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Abstract

We propose a smart warehouse environment where not only inventory items but also the

shelves are tracked by an RFID-based system. Both operational activities and warehouse

configurations are continually monitored to facilitate real-time response. We study the dy-

namics of a flexible warehouse scenario where items of any type can be dropped off anywhere

within the premises. Unlike existing models, we relax both the location constraint and local

(e.g., item-type level) capacity constraints with a periodically renewable fixed global capac-

ity. Dynamic decisions on location and local capacity are made based on the stochastic

Markovian demand states. We optimize processing and routing constraints and compare

the performance of this flexible storage setup with classical models through multiple levels of

real-time decision support. Our results provide corroborating evidence to support the follow-

ing observations: (1) “free pick-n-drop” combined with fluid warehousing mechanism greatly

reduces trip costs and lead time for single trip demand, (2) there exists a lower bound on

the performance in such a setup with fixed local capacities, and (3) the lower bound can be

further improved when inventory capacity and location are dynamically adjusted according

to actual demand patterns.

Keywords: Flexible Warehousing, Smart Logistics, Knowledge-Based System

1 Introduction

With the presence of multiple intertwining business processes, complexity-induced errors are

common in warehouse management. While such errors are reduced through intelligent automa-

tion, the complexity of processes that deal with a large number of tools, work-in-process, and raw

materials contributes to this reality. For example, in large automobile manufacturing plants, a

significant amount of resource wastage occurs due to misplaced items and containers (Hanebeck

and Lunani 2008). Automobile manufacturers spend millions of dollars each year just to retrieve

and to replace missing containers in a plant. Operational uncertainties from both demand and

supply sides are associated with deleterious impact on logistics services that value high efficiency

and low cost. In well-managed manufacturing plants, adopted common practice such as the al-
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location of specific locations for each item type where the items are sorted as well as adherence

to 5S principles lower the probability of errors.

Randomness in a complex operational system is manageable through today’s IoT-based

tracking technologies. Enabled by RFID, the provision of a more efficient service can be achieved

through a logistic decision support system that is different from those in existing literature. In

this study, we are motivated to investigate such a system by allowing traceability on both in-

ventory items and warehouse storage equipment. Existing literature on logistics traceability are

mostly focused on tracing inventory items (e.g., CAkiCi et al. 2011, Chou et al. 2007, Tu et

al. 2009). We find it equally important to track and trace storage equipment based on inven-

tory flow information. A “smart” self adjusting warehouse is able to manage more operational

randomness, a characteristic that can benefit a wide spectrum of business applications from

workshop management in SMEs to large-scale production inventory management in big firms.

Difficulties of managing inventory in large complex operational environments originate from

randomness and various intertwining business processes (e.g., Thiétart and Forgues 1995) be-

cause it is hard to monitor, collect, and process necessary information and to make real time

decisions based on seemingly random information (e.g., Simon 1959). Less information uncer-

tainty, simpler operational routine and work space assignment result in reduced human errors

and higher quality output based on operational production and services (e.g., Akerlof 1970).

Appropriate rules are needed to ensure a relatively simple and clean working environment in

order to facilitate the core operational tasks, although it creates additional costs (e.g., Hasle et

al. 2012). Well-structured warehouses, carefully designed inventory routines and locations, and

strict need-to-follow operational schedules create various costs that are significant to the organi-

zations. In inventory management, routine inventory check, warehouse shelf optimization, item

assortment and item localization demand intense labor investment and could also lead to lag in

lead times (e.g., Rosenblatt et al. 1993). To minimize uncertain and inaccurate information in

inventory, transportation, and production processes, the traditional means have been to adopt

a set of optimization rules that simplify the processes. It is costly to maintain pre-scheduled

orders and rules, including transaction costs, additional trip costs, and prolonged operational

lead time.

We investigate the possibility of relaxing these rules with minimal interference on the core

jobs. In applications where pick-up and drop-off of multiple item-types occur, for example, it

is traditionally common for similar items to be grouped together in one location to facilitate

ease of retrieval. Such a setup generally faces two issues: (a) drop-off incurs both search cost

to identify the location to drop off as well as the drop-off cost itself and (b) expansion to
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facilitate overflow drop-offs may not be easy to accomplish. To address issues created by these

rigid-rules, we introduce flexibility in inventory system by incorporating moveable warehouse

shelves as trackable items. While existing methods do not seem to solve today’s increasing

complexity of warehouse and production-site management problems, IoT/RFID enabled tracking

technologies can help reduce such problems with increased information transparency in real-

time. In our proposed system, antenna-equipped moveable warehouse shelves are technologically

feasible whereby either the whole or parts of the shelves can be reallocated to another location

at low operational cost. Equipped with a reader, these intelligent shelves integrate to form

a Machine to Machine (M2M) network. Based on RFID-enabled tracking/tracing capability,

it is easy to acquire and possess complete information on both item-level inventory and each

item’s exact location in the warehouse. When an RFID-tagged item is freely dropped off or

picked up, the system is aware of its location change and new status (e.g., in working order or

temporarily out of service). Similar information with regard to moveable warehouse equipment

can also be readily monitored. We study a novel concept of flexible warehousing by relaxing

some of the most commonly adopted rules and practices, which were traditionally built upon the

economy-of-scale. In summary, the contribution of our approach is twofold. Firstly, we propose a

free-pick-and-drop mechanism that allows workers to freely (or even randomly) move inventory

items at the highest convenience without any need to remember or search for exact drop-off

locations, thanks to the RFID-based tracking system. Secondly, we propose a fluid warehousing

concept that enables adjustment of warehousing configurations (location, capacity, routine, etc.)

in real-time according to the dynamics of demand. The fluid warehousing part is also enabled

by tracking/tracing technology on shelves and containers that allows the information system to

establish and remain in real-time contact with (RFID-)tagged items.

We model and validate the proposed flexible warehousing concept based on a classical facil-

ity location problem setting where we attempt to understand its dynamics and performance by

gradually relaxing the parameters on location, local capacity, and item pick-up/return policies.

Then, we consider associating/disassociating item identification and storage identification infor-

mation in real-time as necessary and appropriate. This association is temporary compared to

that in traditional storage/item association where it is kept permanently bound. In the classical

model, the placement of an item in the ‘wrong’ shelf or container would result in information

discrepancy and, in many cases, inventory shrinkage. Traditionally, in order to reduce error and

consequently inventory shrinkage, the arrangement and movement of physical goods and com-

ponents in a production environment is characterized by a set of previously designed routines

and rules so that any issue that arises in terms of locating goods/materials/tools is controlled.
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We argue that such a setting, while simultaneously bringing certainty to the management of the

system, results in additional cost and efficiency loss. For example, when a given component is

stored at a pre-specified location in the warehouse, it signifies that each operational transaction

related to this component should be traced or be designated back to this location. There is an

associated cost that arises as a direct consequence of detouring, sorting and returning items.

