching Lévy process with finite birth intensity and parameters (Φ, β, %)
is a nested branching random walk with finite birth intensity and parame-
ters (Φ, β, %).

We now conclude this section by connecting the parameter (Φ, β, %) to the
functions κ and Ψ of the preceding section.
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Lemma 4.5. Let Z be a branching Lévy process with finite birth intensity and
parameters (Φ, β, %). For every t ∈ R+ and r ∈ R, we have

E (〈Zt, eir〉) = exp
(
t

(
Φ(r) + β

∫
P0

(〈µ, eir〉 − 1) %(dµ)
))

.

Proof. In the case when individuals do not move during their lifetimes, that is
for branching random walks in continuous time as considered by Uchiyama, we
have Φ ≡ 0 and the first formula of the statement is easy (it can be read for
instance from [Uch82] on page 898). The general case then follows from the
fact that Z is simply obtained by superposing Lévy motions with characteristic
exponent Φ to an independent branching random walk in continuous time; see
Lemma 2 in [Ber16] for a closely related argument.

In the notation of Section 2, we can rephrase Lemma 4.5 by identifying the
cumulant function as

κ(ir) = Φ(r) + β

∫
P0

(〈µ, eir〉 − 1) %(dµ),

or, equivalently,

κ(0) = β

∫
P0

(#x− 1)%(dx) , Ψ(r) = Φ(r) + β

∫
P0

〈µ, eir − 1〉%(dµ).

5 Branching Lévy processes
Our aim in this section is to get rid of the assumption of finiteness of the birth
intensity, that is to consider the case θ > 0. The idea is similar to that of
Section 3 in [Ber16] (which actually bears the same title), so we shall merely
provide here the main steps without going too far into technical details.

For this purpose, we first consider the case of finite birth intensity treated
in the preceding section and introduce an equivalent parametrization.

5.1 The Lévy measure for finite birth intensities
Throughout this section, we consider a branching Lévy process with finite birth
intensity and parameters (Φ, β, %) as in the preceding section, and recall the
notation x = (x1,x2) with x2 = (xn+1 : n ∈ N) and ∅ = (−∞, . . .). We then
define

Λ(dx) := ν(dx1)δ∅(dx2) + β%(dx) , x ∈ P0.

We shall call Λ the Lévy measure of Z. We further set

a := a′ + β

∫
P0

x11|x1|<1%(dx).

The next statement entails in particular that the parameters (Φ, β, %) can
be recovered from (σ2, a,Λ). Recall that P∗0 denotes the subspace of finite point
measures which are not Dirac point masses.

Lemma 5.1. The following assertions hold:
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1. The branching rate is given by

β = Λ(P∗0 ).

2. For β 6= 0, we have
% = β−11P∗0 Λ.

3. The Lévy measure Λ fulfills

Λ({(0,∅)}) = 0 ,
∫
P0

(1 ∧ x2
1)Λ(dx) <∞ and

∫
P0

|#x− 1|Λ(dx) <∞.

4. The characteristic function Φ is given for every r ∈ R by

Φ(r) = −σ
2

2 r2 + ia′r +
∫
P0\P∗0

(
eirx1 − 1− irx11|x1|<1

)
Λ(dx).

5. Finally, the cumulant function κ is given for every r ∈ R by

κ(ir) = −σ
2

2 r2 + iar +
∫
P0

( ∞∑
n=1

eirxn − 1− irx11|x1|<1

)
Λ(dx).

Proof. The first two assertions follow immediately from the fact that the re-
striction of Λ to P∗0 is given by β%. The third one then derives from the fact
that ν({0}) = 0 and second point of Lemma 4.1. The fourth comes from the
fact that ν is the projection on the first coordinate of Λ − β% = 1P0\P∗0 and
the Lévy-Khintchin formula (4.1). Finally, the fifth is merely a translation of
Lemma 4.5.

