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Abstract

We consider the weighted monotone and antimonotone satisfiability problems on normalized
circuits of depth at most t ≥ 2, abbreviated wsat+[t] and wsat−[t], respectively, where
the parameter under consideration is the weight of the sought satisfying assignment. These
problems model the weighted satisfiability of monotone and antimonotone propositional for-
mulas (including weighted monotone/antimonotone cnf-sat) in a natural way, and serve as
the canonical problems in the definition of the parameterized complexity hierarchy. In par-
ticular, wsat+[t] (t ≥ 2) is W[t]-complete for even t and W[t − 1]-complete for odd t, and
wsat−[t] (t ≥ 2) is W[t]-complete for odd t and W[t− 1]-complete for even t. Moreover, sev-
eral well-studied problems, including important graph problems, can be modeled as wsat+[t]
and wsat−[t] problems in a straightforward manner. We study the parameterized complexity
of wsat−[t] and wsat+[t] with respect to the genus of the circuit. For wsat−[t], we give a
fixed-parameter tractable (FPT) algorithm when the genus of the circuit is no(1), where n is the
number of the variables in the circuit. For wsat+[2] (i.e., weighted monotone cnf-sat) and
wsat+[3], which are both W[2]-complete, we also give FPT-algorithms when the genus is no(1).

For wsat+[t] where t ≥ 4, we give FPT-algorithms when the genus is o(log2/3 (n)). We also
show that both wsat−[t] and wsat+[t] on circuits of genus nΩ(1) have the same W-hardness
as the general wsat+[t] and wsat−[t] problem (i.e., with no restriction on the genus), thus
drawing a precise map of the parameterized complexity of wsat−[t] and of wsat+[2] with
respect to the genus of the underlying circuit.

As a byproduct of our results, we obtain, via standard parameterized reductions, tight
results on the parameterized complexity of several problems with respect to the genus of the
underlying graph.
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1 Introduction

We consider the weighted satisfiability problems on monotone and antimonotone normalized cir-
cuits of depth at most t ≥ 2. In the antimonotone weighted satisfiability problem on
normalized circuits of depth at most t ≥ 2, abbreviated wsat−[t], we are given a circuit C of
depth t in the normalized form [12, 13] (i.e., the output gate is an and-gate, and the gates al-
ternate between and-gates and or-gates) whose input literals are all negative, and an integer
parameter k ≥ 0, and we need to decide if C has a satisfying assignment of weight k (i.e., assign-
ing the value 1 to k variables of C). In the monotone weighted satisfiability on normalized
circuits of depth at most t ≥ 2, abbreviated wsat+[t], we are given a circuit C of depth t in the
normalized form whose input literals are positive, and an integer parameter k ≥ 0, and we need
to decide if C has a satisfying assignment of weight k. Our goal in this paper is to study the
parameterized complexity of wsat−[t] and wsat+[t] with respect to the genus of the circuit. We
define the genus of the circuit to be the genus of the underlying undirected graph after the output
gate is removed. The reason we exclude the output gate of the circuit in the definition of the genus
is two-fold. First, excluding the output gate allows us to use standard FPT-reductions to model
problems on graphs satisfying a certain genus upper bound as wsat−[t] and wsat+[t] problems
on circuits that satisfy the same genus upper bound, whereas such modeling would not be possible
if the genus is defined to be that of the whole circuit. Second, as it turns out, one obtains the
same tight results obtained in the current paper if the genus is defined to be that of the whole
circuit. To see this, observe that all positive results (FPT membership results) obtained in this
paper carry over because an upper bound on the genus of the whole circuit implies the same upper
bound on the genus of the same circuit with the output gate removed. Therefore, showing that
the wsat−[t] and wsat+[t] problems are FPT on circuits whose genus defined with the output
gate removed is at most g(n), for some function g(n), where n is the number of variables in the
circuit, will imply that the wsat−[t] and wsat+[t] problems are FPT on circuits whose genus de-
fined with the output gate included is at most g(n). On the other hand, the same straightforward
(padding) arguments used to obtain the W-hardness results in this paper (Lemmas 3.5 and 4.2)
with the genus defined after removing the output gate, can be used to obtain W-hardness results
for the same upper bound on the genus when the genus is defined to be that of the whole circuit.
We mention that the weighted circuit satisfiability problem on depth-t planar circuits with
the output gate included is solvable in polynomial time [7], whereas it can be easily shown that
wsat−[t] and wsat+[t] are NP-complete on planar circuits (and hence on circuits of any genus)
with the output gate removed. We also note that weighted circuit satisfiability on planar
circuits with unbounded depth is known to be W[P ]-complete [1]. Recently, in [23], Marx proved
that weighted monotone/antimonotone circuit satisfiability has no FPT-approximation algorithm
with any approximation ratio function ρ, unless W[1] = FPT.