Unlike in traditional literature, we don’t assume the type of inventory items. Instead, we con-

sider a large variety of tools, machines, work-in-process, containers, and storage shelves that

may be transferred on site. The way to effectively manage the inventory of a large number of

different types of items is also different from managing inventory of a single type.

The remainder of this paper is organized as follows. We begin with a brief review of related

literature and practices in the next section. We then present the model formulation and struc-

tural results in the three different systems 1. transaction support, 2. decision support, and 3.

knowledge-based system in Section 3. In Section 4, we discuss numerical analysis results and

evaluate the performance of the proposed mechanism. We conclude the paper in Section 5 with

discussion on the results and possible future directions of this research.

2 Related Literature

Some parts of the proposed flexible warehousing concept have already been applied in practice.

For example, in Paris, Vélib’ customers can rent bicycles by picking and returning bicycles from

their nearest Vélib’ depots. The setting considered shares some similarity with bicycle sharing

systems from the perspective of pick-up and drop-off at any (different) location in that network.

Some of these bicycle sharing systems comprise several features that include the facility to pick-

up as well as drop-off bicycles at any of the several stations that are distributed throughout the

city (e.g., DiMaio 2009). Smooth operation of such bicycle sharing systems requires each of the

stations to have enough bicycles that are fit and ready to be used as well as enough free space

for returning bicycles. Violation of such constraints (i.e., not enough bicycles or bicycle return

space) necessitates bicycle renters to travel to stations at nearby locations and incur unnecessary

associated inconvenience. To minimize the possibility of occurrence of such situations, bicycle

stations do their best to ensure that none of the stations are empty or full to allow for timely

departure and arrival of rental bicycles. For example, Vélib’ in Paris began with around 1500

stations, 20000 bikes, and about 70000 travels each day. The vélib’ system balances the stations

with the use of 20 trailer-trucks that transport bicycles. These trucks ply among stations to

maintain the ratio of the total number of available bicycle parking places and the number of
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available bicycles at each station close to a pre-determined value (e.g., Benchimol et al. 2011,

Nair et al. 2013). In 2011, the Paris city hall introduced another service called autolib’ that

enables customers to pickup and return rental cars at autolib’ charging points or kiosks that are

distributed all over Paris (Martin and Darpy 2015, Tironi 2015).

Another example is the physical telephone directory in which once the initial setup cost is

incurred to sort all names in alphabetical order and then the directory is printed, it is easy to

search for any given name (vs. in a scenario where names are printed in random order). A similar

parallel exists in sequential database storage. In the directory and sequential database examples,

‘work’ (sort based on some index and then identify the exact physical disk or tape location

where a given record is stored) is incurred during ‘drop-offs.’ However, the main distinction in

the warehouse, Vélib’, and autolib’ vs. printed telephone directory and sequential database is in

the number of times ‘pick-up’ of an item instance occurs. In the former, it’s just once for each

physical item instance from a given location whereas for the latter it could be any number of

times which in fact is the primary source of efficiency since the resource spent at the ‘drop-off’

stage pays off (or, is divided among instances) at the ‘pick-up’ stage.

One additional recent example is that of Amazon’s ‘chaotic’ warehouses where items are

stored in individually bar-coded shelf locations without regard to their types (e.g., a toy item

stored next to a stationery item). Similar to that at Amazon, Lego’s fully automated ware-

houses have operated without human interferences for about 20 years now. In Amazon’s, Lego’s

and some fast fashion automated warehousing setting, the demand location and quantity are

statistically stable, with these demands generated at the main inbound and outbound gates.

Such automated systems are relatively easier to manage because of their statistical certainty

and limited number of choices. In our study, we investigate a more general warehousing setting

where demands are internally generated from daily job scheduling and are subject to human

interferences and other uncertainties. Typical example can be found at an automobile manufac-

turing/repairing workshop or a congested health care environment where inventory buffer areas

are highly sparse and limited and the demand is highly uncertain. In our case with random

jobs, human interference along with other important indicators, a system such as Lego’s fully

robotic warehouse does not work and we need a data-driven mechanism that brings flexibility

to warehouse and inventory management.

The considered mechanism is rooted in the classical facilities location problem. Given that

there are several excellent review papers that provide a good overview of existing research

literature on facilities location (e.g., Balakrishnan and Cheng 1998, Farahani et al. 2009, Snyder

2006), we do not attempt to repeat the same here. While some of these existing research work
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consider the facilities location problem from a static perspective, others address the problem

from a dynamic perspective. The primary difference between static and dynamic perspectives

is in the identification of appropriate locations as a one-shot process in the former, while the

latter involves a temporal component wherein facilities are incrementally added over time. For

example, Current et al. (1998) consider dynamic models that are implicit as well as explicit,

where the former are essentially static where all facilities are opened simultaneously and remain

open over the planning horizon and in the latter the facilities are incrementally opened over

time. Sana (2011) consider a model that investigate the impact of business strategies such as

optimal order size of raw materials, production rate and unit production cost, and idle times in

different sectors on collaborating marketing system, with an analytical method to optimize the

production rate and raw material order size for maximum expected average profit.

Existing literature considers dynamic facility location from different perspectives. For ex-

ample, Fotakis (2004) applies a novel merger rule to the k-median facility location problem

with a guaranteed constant performance ratio for O(k) medians. For k facilities, the algo-

rithm is defined to be R-competitive when the cost is at most R times the optimum cost, and

competitive-ratio is the smallest such R. Mettu and Plaxton (2003) consider incremental unca-

pacitated k-median problem and develop a polynomial-time algorithm with a competitive ratio

of 29.86. Similarly, Charikar et al. (2004) develop a deterministic 8-competitive algorithm

for incremental clustering. They also develop a 2e-competitive algorithm for the hierarchical

k-center problem. Gonzalez (2005) develops a 2-competitive algorithm for an incremental ver-

sion of the facility location problem. Dasgupta et al. (2005) study the hierarchical k-center

problem and develop a competitive hierarchical clustering algorithm. Plaxton (2006) develops a

12.16-competitive approximation algorithm for the incremental uncapacitated facility location

problem. With a general framework for cardinality constrained problem, Lin et al. (2010) extend

this and develop algorithms for k-vertex, k-set cover, k-median, and k-spanning tree, and show

polynomial time computation of a 16-competitive incremental median sequence. Hartline and

Sharp (2006) consider scenarios where the input varies across time, and develop a general model

that converts conventional algorithms to incremental algorithms with only a constant factor loss

in approximation power. McCutchen and Khuller (2008) develop streaming algorithm with a

constant factor approximation to the cluster radius for two variants of the k-center clustering

problem, where each cluster is required to contain at least a predetermined number of input

points. Albareda-Sambola et al. (2009) study the multi-period incremental service facility loca-

tion problem with a set number of new facilities that are introduced over a finite time horizon in

order to dynamically satisfy demand generated by customers. Friggstad and Salavatipour (2011)
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consider the mobile factory location problem with the goal to minimize the movement of factory

locations. Basu et Nair (2014) investigate the portfolio effect of a multi-period inventory control

system. Shang et al (2008) propose an effective DSS system to determine the safety stock level

and the number of weeks forward coverage (WFC) for each SKU. Atasoy et al (2012) consider

the production/inventory problem of a manufacturer (or a retailer) under non-stationary and

stochastic supply availability.