5.2 Nested sequence of branching Lévy processes
We now fix θ > 0 and consider a measure Λ on Pθ that fulfills the requirements
specified in the Introduction, that are

Λ({(0,∅)}) = 0,
∫
Pθ

(1 ∧ x2
1)Λ(dx) <∞, (5.1)

and
∫
Pθ

(
eθx11{x1>1} +

∞∑
k=2

eθxk
)

Λ(dx) <∞. (5.2)

Roughly speaking, our goal is to define a branching Lévy process based on the
Lévy measure Λ. We shall construct the latter as an increasing limit of a nested
sequence of branching Lévy processes with finite birth intensity, whose Lévy
measures are given by a suitable truncation of Λ.

Specifically, for every integer n ∈ N and point measure µ ∈ Pθ, we write µ(n)

for the restriction of µ to [−n,∞), so the ranked sequence of the atoms of µ(n)

is x(n) = (x(n)
i : i ∈ N), with

x
(n)
i =

{
xi provided xi ≥ −n
−∞ otherwise.
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One should view the transformations µ 7→ µ(n) for n ∈ N as compatible trunca-
tions, in particular there is the identity(

µ(n′)
)(n)

= µ(n) for all n′ ≥ n. (5.3)

We then denote by Λ(n) the measure obtained from the image of Λ by the
map µ 7→ µ(n) by further removing4 from the latter the atom at (0,∅) if it exists,
so that Λ(n)({(0,∅)}) = 0. We may and will view each Λ(n) as a measure on
the space of finite point measures P0, rather than on Pθ.

We next observe that for every n ∈ N,∫
P0

(1 ∧ x2
1)Λ(n)(dx) =

∫
Pθ

(1 ∧ (x(n)
1 )2)Λ(dx) ≤

∫
Pθ

(1 ∧ x2
1)Λ(dx) <∞ ,

and ∫
P0

|#x− 1|Λ(n)(dx) ≤ Λ(n)({∅}) + eθn
∫
Pθ

∞∑
k=2

eθxkΛ(dx) <∞.

Hence, we may view each Λ(n) as the Lévy measure of a branching Lévy process
with finite birth intensity.

The next result claims that one can construct a nested sequence of branching
Lévy processes with finite birth intensity and Lévy measures Λ(n). Essentially,
this follows from the genealogical construction discussed in Section 4.1 and the
compatibility relation (5.3). We skip details and refer to Section 3 in [Ber16]
(see in particular Lemma 3 there) where a similar construction is performed in
a less general setting.

Lemma 5.2. Let σ2 ≥ 0, a ∈ R and Λ a measure on Pθ that fulfills (5.1) and
(5.2). One can construct a sequence (Z(n) : n ∈ N) of branching Lévy processes
with finite birth intensity and characteristics (σ2, a,Λ(n)), such that for n ≤ n′,
Z(n) results from Z(n′) by killing an individual u whenever it makes a negative
jump < −n, i.e. when ∆ζ ′u(t) := ζ ′u(t) − ζ ′u(t−) < −n, and also killing the
children u.j which are born at distance greater than n at the left of their parent
u, i.e. such that ∆u(j) < −n.

Remark 5.3. The killing operation describes above modifies the labelling of in-
dividuals and their trajectories. Typically, a birth event for Z(n′) at which all
the children but one lie at distance greater than n to the left of the parent, is
no longer considered as a birth event for Z(n), but rather as an event when an
individual makes a jump (of size ≥ −n) without generating progeny. Nonethe-
less, if we keep in mind this relabelling of individuals, the ancestral trajectories
for Z(n) of course coincides with that for Z(n′), and the genealogical tree of Z(n)

simply results from the pruning of the genealogical tree of Z(n′).

Plainly, for every t ≥ 0, the sequence of atoms of Z(n)
t is a subsequence of

that of Z(n′)
t , or equivalently, in terms of point measures, Z(n)

t ≤ Z
(n′)
t . This

naturally leads us to:
4Removing this atom is merely an aesthetic matter: keeping it would simply induce fictive

birth events, at which the parent gives birth to a single child, exactly at the same location.
This would impact the genealogical tree, but not the point measures, and thus can be ignored.
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Definition 5.4. In the notation of Lemma 5.2, the increasing limit

Z
(∞)
t := lim

n→∞
Z

(n)
t , t ≥ 0,

is called a branching Lévy process with characteristics (σ2, a,Λ).