1.1 Motivation and related work

The problems under consideration are of prime interest both theoretically and practically. From
the theoretical perspective, they naturally represent the weighted satisfiability of
(montone/antimontone) t-normalized propositional formulas, i.e., products-of-sums-of-products...
(see [12,13]), including the canonical problems weighted antimonotone/monotone cnf-sat. More-
over, the wsat−[t] and the wsat+[t] problems are the canonical complete problems for the different
levels of the parameterized complexity hierarchy — the W-hierarchy, and the W-hierarchy can be
defined based on them [12,13]. Therefore, determining the underlying structure that makes these
problems (parameterized) tractable is important from the perspective of complexity theory. From
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a more practical perspective, wsat−[t] and wsat+[t] can model several natural problems. There-
fore, parameterized algorithms for wsat−[t] and wsat+[t] can be used to obtain parameterized
algorithms for some natural problems via FTP-reductions to/from wsat−[t] and wsat+[t], as we
shall see in Section 5.

The computational complexity of many natural problems on planar graphs, and more gen-
erally on graphs whose genus meets certain upper bounds, have been extensively researched
(see [4, 9, 10,15,16], among others). In particular, it was shown that the bounded-genus property
plays a key-role in determining the computational complexity (parameterized complexity includ-
ing kernelization, subexponential-time computability, and approximation) of a large class of graph
problems. For example, using bidimensionality theory, it was shown in [9] that a large class of
graph problems admit subexponential-time parameterized algorithm on graphs whose genus is
upper bounded by a constant. For graphs of larger genus (could be unbounded), it was shown
in [8] that the genus characterizes the computational complexity (parameterized complexity, ap-
proximation, and subexponential-time computability) of some natural graph problems, including
independent set and dominating set. We note that the techniques used in [8] to charac-
terize the parameterized complexity of certain graph problems with respect to the genus of the
graph are problem specific, and are not applicable to the weighted satisfiability problems under
consideration in this paper.

Research results on planar circuits, and on satisfiability problems defined on certain structures
that are planar or that satisfy certain structural properties, are abundant. Planar Boolean circuits
have been extensively studied in the literature as they can be used to study VLSI chips, and
they play an important role in deriving computational lower bounds for Boolean circuits [24, 26,
28]. After Lipton and Tarjan established their celebrated planar separator theorem, one of the
first applications of the separator theorem they gave, was to derive lower bounds on the size
of Boolean circuits that compute certain important functions [22]. The computational power
of monotone planar circuits were also considered (e.g., see [2, 21]). Khanna and Motwani [19]
studied the approximation of instances of satisfiability problems (weighted and unweighted) whose
underlying structure is planar. More specifically, they studied satisfiability problems defined based
on disjunctive normal form (DNF) formulas. The incidence graph of an instance of such problems
is a simple bipartite graph that has a vertex for each variable and a vertex for each formula,
and an edge between them if the variable occurs in the formula. They derived polynomial-
time approximations schemes for instances of these problems whose underlying incidence graph
is planar [19]. Cai et al. [6] studied the parameterized complexity of the satisfiability problems
introduced by Khanna and Motwani [19], and showed that these problems are W[1]-hard even
when the underlying incidence graph is planar. Researchers have also studied the parameterized
complexity of CNF-SAT with respect to the treewidth of a graph defined by the corresponding
formula (for example, see [25]).

1.2 Our results and techniques

We obtain the following results regarding wsat−[t] (t ≥ 2), which is W[t]-complete for odd t and
W[t− 1]-complete for even t [12,13] (in what follows, n is the number of variables in the circuit):

(i) Tight results: We give an FPT-algorithm for wsat−[t] when the genus is no(1). Moreover,
we show that wsat−[t] has the same W-hardness status as the general wsat−[t] problem
when the genus is nΩ(1).