We consider a blend of both the static and the dynamic variations in which the number of

locations (of buffers, shelves, or silos) is fixed, whereas the locations themselves are mobile as

per the dictates of the operations environment (e.g., warehouse, manufacturing shop-floor). The

considered mechanism is different from the concepts of emergency hub and expedite hub. There

is no need for prior planning. If the nearest silo is not available for service, operators find the

second or third nearest silos. The operators can either rely on direct line-of-sight for identifying

the available silos/items or utilize hand-held devices to provide real-time inventory information.

In both emergency hub and expedite hub, explicit short-range planning and coordination is

almost always required to insure the continuality and service quality for the logistic service

network.

In addition to the location of the facilities themselves, we consider an environment where

every item (e.g., products, tools, shelves) is item-level RFID-tagged, and the location of each of

these items are in turn known in real-time with a reasonable degree of accuracy. The dynamics

associated with item-level RFID tags have been extensively studied by researchers during the

last decade (e.g., Bose et al. 2008, Bose et al. 2011, Meiller et al. 2011, Tu et al. 2009).

Iravani et al. (2014) study the optimal control of process and inventory flexibility where process

flexibility is modeled as a multi-functional production facility that produces up to two types

of products. Inventory flexibility is modeled as made-to-stock firm-driven one-way product

substitution. Zhou et al. (2009) study a retailing decision support system with dynamic pricing

and retail shelf inventory management, and the results show significant profit increase if the retail

stores can dynamically alter the price and the inventory level based on the real-time profile of

on-site customers. Another related scenario is that of ambulance location and relocation models

with or without the use of GIS (Geographical Information Systems). Brotcorne et al. (2003)

provide a good overview of these models and observe that dynamic models (e.g., Farahani et

al. 2009) that depend on sophisticated and accurate search heuristics are required to not only

include the expected cost incurred when no suitable ambulance is available to answer a call, but

also to incorporate variations in travel times during the day when computing shortest paths.

The number of ambulance vehicles is determined and fixed at a certain level in the beginning,
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and the location of each of these are dynamically varied as per various criteria that include

instantaneous demand at various locations, forecasts based on the time of day as well as day of

the week, among others.

3 Model Formulation & Structural Results

We begin our study by first fixing mobile and trackable shelves at candidate locations at the

work site (e.g., manufacturing shop floor). These RFID-enabled shelves can be freely lo-

cated/integrated at a set of candidate locations, creating dynamic local inventory capacities.

When an item is picked up from the shelf, the information system immediately receives this

information; the system also receives information in real-time when an item is dropped off.

Unlike those defined in traditional inventory management literature, we don’t limit the type of

our inventory items. Instead, we consider a large variety of tools, machines, work-in-process,

containers, and storage shelves that may change locations on site at any time.

A traditional inventory warehouse with a set of inventory items is illustrated in Figure 1.

The inventory space is divided and identified by an inventory ID (for example, the first row

first column has ID “ABC123”) and the items are identified respectively by a product ID. A set

of inventory ID and product ID association is defined so that we know what goes where. For

example, item “ABC123DF” is always stored in the “ABC123” storage area. In this example,

we identify items at the categorical level instead of the item level. It signifies that we may find

multiple items that share the same product ID.

ABC123 QBD204 FEG301 TFD482 ETC581
ABC124 QBD205 FEG302 TFD483 ETC582
ABC125 QBD206 FEG303 TFD484 ETC583

ABC123DF

Inventory Storage

ABC124TG

ABC125DV

QBD204EF

QBD205ER

QBD206WZ

Inventory Goods, Materials, and tools

Figure 1: Product and Inventory Storage Association
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Inventory demands can be generally categorized as inbound (to fetch) and outbound (to re-

turn). It is relatively much easier to manage the demands that are fulfilled at a few pre-assigned

locations. Some of the recent advances in automated warehouse systems, such as those in Ama-

zon and Lego, take advantage of this nice property when their inbound/outbound demands are

clustered in a few facility locations (e.g. the collection/distribution port). In a manufacturing

shop-floor context, the cost of physically associating product ID with the inventory ID is signif-

icant due to the time it takes to locate the correct storage location for retrieving or returning

an item. Demands to retrieve an inventory item may occur at locations that are purely random.

The search cost for an item includes the time and effort to locate an item that is available with

its location information. The cost to fetch an item is the effort and lead time spent on the trip.

The last cost is the returning cost, which is incurred when the jobs are completed and tools

need to be returned to the original inventory location according to the association rule. When

combined together, these three individual costs are generally significant.

ABC123 QBD204 FEG301 TFD482 ETC581
ABC124 QBD205 FEG302 TFD483 ETC582
ABC125 QBD206 FEG303 TFD484 ETC583

Principal Inventory Storage

ETC581DG

ABC123DF

QBD205ER ABC125DV

QBD204EF

FEG303IJ
FEG302IU

Principal Operational Line

Figure 2: Free PicknDrop & Broken Product/Inventory Association

In the model/mechanism that we propose, we argue that if a worker is enabled to freely pick-

up and drop-off items at the nearest convenient location it will greatly reduce the association

cost as in the classical logistics system. In such a system, decisions on which silo to drop off items

is decentralized, but the information is available in a centralized database and the decisions on

the location and capacity of silos are also centralized. We illustrate the considered mechanism

9



ACCEPTED MANUSCRIPT

by placing five drop-off silos (e.g., shelves) around the principal operational line (Figure 2). At

each silo, there are designated drop-off areas with tracking antennas that communicate with the

RFID tags. An item can be freely dropped off at the nearest location as per convenience, with

a path as indicated by the dotted lines. Similarly, to fetch an item, information on the nearest

storage area where this item is available can be readily displayed on a hand-held mobile device.

The principal inventory storage is serviced by a distribution center in a remote area while the

item/storage affiliation information is stored in the database. The inventory information can

then be used to fetch the item either manually or through automated means. Through such a

setting, the overall cost associated with operations as well as time required to search, fetch, and

return are reduced.

While the first element in the considered system is to allow for free item pick-up and drop-

off at the closest available location, the second element is to ensure a truly flexible warehouse

operation where local capacity (i.e., capacity of silos at any given location) and inventory location

(i.e., the location of the mobile silos themselves) are able to adapt according to the inventory

service demand patterns. In what follows, we study the impact on cost and lead time with the

considered warehousing mechanism. We also discuss the various conditions, their corresponding

optimal strategies and performances. To operationalize this, we first consider a scenario where

the location of all storage silos are fixed and the capacity is constrained. We then extend the

static problem by allowing the trackable shelves to relocate and relaxing the fixed local capacity

assumptions.