We easily check that Z(∞)
t is a point measure in Pθ, a.s. Indeed, if we write

κ(n) for the cumulant function of Z(n), so that for z ∈ C with 0 ≤ <z ≤ θ,

E(〈Z(n)
t , ez〉) = exp(tκ(n)(z)),

then by Lemma 5.1.5 and analytic continuation, we have

κ(n)(z) = σ2

2 z2 + az +
∫
P0

( ∞∑
i=1

ezxi1xi≥−n − 1− zx11|x1|<1

)
Λ(dx).

Thanks to (5.1) and (5.2), we may also define for all z ∈ C with <z = θ

κ(∞)(z) := σ2

2 z2 + az +
∫
Pθ

( ∞∑
i=1

ezxi − 1− zx11|x1|<1

)
Λ(dx), (5.4)

and observe that
κ(∞)(z) = lim

n→∞
κ(n)(z).

In particular, we have

lim
n→∞

E
(
〈Z(∞)

t − Z(n)
t , eθ〉

)
= 0,

and since for any r ∈ R

E
(∣∣∣〈Z(∞)

t , eθ+ir〉 − 〈Z(n)
t , eθ+ir〉

∣∣∣) ≤ E
(
〈Z(∞)

t − Z(n)
t , eθ〉

)
,

we conclude that E(〈Z(∞)
t , eθ+ir〉) = etκ(∞)(θ+ir).

One can further show that (Z(∞)
t : t ∈ R+) possesses a càdlàg version in Pθ

and satisfies the branching property; see Proposition 2 in [Ber16] and its proof
for a closely related argument. Any branching Lévy process is thus also a nested
branching random walk, in the sense that its restriction to dyadic rational times
fulfills (1.1) and (B); more precisely its cumulant function is given by (5.4). This
corresponds to the second statement of Theorem 1.1.

Our main task in the rest of this work is thus to establish that conversely,
every nested branching random walk can be obtained as the restriction to dyadic
rational times of some branching Lévy process.

6 Genealogical structure of a nested branching
random walk

The purpose of this section is to complete the proof of Theorem 1.1, specifically
to show that every nested branching random walk arises as the restriction to
dyadic rational times of a branching Lévy process. More precisely, the main
result of the section is the following.
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Proposition 6.1. The càdlàg extension of a nested branching random walk
(Zt : t ∈ D) satisfying (1.1) is a branching Lévy process (possibly constructed
on some enlarged probability space).

Recall that this was established in Section 4 in the case of processes with
finite birth intensity, and that, by construction, a branching Lévy process is
the increasing limit of a sequence of branching Lévy processes with finite birth
intensity. We have to show that similarly, every nested branching random walk
is the increasing limit of a sequence of nested branching random walks with finite
birth intensities. This will be achieved by showing first that nested branching
random walks can be endowed with a natural 5 genealogical structure. In turn,
the genealogical structure will enable us to kill certain atoms depending on the
behavior of their ancestral trajectories, and yields the desired approximation by
branching processes with finite birth intensities.

To start with, let us introduce some definitions in this area. A ranked par-
tition is a sequence Π = (Π(j) : j ∈ N) of pairwise disjoint blocks (i.e. subsets)
of N. We do not request the family of blocks {Π(j) : j ∈ N} to be a partition
of N, the disjoint union of all the blocks

⊔
Π(j) may be a strict subset of N.

Next, given some set of times, say T ⊆ R+, a genealogical structure is a family
(Πs,t : s, t ∈ T with s ≤ t) of ranked partitions which is consistent, in the sense
that for all times r ≤ s ≤ t, one has

∀j ∈ N, Πr,t(j) =
⊔

i∈Πr,s(j)

Πs,t(i); (6.1)

we further request that Πt,t is simply the ordered partition into singletons (of N
or {1, . . . , n}). In words, Πr,t(j) should be viewed as the block of N formed
by the descent at time t of the individual j at time r, and the consistency
requirement (6.1) just stresses the plain fact that the latter must coincide with
the descent at time t of all individuals at time s which themselves descend from
the individual j at time r.