(ii) Applications: We show that independent set on hypergraphs and the red-blue
nonblocker problems are in FPT on (hyper)graphs of genus No(1) and W[1]-complete on
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(hyper)graphs of genus NΩ(1) (N is the number of red vertices in red-blue nonblocker
and the total number of vertices in independent set on hypergraphs).

The techniques used for deriving the FPT results in (i) can be summarized as follows. We
first show that in FPT-time we can reduce an instance of wsat−[t] on a circuit of genus no(1)

to an equivalent instance of wsat−[t] in which the number of occurrences of the literals is lin-
ear in n; we bound the number of occurrences using combinatorial arguments that are based
on Euler-type results for (multi)hypergraphs whose genus meets certain upper bounds (Propo-
sition 3.3). We then show that any instance of wsat−[t] with a linear number of occurrences
(and no zero-variables) admits a satisfying assignment whose weight is lower bounded by a func-
tion of n (Theorem 3.4). Combining the preceding two results, we obtain the FPT results in (i)
(Theorem 3.6). The hardness result in (i) is derived by a simple FPT-reduction from the general
wsat−[t] problem (Theorem 3.6). The results in (ii) about independent set on hypergraphs
and red-blue nonblocker are derived using standard FPT-reductions (Theorem 5.2).

We obtain the following results regarding wsat+[t] (t ≥ 2), which is known to be W[t]-complete
for even t and W[t− 1]-complete for odd t [12, 13]:

(1) Tights results for t = 2 and t = 3: We give FPT-algorithms for wsat+[2] (i.e., weighted
monotone cnf-sat) and wsat+[3] when the genus is no(1) and show that the problems are
W[2]-complete when the genus is nΩ(1).

(2) Results for t ≥ 4: We give an FPT-algorithm for wsat+[t] when the genus is o(log2/3 (n)),
and show that wsat+[t] has the same W-hardness as the general wsat+[t] problem when
the genus is nΩ(1).

(3) Applications: We show that red-blue dominating set, hitting set, and set cover
are FPT if the underlying graph/hypergraph has genus No(1) and W[2]-complete if the un-
derlying graph/hypergraph has genus NΩ(1) (N is the number of red vertices in red-blue
dominating set, the cardinality of the vertex-set in hitting set, and the number of sets
in set cover).

All FPT results in (1) and (2) rely on a result (Proposition 4.1) showing that, for circuits of
genus no(1), there is a Turing-FPT self-reduction that reduces an instance of wsat+[t] to FPT-
many instances of wsat+[t] in which the number of gates that are incoming to the output gate of
the circuit is a function of the parameter. Using this result, we can directly show that wsat+[2]
is FPT when the genus is no(1) (Theorem 4.3). For t > 2, we show that the aforementioned result
implies that the treewidth of the resulting circuit is o(log n) ·

√
k if its genus is o(log2/3 (n)); this

allows us to apply an intricate dynamic programming approach to show that the problem on genus
o(log2/3 (n)) circuits is FPT (Theorem 4.8). For t = 3, we show that the aforementioned dynamic
programming approach can be modified to run in fpt-time even when the genus of the circuit
is no(1) (Theorem 4.9). The hardness results for wsat+[t] on circuits of genus nΩ(1) in (1) and
(2) are derived by simple FPT-reductions from the general wsat+[t] problem (Lemma 4.2). The
results in (3) can be derived using standard FPT-reductions (Theorem 5.1).

Remark 1.1. None of the algorithms presented in the current paper needs to know in advance,
nor needs to decide, whether or not the minimum genus of the input circuit satisfies the required
upper bounds. More specifically, if the input instance of the problem satisfies the required genus
upper bound, then the algorithm will solve the instance correctly in the specified running time.
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On the other hand, if the input instance does not satisfy the required genus upper bound, then the
algorithm either rejects the instance because it does not satisfy the genus upper bound require-
ment, or solves it correctly, (both) in the specified running time. Therefore, one does not need to
limit the algorithms in the current paper to the input instances in which the genus is guaranteed
to satisfy the required given upper bounds (i.e., a witness is unnecessary).

2 Preliminaries

2.1 Graphs, hypergraphs, and genus

We assume familiarity with the basic terminology and definitions in graph theory and parameter-
ized complexity, and refer the reader to [12,13,29].