3.1 Once-for-all Transaction Support System

In the transaction support system, we consider a single stage inventory management problem

that utilizes item level information to support individual transactions, such as to search the

database to retrieve the inventory availability, to register a drop-off transaction, etc. It indicates

a scenario where both the silos and the inventory items in this system are tracked in real-time

at the item-level with minimal additional operational cost. Storage distribution is initially

determined and then fixed, after which the individual silos are not allowed to relocate during

operations. Items are tracked and traced and are allowed to be placed randomly at any available

silo on site. Based on existing technology that is both cost-effective and feasible, all inventory

items are RFID-tagged, which enables the items to remain visible in the system at all times with

minimal additional operational cost. Once the fixed cost of the infrastructure (e.g., back-end

systems, readers) are taken into account, the additional cost (e.g., RFID tags) are minimal.
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 L ocation & C apacity

D is tribution D ecis ion
demand

L ocation

C hoices

T otal

C apacity

C onstraint

F ree pick

Inventory Availability & D emand information

T ransaction S upport S ys tem

S ervice

F ulfillment

F ree drop

Warehouse C onfiguration T racking/T racing

R F ID

Figure 3: Flexible Warehouse Transaction Support System

In the base case model (Figure 3), we fix all silos in terms of number and location as well as

individual capacity constraints. This scenario applies to an operational environment in which

change in layout or movement of facility equipment (here, silos) are relatively expensive or

infeasible. The number and location of silos are determined by equipment layout availability

and other site-specific constraints. In this setting, a set of demand locations and a set of available

candidate silo storage locations are given. A fixed location cost is incurred if a candidate location

is used to accommodate silos. The shipping cost is assumed to be linear based on the distance

between each demand location and candidate site. We optimize this problem given the set of

silo locations, their capacities, and the pick&drop availability status. This is similar to the

classical facility location problem, but is different in the sense of disregard for the product-

inventory-position affiliation. In the classical model, if items are randomly dropped off, the

system collapses and routines have to be setup. In our model, items can be freely placed and

fetched with minimal additional effort. The routine in terms of where (among the silos) an item

belongs, etc. is minimum and so the associated assumptions are different. We focus our research

on the investigation of a novel inventory mechanism that enables a fully flexible warehousing

configuration. Our intention is to simplify the model as much as possible by focusing on the key

elements. With the explosion in demand for low-cost passive RFID tags and recent advances in

RFID tag technology, the unit cost of these tags have dropped to the low single-digits. Moreover,

the addition of linear RFID tag cost will not change the properties of the results in our model.

We use the following notation:

• I: set of demands, indexed by i

• J : set of candidate silo locations, indexed by j
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• K: set of items, indexed by k

• Dik: inbound demand for item k ∈ K from demand i ∈ I

• Ajk: availability of item k ∈ K at silo j ∈ J

• fj : fixed cost of locating a facility at silo j ∈ J

• cijk: marginal distance cost of fetching/returning item k ∈ K between demand location

i ∈ I and silo j ∈ J . It’s strictly increasing with the distance between i ∈ I and j ∈ J .

• sijk: search cost for item k ∈ K at the i ∈ I demand location, served by the j ∈ J silo. It

is independent of distance.

• Rik: outbound demand from service location i for item k

• srijk: the search cost of an available drop-off location i with silo j for an item k

• bj : inventory capacity at j ∈ J

• Ajk: the initial state of availability of the kth item at location j

The decision variables are:

• Xj =







1 if silo is assigned at j ∈ J

0 otherwise

• Yijk: Inbound demand for kth item at location i ∈ I to be served by silo j ∈ J

• Zijk: Outbound demand of kth item at location i that is returned to silo j

Considering a single-period scenario with both inbound and outbound demands, the trans-

actional objective is to find the optimal initial configuration of the silo location, item fractions,

and the capacity control, as represented by equation (1).

Minimize
∑

j∈J

fjXj +
∑

j∈J

∑

i∈I

∑

k∈K

(cijk + sijk)Yijk +
∑

j∈J

∑

i∈I

∑

k∈K

(cijk + srijk)Zijk (1)
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Subject to:

∑

j∈J

Yijk = Dik, ∀i ∈ I (2)

∑

j∈J

Zijk = Rik ∀i ∈ I; ∀k ∈ K (3)

∑

i

Yijk ≤ AjkXj , ∀j ∈ J, ∀k ∈ K (4)

∑

k

(Ajk −
∑

i

Yijk) +
∑

k

∑

i

Zijk ≤ bjXj , , ∀j ∈ J (5)

Xj ∈ {0, 1}, ∀j ∈ J (6)

Yijk ∈ IN
+, ∀i ∈ I; ∀j ∈ J ; ∀k ∈ K (7)

Zijk ∈ IN
+, ∀i ∈ I; ∀j ∈ J ; ∀k ∈ K (8)

The objective function (1) minimizes the sum of the location costs and the shipment costs.

Expressions (2) - (5) impose constraints on economic rationality, physical capacity, and inventory

availability. Expression (2) states that all demands are fully assigned. Expression (3) is an

availability constraint, stating that a demand can only be assigned to an available silo. (4) is

integrality and non-negativity constraints. (5) represents the maximum capacity constraint. (6)

to (8) specify the integer property of the problem, while (6) is binary. (7) and (8) become binary

if we consider k as the item-level identification rather than the categorical parameter.

In what follows, we extend this single stage model by considering the warehouse operation

optimization in multiple periods, enabled by a real-time decision support system.

3.2 Multiple-Period Decision Support System

In the multiple-period decision support system, we consider an inventory management problem

that utilizes item-level information to support both individual transactions and warehouse con-

figurations. Individual transactions of inventory items include activities such as searching the

database to retrieve inventory availability, registering a drop-off transaction, and making rec-

ommendations of optimal item availability and storage availability. Warehouse configurations

allow the warehouse to reconfigure the location and capacity distribution after each operational

process. It indicates a scenario where both the silos and the inventory items in this system are

tracked in real-time at the item-level. Storage distribution is flexible and individual silos are al-

lowed to relocate during operations. Items are tracked and traced and are allowed to be placed

randomly at any available silo on site. Figure 4 illustrates the process flow of this proposed

flexible warehouse decision support system. In addition to the once-for-all system, the transac-

tion support system also provides in real time with information on warehouse configuration. In
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multi-period decision support system, we analyze the performance of service fulfillment and its

quality along with the original configuration and decisions to discover the patterns among ware-

house configuration, inventory availability and demand information. In the following period, the

patterns are continuously refined for real-time decision making for each RFID traceable item.