6.1 Natural genealogy of a branching random walk
The purpose of this section is to recall some basic features about discrete ge-
nealogies for branching random walks, which will then be useful to construct
a genealogical structure in dyadic rational times for nested branching random
walks. The presentation is tailored to fit our purpose. In this direction, we first
recall a construction of branching random walks using for genealogical tree the
Ulam tree U.

Let % denote the distribution of a random point measure, so we view % as
the law of some random non-increasing sequence x = (xi : i ∈ N) in [−∞,∞)
with limi→∞ xi = −∞. We consider (x(u) : u ∈ U) a family indexed by the
Ulam tree of i.i.d. copies of x. For every u ∈ U and j ∈ N, assign weight xj(u)
to the vertex u.j and weight 0 to the ancestor ∅. For every u ∈ U, we then write

Xu =
|u|∑
j=1

xu(j)(uj−1),

5Beware however that this is by no mean canonical, in the sense that defining the ge-
nealogical structure may require some additional randomness, i.e. one may have to work on
an enlarged probability space.
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where we recall that u(j) is the j-th letter of the word u and uj the prefix
consisting of the j first letters in u. For every generation n ∈ Z+, we consider
the random point measure,

Zn =
∑

u∈U:|u|=n

δXu .

Further, for all integers 0 ≤ k ≤ `, we define a ranked partition Πk,` such that
for every j ∈ N, the block Πk,`(j) is given by the ranks at generation ` of the
atoms which descend from the j-th largest atom at the k-th generation6.

This construction yields a branching random walk Z = (Zn : n ∈ Z+) with
reproduction law % and endowed with a genealogical structure (Πk,` : 0 ≤ k ≤ `)
that we call natural, and any branching random walk Z can be obtained by such
a construction. Even though the construction is not canonical, in the sense that
the family (x(u) : u ∈ U) cannot always be recovered from (Zn : n ∈ Z+) and
different natural genealogies may sometimes be defined for the same branching
random walk, we stress that if Π and Π′ are two natural genealogies of the same
branching random walk Z, then the pairs (Z,Π) and (Z,Π′) have the same
distribution.

For every generation 0 ≤ k ≤ n and every j ∈ N, we write zj,n for the j-th
largest atom of Zn and zj,n(k) for its ancestor at generation k, defined by

zj,n(k) = zi,k if j ∈ Πk,n(i).

In particular zj,n(n) = zj,n.
To sum up, with this notation, every atom in the branching random walk

is uniquely labelled by a couple (j, n) ∈ N × Z+. The genealogical structure Π
is a non-anticipative encoding of the genealogical tree of the branching random
walk to this labelling. Using this notation, we next recall the pathwise version
of the many-to-one identity; see Theorem 1.1 in Shi [Shi15].

Lemma 6.2. Let (Zn : n ∈ Z+) be any branching random walk that fulfills (1.1)
and is endowed with a natural genealogical structure. There exists a random walk
S = (Sn : n ∈ Z+) such that for every k ∈ N and every measurable non-negative
function f : Rk → R, we have

E

∑
i≥1

f(zi,k(1), . . . , zi,k(k))

 = ekκ(θ) E
(
e−θSkf(S1, . . . , Sk)

)
.

6.2 Nested genealogies for nested branching random walks
In this section, we consider a nested branching random walk (in dyadic rational
times) Z = (Zt : t ∈ D) and shall construct, up to a possible enlargement of
the probability space, a natural genealogical structure for this process. Roughly
speaking, discrete time skeletons of a nested branching random walk are branch-
ing random walks, and our aim is to show that these discrete time skeletons can
be equipped with compatible natural genealogies, in the sense that the genealog-
ical structure of a coarser skeleton results from the restriction of the genealogical
structure of a finer skeleton.

6If two atoms are at the same position, we order them using the lexicographic order of
their index in the genealogical tree U.
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The construction of a natural genealogical structure for Z relies on the follow-
ing easy consequence of the branching property (B) combined with the existence
of conditional distributions; the proof is straightforward and therefore omitted.

Lemma 6.3. Let (X,Y ) be a pair of a random point measures distributed as
(Z2t, Zt) for some t ∈ D. Up to enlarging the probability space, one can construct
a sequence Y 1, Y 2, . . . of independent copies of Y = (yk : k ∈ N) such that

X =
∑
k≥1

τykY
k.