All graphs in this paper are loop-less, but may have multiple edges. A graph without multiple
edges is a simple graph. Let G be an undirected graph. For an edge e = uv in G, contracting e
means removing the two vertices u and v from G, replacing them with a new vertex w, and for
every vertex y in the neighborhood of v or u in G, adding in the new graph an edge wy whose
multiplicity is the sum of the multiplicities of the edges of G between v and y and between u and
y. If in the above definition we do not sum up multiplicities, and if the initial graph G is a simple
graph, then we call the operation simple contraction, or for short s-contraction.

Given a vertex-set S ⊆ V (G) such that the subgraph of G induced by S, denoted G[S], is
connected, contracting S means contracting the edges between the vertices in S to obtain a single
vertex at the end.

A hypergraph H = (V,E) consists of a vertex set V = V (H) and an edge set E = E(H) so that
e ⊆ V for every e ∈ E. If E is allowed to be a multiset we call H a multihypergraph. We also call
the edges in a hypergraph hyperedges.

A graph has genus at most g if it can be drawn on a surface of genus g (a sphere with g
handles) without edge intersections. We say a (multi)hypergraph H is embeddable in a surface
if the bipartite incidence graph obtained from H by replacing each of its hyperedges by a vertex
adjacent to all the vertices in the hyperedge is embeddable in that surface. In particular, this
definition allows us to speak of (multi)hypergraph of genus g. We refer the reader to [17] for more
information on the genus of a graph. The following lemmas will be useful:

Lemma 2.1 ( [18]). A multihypergraph of genus at most g on n vertices has at most 2n+ 4g − 4
hyperedges containing at least three vertices, unless n = 1 and g = 0.

Lemma 2.2 (Euler). A simple graph of genus g on n vertices contains at most 3n+ 6g− 6 edges
if n ≥ 3.

Lemma 2.3 ( [18]). A hypergraph of genus at most g on n vertices has at most 6n + 10g − 10
hyperedges if n ≥ 3.

2.2 Circuits, weighted satisfiability, and complexity functions

A circuit is a directed acyclic graph. The vertices of indegree 0 are called the (input) variables, and
are labeled either by positive literals xi or by negative literals xi. The vertices of indegree larger
than 0 are called the gates and are labeled with Boolean operators and or or. A special gate
of outdegree 0 is designated as the output gate. We do not allow not gates in the above circuit
model, since by De Morgan’s laws, a general circuit can be effectively converted into the above
circuit model. A circuit is said to be monotone (resp. antimonotone) if all its input literals are
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positive (resp. negative). The depth of a circuit is the maximum distance from an input variable
to the output gate of the circuit. A circuit represents a Boolean function in a natural way. The
size of a circuit C, denoted |C|, is the size of the underlying graph (i.e., number of vertices and
edges). An occurrence of a literal in C is an edge from the literal to a gate in C. Therefore, the
total number of occurrences of the literals in C is the number of outgoing edges from the literals
in C to its gates. The genus of a circuit is the genus of the underlying undirected graph after the
output gate has been removed (as discussed in Section 1 — see Figure 1 for illustration). We will
abuse the notation and say that a circuit has genus g if it has genus at most g. The justification
of the preceding statement can be found in Remark 2.5 at the end of this section.
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Figure 1: A planar monotone circuit in normalized form of depth 4 together with a plane embed-
ding of it (without the output gate).

We consider circuits whose output gate is an and-gate and that are in the normalized form
(see [12,13]). In the normalized form every (nonvariable) gate has outdegree at most 1, and above
the output and-gate, the gates are structured into alternating levels of ors-of-ands-of-ors... (we
visualize the circuit in an hierarchical fashion where the output gate is the lowest one). We denote
a circuit that is in the normalized form and that is of depth at most t ≥ 2 by a Πt circuit. We
write Π+

t to denote a monotone Πt circuit, and Π−t to denote an antimonotone Πt circuit. We do
not assume that the literals appear at the same (top) level of the circuit (notice that the circuit
in Figure 1 has a planar embedding where the literals are not drawn in the top).

Throughout the paper, we implicitly assume that the following simplification rules hold:
every gate with outdegree 0 except the output gate is removed, every gate has indegree at least
2, and no two gates of the same type such that one is incoming to the other exist.