We consider the flow of items in multiple stages where the Markovian state of any item

depends on its previous state. Ajkt is the state parameter that represents the availability of

the kth item at the jth site at the end of the tth period. It evolves as a sequence of states

over time, where Ajk|t depends on the previous state Ajk|t−1. This problem is difficult to solve

because it is a multiple-period problem. Without considering the state parameter Ajk|t∈T in

multiple-period, the problem can be considered as a modified knapsack problem, which can only

be solved optimally in pseudo-polynomial time. This revised problem is more complex than the

knapsack problem. The state variable makes this problem different from any existing facility

location models with the consideration of the flow patterns of individual items on site.
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Figure 4: Flexible Warehouse Real-time Decision Support System

To model this, we extend the previous setup by considering the following variables:

• Rikt: outbound demand from service location i for item k at time t

• srijk: the search cost of an available drop-off location for an item

• bj : inventory capacity at j ∈ J

• t ∈ T : the period index

• Ajkt: the availability of the kth item at location j at the end of period t

• Ajk0: the initial state of inventory

14
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We now have the following revised decision variables:

• Xjt =







1 if silo is located at j ∈ J at state t

0 otherwise

• Yijkt: Inbound demand of kth item at location i ∈ I that is served by silo j ∈ J

• Zijkt: Outbound demand of kth item at location i that is served by silo j at time t

The problem becomes:

Minimize Υ(Xjt, Yijkt, Zijkt) =
∑

j∈J

fjXjt +
∑

j∈J

∑

i∈I

∑

k∈K

[(cijk + sijk)Yijkt + (cijk + srijk)Zijkt]

(9)

Subject to:

Ajkt = Ajk(t−1) +
∑

i

Zijkt −
∑

i

Yijkt ∀i ∈ I; ∀j ∈ J ; ∀k ∈ K (10)

∑

k

Ajkt ≤ bjXjt ∀j ∈ J ; ∀t ∈ T (11)

∑

j

Zijkt = Rikt ∀i ∈ I; ∀k ∈ K; ∀t ∈ T (12)

∑

j

Yijkt = Dikt ∀i ∈ I; ∀k ∈ K; ∀t ∈ T (13)

∑

i

Yijkt ≤ AjktXjt ∀j ∈ J ; ∀k ∈ K; ∀t ∈ T (14)

Xjt ∈ {0, 1}, ∀j ∈ J (15)

Yijkt ∈ IN
+, ∀i ∈ I; ∀j ∈ J ; ∀k ∈ K; ∀t ∈ T (16)

Zijkt ∈ IN
+, ∀i ∈ I; ∀j ∈ J ; ∀k ∈ K; ∀t ∈ T (17)

Equation (10) represents that flow conservation constraint. Expression (11) specifies the

capacity constraint
∑

Ajkt ≤ bj when Xj = 1. It also excludes the possibility of having any

inventory when Xj = 0. Equation (12) specifies that all outbound demands are serviced. Equa-

tion (13) specifies that all inbound demands are serviced.
∑

i

∑

k Zijkt ≤ bjXj ∀j ∈ J creates

the same boundary as expression (14) to eliminate the possibility to use a zero-sum activity at

a non-existing location and to eliminate the possible dead loop in this model.

In order to find the optimal strategy in multiple periods, we consider a dynamic program

with control variables that adjust both local inventory capacity and their locations. We assume

that local inventory capacities are manageable by periodic global evaluation and relocation of

silos on site. Prior state stochastic characteristics are used to facilitate decision making at the
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next period. We now extend previous models by dynamic programming that generates global

optimal policy over time.

The global optimization is based on expression (18), which is to maximize profit and to

minimize the total operational cost δ for the entire discrete time period.

max
vt
{δ(Υ0,Υ1, · · · ,ΥT ; v0, v1, · · · , vT−1)} (18)

where

• Υt(Xj , Yij , Zij , Ajk, bj): the cost function at any time point that equals
∑

j∈J fjXjt +
∑

j∈J

∑

i∈I

∑

k∈K [(cijk + sijk)Yijkt + (cijk + srijk)Zijkt]

• δ: the production function

• vi: vector of control variables

In expression (18), δ is the production function that considers both cost and revenue variables

to account for the total operational profit. It is a linearly decreasing function of the operational

cost at t, Υ. If we assume that all demands can be satisfactorily serviced, to maximize profit is

the same as to minimize the total cost Υ. vt is a vector of control variables that take place at

the beginning of each period, such that vt = ψt{Υt}, where ψt includes the adjustment function

based on the current performance at each stage. We consider the accumulated costs over a

finite discrete time period {t0, t1, · · · , tT−1, tT }. Then, δ(Υ0,Υ1, · · · ,ΥT ; v0, v1, · · · , vT−1) =

δ0(Υ0, v0) + δ1(Υ1, v1) + · · · + δT−1(ΥT−1, vT−1) + S(ΥT ) where S(ΥT ) is a remaining value

function at the end of finite time period. We define ξ(·) as an inter-temporal function that

connects the state and control variables such that ΥT = ξT−1(ΥT−1, vT−1). Using Bellman’s

method, the original optimization problem presented in expression (18) is the same as the

following recursive function:

V (ΥT−k, k) (19)

= max
vT−k

{δT−k(ΥT−k, vT−k) + V (ΥT−k−1, k + 1)} (20)

≡ max
ψT−k

{δT−k(ΥT−k, ψT−k(ΥT−k)) + V (ξT−k(ΥT−k, ψT−k(ΥT−k)), k + 1)} (21)

subject to:

ΥT−k+1 = ξT−k(ΥT−k, vT−k, g(vT−k)) (22)

Υ0 = Υ̃0 (23)

vT−k = ψT−k(ΥT−k) (24)

vt ∈ Θ for all t = 0, 1, · · · , T − 1 (25)
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Constraint (22) represents the state transition from the previous period; constraint (23)

represents the original state at time 0; constraint (24) determines the control function at each

period; in constraint (25), Θ is the feasible set for the control variables that is assumed to

be closed and bounded. Because Υ0 is a given value at the origin of the overall dynamic

programming problem, we are able to solve for v0 as a number that is independent of the Υs.

It is easy to compute Υ1, and hence v1, from the control rule of that period, and then Υ2, v2,

etc. This process can be repeated until all the Υi and vi values are known. Hence we have the

set of optimal control function and its production or cost outcome.

By controlling the position of each silo unit at time t, we are now able to optimize the finite

time performance in our problem setting. In a supervised environment, we are interested in the

control of both inventory silo positions and local capacities. With varying demand patterns,

we expect to control these two parameters to optimize the overall performance. We let mij

represent the operational cost of moving a silo from location i to location j. Vij is a {0, 1}

decision variable, where 1 represents the movement from location i to j. The cost of dynamic

capacity control is expressed in the control vector vt for supervised Markovian optimization. In

this model, we incorporate:

• bjt: the maximum demand that can be assigned to a location j ∈ J at time t ∈ T .

• mij : cost to relocate a silo from location i to j.

• Vijl: movement of the lth silo from ith to the jth location, where l ∈ 1, 2, · · · , L represents

a silo in the silo set L.