We start by considering the branching random walk Z0 := (Zn : n ∈ Z+)
and use repeatedly (B) to construct (possibly on some enlarged probability
space) a natural genealogical structure Π0 = (Π0

k,` : 0 ≤ k ≤ `). Next, using
Lemma 6.3 with t = 1/2 enables us to construct similarly (possibly on some
further enlargement of the probability space), a natural genealogical structure
Π1 = (Π1

k,` : 0 ≤ k ≤ `) for the branching random walk Z1 := (Zn/2 : n ∈ Z+)
such that Π1

2k,2` = Π0
k,` for all integers 0 ≤ k ≤ `. By iteration, for each

m ∈ N, we can equip the branching random walk Zm := (Zn.2−m : n ∈ Z+) with
a natural genealogical structure Πm such that Πm

2k,2` = Πm−1
k,` for all integers

0 ≤ k ≤ `. This enables us to define unambiguously a genealogical structure in
dyadic rational times Π = (Πr,s : 0 ≤ r ≤ s and r, s ∈ D) by Πr,s = Πn

k,` for
any integers k and n with r = k.2−n and s = `.2−n.

We are now able to establish the following pathwise version of the many-to-
one formula for nested branching random walks. For every j ∈ N and dyadic
rational times s, t ∈ D with 0 ≤ s ≤ t, we write zj,t for the j-th largest atom of Zt
and zj,t(s) = zk,s with k being the unique integer such that j ∈ Πs,t(k). Recall
also the notation used in Lemma 3.1; in particular ξ denotes a Lévy process with
characteristic exponent Ψ defined by (2.1). Similarly, in this notation, every
atom in Z is uniquely labelled by a pair (j, t) ∈ N × D, and the genealogical
structure Π encodes the genealogical tree of this labelling.

Lemma 6.4 (Pathwise many-to-one formula). The following assertions hold
with probability one for every dyadic rational time t:

1. For every j ∈ N, the trajectory defined for s ∈ [0, t] ∩ D by s 7→ zj,t(s),
possesses a càdlàg extension to s ∈ [0, t].

2. For every non-negative measurable functional on the space of càdlàg paths
on [0, t], we have the pathwise many-to-one formula:

E

∑
j∈N

f(zj,t(s) : 0 ≤ s ≤ t)

 = E
(

e−θξt+tκ(θ)f(ξs : 0 ≤ s ≤ t)
)
.

Proof. Consider first a functional f that only depends on the trajectory evalu-
ated at finitely many dyadic rational instants. Then the many-to-one formula
in the statement immediately follows from Lemma 6.2. Then an appeal to the
monotone class theorem enables us to extend this to all measurable functionals
f : RDt → R+, where Dt = [0, t]∩D and RDt is endowed with the sigma-algebra
generated by the coordinate maps ω 7→ ω(s) for ω ∈ RDt and s ∈ Dt.
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Since Lévy processes have càdlàg paths a.s., our first claim follows taking for
f the indicator function of {ω ∈ RDt : ω has no càdlàg extension} (that this set
is indeed measurable is readily seen by considering the number of up-crossings
of a path ω ∈ RDt from a to b with a < b rational numbers). The many-to-
one formula can then be extended to non-negative measurable functionals on
the space of càdlàg paths on [0, t] by another application of the monotone class
theorem.

Remark 6.5. Recall from Proposition 3.2 that Z admits a càdlàg extension on
Pθ. The first point of the previous lemma gives a slightly distinct statement: to
each atom can be associated a càdlàg ancestral trajectory.

More generally, a nested branching random walk started from an arbitrary
point measure µ can also be endowed with a natural genealogical structure. The
case when µ = δx is a Dirac point mass is of course trivial, as the process is
then simply obtained by translating by x all the atoms of Z, which does not
affect its genealogical structure. In the general case µ =

∑∞
i=1 δxi , one needs to

combine the genealogies of independent copies of Z started from a Dirac point
mass. We refrain from giving a precise description as ordering children from
different ancestors would force us to introduce some cumbersome notation.