We say that a truth assignment τ to the variables of a circuit C satisfies a gate g in C if τ
makes the gate g have value 1, and that τ satisfies the circuit C if τ satisfies the output gate
of C. A circuit C is satisfiable if there is a truth assignment to the input variables of C that
satisfies C. The weight of an assignment τ is the number of variables assigned value 1 by τ . An
indegree-2 gate is called a 2-literal gate if both its incoming edges are from literals. A critical gate
in a Πt circuit C is an or-gate that is connected to the output and-gate of the circuit; clearly,
any satisfying assignment to C must satisfy all critical gates in C. If we remove the literals from
C, we obtain a directed graph whose underlying undirected graph is a tree TC . If we root TC at
the output gate of C, we can now use the terms child(ren), parent, grandparent of a gate in TC in
a natural way. Note that every literal in C is connected to some gates in TC . For a gate g in TC ,
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we denote by Tg the subtree of TC rooted at g. We may regard an edge in TC between a child g′

of a gate g and g, or between a literal and gate g, as an incoming edge to g.
A parameterized problem Q is a subset of Ω∗ × N, where Ω is a fixed alphabet and N is the

set of all non-negative integers. Each instance of the parameterized problem Q is a pair (x, k),
where the second component, i.e., the non-negative integer k, is called the parameter. We say
that the parameterized problem Q is fixed-parameter tractable [12, 13], shortly FPT, if there is a
(parameterized) algorithm, also called FPT-algorithm, that decides whether an input (x, k) is a
member of Q in time f(k) · |x|O(1), where f(k) is a computable function. Let FPT denote the class
of all fixed-parameter tractable parameterized problems. (We abused the notation “FPT” above
for simplicity.)

A parameterized problem Q is FPT-reducible to a parameterized problem Q′ if there is an
algorithm that transforms each instance (x, k) of Q into an instance (x′, g(k)) of Q′ in time
f(k)·|x|O(1), where f and g are computable functions, such that (x, k) ∈ Q if and only if (x′, g(k)) ∈
Q′.

Based on the notion of FPT-reducibility, a hierarchy of fixed-parameter intractability, the W-
hierarchy

⋃
t≥0 W[t], where W[t] ⊆ W[t + 1] for all t ≥ 0, has been introduced, in which the 0-th

level W[0] is the class FPT. The hardness and completeness have been defined for each level W[i]
of the W-hierarchy for i ≥ 1 [12,13]. It is commonly believed that W[1] 6= FPT (see [12,13]). The
W[1]-hardness has served as the main working hypothesis of fixed-parameter intractability.

For t ≥ 2, the weighted Πt-circuit satisfiability problem, abbreviated wsat[t] is for a
given Πt-circuit C and a given parameter k, to decide if C has a satisfying assignment of weight
k. The weighted monotone Πt-circuit satisfiability problem, abbreviated wsat+[t], and
the weighted antimonotone Πt-circuit satisfiability problem, abbreviated wsat−[t] are
the wsat[t] problems on monotone circuits and antimonotone circuits, respectively. We denote
by wsat− the wsat−[2] problem, and by wsat+ the wsat+[2] problem (i.e., the weighted an-
timonotone/monotone cnf-sat problem). It is known that for each integer t ≥ 2: wsat+[t] is
W[t]-complete for even t and W[t− 1]-complete for odd t, and wsat−[t] is W[t]-complete for odd
t and W[t− 1]-complete for even t [12, 13].

The (time) complexity functions used in this paper are assumed to be proper complexity
functions that are unbounded and nondecreasing. For a complexity function f : N→ N, we define
its inverse, f−1, by f−1(h) = max{q | f(q) ≤ h} if {q | f(q) ≤ h} 6= ∅, and f−1(h) = 0 otherwise.
Since the function f is nondecreasing and unbounded, the function f−1 is also nondecreasing and
unbounded, and satisfies f(f−1(h)) ≤ h. We shall also assume that the complexity functions and
their inverses can be computed efficiently (i.e., in time linear in the input size and the value of the

function). The o(·) notation used in this paper denotes the oeff(·) notation (see, for instance, [13]).
More formally, for any two computable functions f, g : N→ N, by writing f(n) = o(g(n)) we mean
that there exists a computable nondecreasing unbounded function µ(n) : N → N, and n0 ∈ N,
such that f(n) ≤ g(n)/µ(n) for all n ≥ n0.