At any time point t, we have the following optimization problem:

Minimize

T
∑

t=1

{Υt(Xjt, Yijkt, Zijkt, Vijl)} (26)

=

T
∑

t=1







∑

j∈J

fjXjt +
∑

j∈J

∑

i∈I

∑

k∈K

[

(cijk + sijk)Yijkt + (cijk + srijk)Zijkt +
∑

l∈L

Vijl ·mij

]







(27)
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Subject to:

∑

k

Ajkt = Ajk(t−1) +
∑

i

Zijkt −
∑

i

Yijkt ∀i ∈ I; ∀j ∈ J ; ∀k ∈ K (28)

∑

k

Ajkt ≤ bjtXjt ∀j ∈ J ; ∀t ∈ T (29)

∑

j

Zijkt = Rikt ∀i ∈ I; ∀k ∈ K; ∀t ∈ T (30)

∑

j

Yijkt = Dikt ∀i ∈ I; ∀k ∈ K; ∀t ∈ T (31)

∑

i

∑

k

Yijkt ≤ bjtXj ∀j ∈ J ; ∀t ∈ T (32)

bjt = bj,t−1 +
∑

l∈L

(

∑

i

Vijl −
∑

i

Vjil

)

∀l ∈ L; ∀t ∈ T (33)

Xjt ∈ {0, 1}, ∀j ∈ J (34)

Yijkt ∈ IN
+, ∀i ∈ I; ∀j ∈ J ; ∀k ∈ K; ∀t ∈ T (35)

Zijkt ∈ IN
+, ∀i ∈ I; ∀j ∈ J ; ∀k ∈ K; ∀t ∈ T (36)

Vijl ∈ {0, 1}, ∀l ∈ L (37)

where the control function Vijl is dependent on the (t − 1)th state (33). Therefore, the local

capacities are adjustable according to the total number of storage silos at a certain location.

3.3 RFID-Enabled Real-time Knowledge-Based System: Practical Example

A knowledge-based system is a natural fit to implement the flexible warehousing concept due

to its capability for real-time data collection, processing, and decision making at a fine level of

granularity. Instead of attempting to find a closed-form solution, we propose the practical use of

a knowledge-based self-adjusting mechanism (Figure 5) for the dynamic silo location/capacity

problem and to satisfy all inventory demands at the lowest cost over multiple periods. The core

of this knowledge-based system is the knowledge base that is kept updated and current through

machine learning. The learning algorithm used is chosen based on system-specific parameters

(e.g., data type, volume). Knowledge in the knowledge base is evaluated based on system

performance, which is used to identify deficit (e.g., situation where poor generalizability occurs

when a heretofore unseen pattern is observed in the system). Such deficits are addressed through

learning. As required or necessary, the system continually or continuously monitors for changes

in demand patterns and triggers a new iteration when a significant pattern change is observed.

At the start of this new iteration, operators relocate inventory silos to adjust warehouse location

and capacity according to demand change. Demands then are satisfied in a revised warehousing
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setup. Real-time data on local inventory, demand fulfillment, local capacities, and inventory

flow are continuously measured, evaluated, and learned to create the knowledge-base that is

used to facilitate inventory decision-making in the next iteration.
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Figure 5: Knowledge-Based Warehousing System

3.3.1 Warehouse Pattern Recognition: An Example on Capacity Distribution

Patterns in a warehouse are formed from routine business processes. The discovery of and

decision-making based on these patterns are largely subject to the physical constraints (capacity,

location, handling rules, etc.) and the priority of these constraints. Learning and decision

making with respect to the local capacities bjt, for example, are controlled by a series of silo

movements, depending on the previous state {vT−k} = ψT−k(ΥT−k). Our objective is to relocate

silos at the end of each state (or the beginning of the next state) according to the current state

inventory demand dynamics. In the most straightforward scenario, we can use the K-nearest

neighbor (KNN) algorithm to discover the demand patterns and the best location/capacity

decision. A simple mathematical alternative of this problem is to minimize the overall imbalance

of neighborhood capacity considering that we have more inventory capacity than what is needed

to fulfill all demands. This problem is the same as the one to find the least square of excessive

inventory capacity in all the found neighborhoods:

minimize
∑

j∈J

(

bj,t+1 −
∑

k∈K

Ajkt

)2

(38)
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Subject to:

∑

j∈J

bj,t+1 = B (39)

where B is the the total inventory capacity of the warehouse. After the optimal capacities are

allocated, demands can be serviced by the k nearest neighbors if we incorporate more constrain-

ing perspectives, such as tool comparability, etc. KNN-SVM (KNN-Support Vector Machines)

can be used to handle more complex problems that involve not only temporal-spatial dimensions

but also task-specialized classifications. With our ultimate goal to create a completely flexible

warehousing mechanism that not only considers the basic demand, capacity, location, and cost

constraints but also constraints embedded in the characteristics of tools, inventory items, ware-

housing conditions, process requirements, etc., we illustrate in the next section a self-learning

mechanism that automatically enables the system to create new rules and discover patterns from

prior activities.

Knowledge-based system is essential in the flexible warehousing setup. The intertwined

complexity of today’s and the immediate near future’s inventory management system demands

a deep involvement of ICT tracking, data analytics, and decision support. A direction of future

research could be an in-depth investigation of a knowledge-based system along with its associated

data mining techniques and optimization algorithms. From a transaction support system, to

the decision support system, and eventually the example of knowledge based system, we develop

this study based on the degree of site complexity/requirement and depth of data analytics in a

flow that we consider to be logical and coherent. We do not discuss in detail the learning part

since it is context-specific and any appropriate learning algorithm would serve this purpose.

Additional effort to enrich the warehouse knowledge-based system is needed in search for the

most appropriate/optimal/effective methods and algorithms for different industry and business

setups.

3.3.2 A Note on Item-Level Information

RFID-generated information enables the operator to monitor the real-time operational flow at

the item level on all tagged inventory items and storage silos. After an initial investment, the

operational and maintenance cost of such a system is very low. In the dynamic programming,

we made an assumption on time t by fixing the period length. This rigid assumption in reality

is not very practical especially when demand fluctuates at a changing frequency. We relax

this assumption by changing time period to algorithmical iterations based on real-time data.
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The above-described problem in the conventional setup is difficult to implement with existing

technology without the use of automated monitoring and a learning mechanism.

Information at the item level [40] appears to be very important in our proposed flexible

warehouse setup. If we consider batch operation conditions such as those in mass production,

the flexible system does not seem to offer a better (if not worse) operational performance than

the traditional rigid system. If the operation requires batch-fetching in a large scale, a rigid

system still benefits from the economic of operating on large quantity. Because of this reason,

it limits the usage and application of flexible warehouse only to “item level” operations, which

fits very well with modern operation concepts of just-in-time and mass-customization.

One distinctive characteristic of mass customization is component variations such that each

item is individually ordered and processed even for the same part component in a final product.

In a traditional rigid warehouse, part items for mass production are grouped together without

further differentiation and are able to be delivered in batches. It has become an emerging logistic

problem when components are customized, making it impossible to batch process the demands

without first sequencing the inventory. In a flexible system, this problem diminishes thanks to

direct item-level visibility.