We now conclude this section by mentioning that the simple branching prop-
erty (B) extends to natural genealogies. Specifically, for every t ∈ D, condition-
ally on Zt = µ, the process (Zt+s : s ∈ D) equipped with the shifted genealog-
ical structure (Πt+r,t+s : 0 ≤ r ≤ s) is independent of (Zs : 0 ≤ s ≤ t) and
(Πr,s : 0 ≤ r ≤ s ≤ t) and has the same distribution as the nested branching
random walk started from µ and equipped with a natural genealogical structure.
Indeed, the same statement holds in the setting of branching random walks, and
this easily yields the version for dyadic rational times.

6.3 Censoring nested branching random walks
We are now in good shape to construct censored versions of nested branch-
ing random walks, roughly speaking by killing individuals at the first time
when their ancestral trajectory has a large negative jump. Specifically, fix some
threshold n > 0 and consider for every t ∈ D the random point measure

Z
(n)
t :=

∞∑
k=1

1{∆zj,t(s)>−n for all 0≤s≤t}δzj,t ,

where ∆zj,t(s) := zj,t(s) − zj,t(s−) denotes the possible jump at time s of the
ancestral trajectory of the j-th atom at time t.

Lemma 6.6. For every b > 0, the censored process Z(n) := (Z(n)
t : t ∈ D) is a

nested branching random walk with finite birth intensity.

Proof. The branching property extended to natural genealogies that was dis-
cussed at the end of the preceding section readily entails that the branching
property (B) of Z is transferred to the censored process Z(n).

Next, using Lemma 6.4, we have

E
(
〈Z(n)

t ,1〉
)

= E
(

e−θξt+tκ(θ)1{∆ξs>−n for all 0≤s≤t}

)
.
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Recall that ξ is a Lévy process, denote its Lévy measure by λ(dx). Killing ξ
at the first instant when it has a negative jump smaller than −n produces a
Lévy process, say ξ†, with Lévy measure λ†(dx) := 1{x>−n}λ(dx) and further
killed at an independent exponential time with parameter λ((−∞,−n)), say T †.
Hence we have

E
(
〈Z(n)

t ,1〉
)

= exp(tκ(θ))E
(

e−θξ
†
t , t < T †

)
.

The fact that the Lévy measure λ† is zero on (−∞,−n) ensures the finiteness
of the expectation in the right-hand side; see for instance Theorem 25.3 in Sato
[Sat99], proving that the censored process Z(n) has finite birth intensity.

We now have all the ingredients needed to prove of Proposition 6.1.

6.4 Proof of Proposition 6.1
Let Z = (Zt : t ∈ D) be a nested branching random walk endowed with a nat-
ural genealogy and construct the sequence of censored processes Z(n) as in the
preceding section. Recall from Lemma 6.6 that the latter are nested branching
random walks with finite birth intensity, and thus their càdlàg extension to real
times are branching Lévy processes, as it was shown in Section 4. We write
(σ2
n, an,Λn) for their characteristics.
Next observe from the construction of the censored processes, that for every

n ≤ n′, Z(n) results from Z(n′) by killing the children (and of course deleting
also their descent) which are born at distance greater than n at the left of their
parent, which is precisely the transformation appearing in Lemma 5.2. This
entails that σ(n) = σ(n′), an = an′ , and that Λn coincides with the image of
Λn′ by the transformation x 7→ x(n) defined in Section 4.2, i.e. which consists
in sending atoms in (−∞,−n) to the cemetery state −∞. This enables us to
define unambiguously σ2 := σ2

n, a := an and a measure Λ on P such that, for
every n ∈ N, the image of Λ by the transformation x 7→ x(n) is Λn.

Plainly, Z(n)
1 ≤ Z1, and (1.1) thus ensures that

sup
n≥0

lnE
(
〈Z(n)

1 , eθ〉
)

= sup
n≥0

κn(θ) <∞,

where κn denotes the cumulant of Z(n). Recall that the latter is given for purely
imaginary complex numbers by the formula in Lemma 5.1.5, so that by analytic
continuation, we have

κn(θ) = σ2

2 θ2 + aθ +
∫ ( ∞∑

i=1
eθx

(n)
i − 1 + θx11|x1|<1

)
Λ(dx).

By letting n→∞, we now see that the measure Λ has to fulfill the requirements
(5.1) and (5.2).

From Lemma 5.2 and Definition 5.4, we know that the increasing limit of
the sequence of censored processes

Z
(∞)
t := lim

n→∞
Z

(n)
t , t ≥ 0
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is a branching Lévy process with characteristics (σ2, a,Λ), and it just remains
to identify the latter with Z on dyadic rational times. This follows from the
monotone convergence theorem and the pathwise many-to-one formula, as

E(〈Z(∞)
t , eθ〉) = lim

n→∞
E(〈Z(n), eθ〉)

= lim
n→∞

etκ(θ)P( inf
0≤s≤t

∆ξs > −n)

= E(〈Zt, eθ〉).

using that max0≤s≤t |∆ξs| < ∞ a.s. and etκ(θ) = E(〈Zt, eθ〉). Since 〈Zt, eθ〉 ≥
〈Z(∞)

t , eθ〉 a.s. for all t ≥ 0, we conclude that Z = Z(∞) a.s.
This completes the proof of Proposition 6.1. We now observe that the first

part of Theorem 1.1 follows from Propositions 2.1 and 6.1.
Remark 6.7. Note there exists a unique triplet of characteristics (σ2, a,Λ) associ-
ated to a nested branching random walk Z. Indeed, this is the case for branching
Lévy processes with finite birth intensity, hence (σ2, a,Λn) is uniquely defined
for all n ∈ N. In particular, it shows that (σ2, a,Λ) indeed characterizes the law
of the branching Lévy process.

6.5 Application to infinitely ramified point measures on a
half-line

We say that a random point measure Z is supported on R− if Z((0,∞)) = 0 a.s.,
and shall now conclude this article by characterizing infinitely ramified point
measures having that property. Theorem 1.1 entails that the distribution of an
infinitely ramified point measure is determined by a triple (σ2, a,Λ) with σ2 ≥ 0,
a ∈ R and Λ a measure on P satisfying (1.2), (1.3), and (1.4), which we call
therefore the characteristics of Z. Equivalently, (σ2, a,Λ) is the characteristic
triple of the branching Lévy process (Zt : t ∈ R+) such that Z1 has the same
law as Z.

Corollary 6.8. An infinitely ramified point measure with characteristic triple
(σ2, a,Λ) is supported on R− if and only if the following three conditions are
fulfilled:

• σ2 = 0 and Λ ({x ∈ Pθ : x1 > 0}) = 0,

•
∫
Pθ (1 ∧ |x1|)Λ(dx) <∞,

• a+
∫
Pθ x11{x1>−1}Λ(dx) ≤ 0.

Proof. It follows from the many-to-one formula (Lemma 3.1) that Z is supported
on R− if and only if the Lévy process ξ with characteristic exponent Ψ verifies
ξ1 ≤ 0 a.s., that is, if and only if −ξ is a subordinator. Recall that Ψ(r) =
κ(θ + ir)− κ(θ), so (5.4) shows that

Ψ(r) = −σ
2

2 r2 + iar +
∫
Pθ

( ∞∑
i=1

(eirxi − 1)eθxi − irx11|x1|<1

)
Λ(dx).
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This enables us to identify the Gaussian coefficient of ξ as σ2, and its Lévy
measure, say λ, as satisfying for any measurable function f : R∗ → R+:∫

R∗
f(x)λ(dx) =

∫
Pθ

∞∑
i=1

f(xi)eθxiΛ(dx).

The fact that λ is zero on (0,∞) when −ξ is a subordinator is thus equivalent
to Λ ({x ∈ P : x1 > 0}) = 0. Further, the identity∫

(−1,0)
|x|λ(dx) =

∫
Pθ

∞∑
i=1

eθxi |xi|1{−1<xi<0}Λ(dx) <∞,

and (1.4) show that the condition
∫

(−1,0) |x|λ(dx) < ∞ is then equivalent to∫
P(1 ∧ |x1|)Λ(dx) < ∞. When the preceding two requirements hold, the drift

coefficient of ξ is given by a +
∫
P x11{x1>−1}Λ(dx), and the statement then

follows from the characterization of subordinators in the larger class of Lévy
processes.
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