4 Numerical Analysis

We now discuss numerical results based on various scenarios that are considered to be impactive

in actual management of such a system. We conduct numerical experiments that enable us

to obtain important managerial insights that are otherwise difficult to develop analytically. In

particular, we attempt to answer the following questions:

• How beneficial is the flexible warehousing mechanism in production logistics? With what

spectrum of variables does it achieve the largest value and lowest cost?

• Is dynamic scenario necessary, or can we capture most of the potential benefits by using a

static silo arrangement strategy whose location and capacity are determined optimally?

• How important is the silo distribution network topology? Does dynamic control generate

costs that differ considerably for specific silo distribution configurations?

We applied our proposed mechanism and policies to a total of 3000 cases. In each experiment,

the dynamics of optimal policy variables were captured following the models presented in Section

3. We use a uniform distribution of demand in the simulation experiments. We use unity
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iteration to represent a standard operational time period. In Section 4.1, we consider a basic

system with 10 fixed position silos with fixed capacity constraints, using the policy proposed in

the previous section and identify environments where flexible warehousing is most beneficial. We

use this setup to illustrate how decision support can be achieved for this problem scenario. The

goal here is not to determine the initial silo location for optimal system performance. In Section

4.2, we investigate the effect of the capacity constraints of the silos in the network. In Section

4.3, we explore the environments where a dynamic control and flexible warehousing topology

works the best.

4.1 Non-relocatable Storage & Flexible Item-Operation

In the experimental setup listed in Figure 6, we design a basic operational environment where all

core operational tasks are confined to a one unit by one unit space. There is a warehouse located

in a nearby spot that is 1.5 by 2 units away from the origin, as illustrated in Figure 7. The spatial

unit, which can be 100 meters in reality for example, is exemplified in order to concentrate on the

problem itself. Within the one-by-one operational space, a demand can be initiated at any spot.

In the first experiment, we randomly place 10 silo location candidates to serve demands that are

randomly initiated. All containing silos (shelves) are capable of accurately reporting the number

of each item and its associated item-level identifications. These silos are very different from the

traditional line-side buffer inventory because they accept random pick&drop activities of RFID-

tagged items at any time within availability, while a traditional line-side buffer is designed to

accommodate planned inventory management, such as the scheduling of work-in-progress (WIP)

and feeding raw materials.

RFID-tagged items can be stored either in the warehouse or in any of the silos in the

operational site. In order to serve the needs, which can be either a retrieval or a return request,

operators may choose to use either storage choice - the warehouse or any of the available silos.

When a return request is initiated, the least expensive option for the operator is to drop the

item at the nearest storage location with available space. In order to fetch an item, either direct

line-of-sight or a hand-held device can be used to locate the nearest silo that contains the item of

interest. If the nearest silo is not available for service, operators can attempt to locate another

silo that is a little farther away or directly return the item to the distribution warehouse. Search

cost is incurred if a silo can not be located through direct line-of-sight.

Compared to the operational performance with a single distribution center, the results pre-

sented in Figure 7 show the cost (reduction) in percentage with consideration of the total number

of iterations and demands. Results show that the reduction in overall trip cost increases with an
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X Y

1 0.8406 0.0975

2 0.6058 0.9847

3 0.0800 0.6203

4 0.8651 0.6269

5 0.5936 0.0604

6 0.0233 0.6445

7 0.4687 0.8812

8 0.5153 0.7953

9 0.3521 0.9252

10 0.3657 0.2501

11 1.5000 2.0000

Figure 6: Coordinates of 10 silo locations and a remote distribution center
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Figure 7: Number of iteration, number of demand & cost impact

increasing demand. Cost reduction also increases with the number of iterations but at a slower

rate. It also shows that the trip cost reduction gradually stabilizes at a certain level, which is

32.16% in this specific example.

Table 1 summarizes the percentage of trip cost that enables flexible pick and drop at the

nearest available location in percentage compared to the scenario with one distribution center.

The performance gradually improves with higher demand density because of the availability of

items that flow in nearby locations. The cost performance also improves with increasing number
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Table 1: Trip cost reduction of flexible warehousing compared to the rigid warehousing case

Iteration

Demand 2 4 6 8 10 12 14 16 18 20

2 72.49% 79.43% 73.09% 72.61% 74.30% 56.49% 64.49% 69.32% 60.48% 53.56%

4 66.68% 61.95% 58.65% 55.13% 49.35% 50.96% 47.07% 45.95% 46.10% 43.66%

6 57.97% 56.57% 49.53% 47.03% 49.91% 42.05% 40.16% 40.18% 38.71% 42.51%

8 54.57% 45.17% 41.56% 42.66% 40.25% 38.92% 39.03% 37.00% 38.37% 39.02%

10 49.03% 44.54% 45.27% 38.35% 39.67% 39.40% 37.53% 38.88% 38.37% 36.28%

12 46.00% 40.41% 39.75% 39.44% 39.17% 37.22% 39.01% 37.48% 36.50% 35.57%

14 44.87% 39.17% 39.92% 37.59% 37.05% 34.87% 36.05% 36.94% 34.38% 34.30%

16 44.58% 40.54% 35.98% 36.85% 36.73% 34.19% 34.84% 35.11% 34.53% 35.00%

18 44.12% 37.06% 37.24% 35.06% 34.26% 35.63% 33.74% 33.77% 34.53% 32.59%

20 41.34% 36.94% 35.61% 35.14% 35.13% 35.11% 33.71% 32.32% 34.00% 33.24%

22 41.11% 36.22% 35.55% 34.94% 34.34% 33.65% 34.84% 32.69% 31.12% 32.21%

24 41.60% 35.95% 35.93% 36.09% 33.00% 33.19% 32.24% 32.26% 32.53% 32.68%

26 37.53% 36.72% 34.70% 33.07% 33.49% 31.81% 33.39% 32.65% 32.58% 31.90%

28 39.83% 34.74% 35.35% 32.97% 33.75% 32.34% 31.78% 32.41% 31.08% 32.79%

30 36.15% 34.75% 33.26% 33.17% 33.27% 33.61% 32.14% 32.64% 31.69% 30.97%

of iterations because of the clustering effect that moves the same items to the neighborhood with

higher demand. This result is also plotted in Figure 7, from which we find that the improvement

converges to a lower bound. This lower bound specifies the maximum performance given the

demands and available inventory location even without capacity constraint.

layout.pdf

Figure 8: Randomly Generated Facility Layouts For Benchmark Testing

We now consider benchmarking and performance comparison between the flexible system

and the rigid system. With a focus on the flexible system, we test various capacity, location,

and demand settings. We simplify the rigid system by assuming one fixed location where all

the items should be retrieved and returned. This setup can be generalized to a more complex

rigid system with multiple locations. As long as the capacity, location, and association rules

are fixed, the statistical performance of the simplified and expanded rigid systems display the

same operational properties. We extend the above simulation (Figure 7) to four different flexible

location setups, all benchmarked by the same one rigid system. At a practical level, it would

be easy to add a set of rigid systems, but much more complicated to present the results. And,
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extending the simulation on the side of the rigid system will not generate more meaningful

results, so we focus on the variations of the flexible system. Figure 8 shows the geographical

distribution of four warehouse setups with 5, 10, 15 and 20 randomly generated locations.

Figure 9 reports the performance benchmarks on these four setups with location choices. We

find that simply based on location choices, the performance demonstrates similar patterns with

respect to the number of demand and number of iterations, although slight systematic differences

exist. One of the reasons is that in these tests we have not considered the capacity constraints. In

what follows, we extend these tests by incorporating both global and local capacity constraints

and examine their impacts on the proposed flexible warehouse system.

layout2.pdf

Figure 9: Static Performances of Randomly Generated Facility Layouts

4.2 Effects of Various Capacity Constraints

So far, we have generalized the problem without considering the total capacity constraint or

the individual location capacity constraints. With a realistic capacity constraint, the optimiza-

tion problem is different because of the added search cost when an item or inventory is not

immediately available at the closest convenient location.

For the new experiments, we revise the setups from Section 4.1 by adding local capacity

constraints, with the assumption that the remote distribution center has infinite storage capacity.

The revised experiment is repeated with three different warehousing configurations that include

10, 15 and 20 silo location choices respectively. In each experiment, the individual location

capacity takes on values in the zero to fifty range.

Figure 10 summarizes the results with pre-configured capacity constraint. We assume that

the setup cost is linear to the inventory capacity. It shows that large inventory capacity helps the

flexible warehouse to reduce its trip cost and search cost. With limited inventory capacity, our

results show that the performance of our proposed flexible warehouse is close to the traditional

setup. More location choices also help reduce the operational costs. It seems that the marginal

benefit of introducing more flexibility (more location choices and increased inventory capacity)

differs with different levels of demand dynamics. The results also show a lower bound of cost

performance with capacity constraints. The trip cost and search cost decrease with additional

flexibility but the improvement margin becomes narrower.
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Figure 10: Trip cost & search cost with various capacity constraints

4.3 Dynamic Control

In the previous section, we investigated the performance when a set of fixed capacity is imposed

on the system. We now study the impact of dynamic control that allows the system to adjust

the local capacities according to the demand dynamics and the patterns discovered on site.

Table 2 summarizes the results that compare the performance of fixed capacity constraint

with flexible capacity in the warehouse system for both fixed capacity and dynamic capacity

scenarios. We find that dynamic control performs extremely well with limited inventory capacity

with more than 50% of cost reduction compared to the fixed capacity scenario. When capacity

increases, the dynamic control still performs better but the marginal benefit decreases. When

the overall inventory capacity exceeds the overall demand, we also find that the dynamic control

performs very close to the static scenario, as shown (22.85%) compared to 24.22% in the case
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Table 2: Trip cost performance comparisons on number of location, average local capacity, static

and dynamic control

Average Local Capacity

Location number

Static 5 10 15 20 25 30 35 40 45 50

10 72.98% 55.76% 45.35% 39.74% 36.29% 33.98% 32.35% 31.11% 30.21% 29.44%

15 62.37% 43.85% 36.25% 32.54% 30.32% 28.86% 27.82% 27.00% 26.41% 25.93%

20 52.34% 36.81% 31.39% 28.79% 27.28% 26.25% 25.54% 25.00% 24.55% 24.22%

Dynamic

10 36.17% 35.46% 35.15% 35.08% 35.02% 34.91% 34.82% 34.79% 34.80% 34.78%

15 35.47% 34.42% 34.21% 34.06% 34.01% 33.90% 33.91% 33.87% 33.91% 33.91%

20 23.77% 23.40% 23.18% 23.05% 22.99% 22.95% 22.94% 22.91% 22.87% 22.85%

of 20 location choices and 50 average local capacity.

These results are also illustrated in Figure 11. It shows drastic performance improvement

under dynamic control that allow silos to be relocated according to the actual demands on site.

For the same demand pattern, dynamically controlled inventory system seems to be able to

lower the lower bound of trip cost. This is intuitively explainable because when the warehouse

can adjust itself to accommodate on-site demand change, it reduces the overall trip cost.

5 Concluding Remarks

We introduce a novel concept of flexible warehousing based on a real-time decision support

system, enabled by RFID-generated data. This smart mechanism enables completely flexible

warehousing shelf locations, local capacities, and transportation routes. With a periodically

renewable fixed global warehousing capacity, we discard the location constraint, local capacity

constraint, and demand assignments routines that typically exist in facility location problems.

Dynamic decisions on location and local capacity are made based on the stochastic Markovian

demand states. In this scenario, warehousing shelves and equipment are modified according to

demand flow over time. All inventory items and warehousing equipment are trackable at a fixed

setup cost and minimal operational cost so that all items and equipment are visible in real-time.

In the second stage, we optimize the process and routine constraints by allowing free pick-up

and drop-off mechanism in which inventory items at hand are dropped off at the closest available

location and items are picked up at the closest location. We compared the performance of the

considered flexible warehousing mechanism with classical models, through various degrees of

constraint relaxations. Our results show significant performance improvement and demonstrate
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Figure 11: Comparison of static and dynamic controls

that (1) “free pick-n-drop” combined with fluid warehousing mechanism greatly reduces trip

costs and lead time for single trip demand, (2) there exist a lower performance bound in such

a setup with fixed local capacities, and (3) the lower bound can be further improved when

inventory capacity and location are adjusted according to actual demand patterns.

Overall, the flexible warehousing mechanism considered in this study represents a type of

“smart” logistics system. We expect to see more research in this general field of intelligent

logistics that are able to adopt more effective heuristics and more efficient algorithms to approach

optimization problems. Although the proposed inventory system is flexible as compared to

existing ones, this study is limited because we simplify the configurations of a warehousing

environment on selected parameters of location and capacity. With the existence of modern

sensor network and big data capability, data collected from various operational parameters can

be further utilized, including vibration, temperature, humidity, light, noise, human factor, etc.
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These additional parameters create a big data environment that the knowledge-based system can

analyze and contribute to optimized warehouse management. For future research, it would be

also interesting to investigate the many classical problems in facility location and transportation

decisions in the context of completely flexible warehousing, such as the one with multiple batch-

fetching demands. Future research can also be directed to find the impact of imperfect tracking

information, such as read error, shrinkage, and theft, on the smart inventory system.
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Highlights

• The proposed system tracks both inventory items and mobile warehouse equipment at the

item level.

• A flexible warehouse scenario where items are dropped and picked as per convenience.

• Warehouse configuration are flexible by relaxing both location constraint and local (e.g.,

item type-level) capacity constraints with a periodically renewable fixed global capacity.

• The proposed flexible storage system performs better than static systems.
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