The following lemma is useful.

Lemma 2.4. For any complexity function h, and any function g that belongs to either of the
two families of functions O(No(1)h(k)) or O((logN)h(k)), there exists a complexity function f such
that g is bounded above by f(k)NO(1). Therefore, if a parameterized problem is solvable in time
that is upper bounded by g(N, k) (where N is the input length and k is the parameter), then the
parameterized problem is solvable in FPT-time, and hence belongs in FPT.

Proof. Let h be a complexity function, and suppose that the parameterized problem is solvable
in time g(N, k) ∈ O(Nh(k)/µ(N)), for some complexity function µ(N). If h(k) ≤ µ(N) then
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O(Nh(k)/µ(N)) = O(N). On the other hand, if h(k) > µ(N) then N < µ−1(h(k)), and if we let
f(k) = µ−1(h(k))h(k), we have Nh(k)/µ(N) ≤ µ−1(h(k))h(k)/µ(N) ≤ f(k)1/µ(N) ≤ f(k). It follows
that in both cases O(Nh(k)/µ(N)) ≤ f(k)NO(1). The proof when g(N, k) ∈ O((logN)h(k)) follows
the same method by distinguishing the two cases h(k) ≤ log (logN) and h(k) > log (logN).

Remark 2.5. When we consider wsat+[t] (resp. wsat−[t]) on circuits of genus g(n), for some
function g(n) of the number of variables n of the circuit, we mean wsat+[t] (resp. wsat−[t])
restricted to all the instances in which the genus of the underlying circuit is upper bounded by the
prespecified function g(n). This set of instances includes the instances in which the genus of the
underlying circuit is smaller than g(n). Note that this does not affect any of the results in the
paper, as the FPT results hold as well for the instances of smaller genus (than g(n)) in the set of
instances under consideration, and the hardness results hold due to the hardness of the restriction
of the set of instances under consideration to those instances whose genus is g(n).

3 The antimonotone case

In this section we give tight results on the parameterized complexity of the wsat−[t] problem,
where t ≥ 2 is an integer, with respect to the genus of the circuit. We start with the following
definition.

Definition 3.1. Let C be a Π−t circuit, and let xi be a variable in C. We say that xi is a zero-
variable for C if assigning xi = 1 causes C to evaluate to 0. Therefore, any zero-variable for C
must be assigned the Boolean value 0 in a satisfying truth assignment for C. A nonzero-variable
for C is a variable that is not a zero-variable for C. A Π−t circuit C has no zero-variables if all
the variables in C are nonzero-variables.

We note that determining whether or not a variable xi is a zero-variable for a Π−t circuit C
can be done in polynomial time.

Proposition 3.2. Let (C, k) be an instance of wsat−[t] (t ≥ 2) such that the genus of C is
g(n) = no(1). In FPT-time, we can either decide (C, k), or we can reduce (C, k) to an equivalent
instance (C ′, k) where C ′ has genus at most g(n) and no zero-variables, and such that the number
of variables n′ in C ′ satisfies g(n) ≤ n′ ≤ n.

Proof. Observe that if (C, k) has a satisfying assignment of weight k, then none of the variables
assigned 1 by such an assignment can be a zero-variable of C.

Suppose first that the number of nonzero-variables in C is smaller than g(n) = no(1), and
let N be the set of nonzero-variables of C. We enumerate each subset S of N of size k as a
candidate subset of variables that will be assigned 1 by a satisfying assignment of weight k for
C. For each such candidate subset S, we assign the variables in S the value 1 and the remaining
variables in C the value 0, and check if the assignment satisfies C; if it does, we accept (C, k).
If no enumerated subset leads to acceptance, we reject (C, k). The number of the enumerated

subsets is
(|N |
k

)
= no(1)k. By Lemma 2.4, the above algorithm runs in FPT-time.

We may now assume that the number of nonzero-variables in C, n′, is at least g(n) = no(1).
Let C ′ be the circuit obtained from C by assigning the zero-variables of C the value 0. Observe
that this assignment does not introduce zero-variables, and hence the resulting circuit C ′ has no
zero-variables, and satisfies the statement of the proposition.
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Next, we need a structural result showing that any Π−t circuit whose genus is at most linear
(in the number of variables) can be reduced to an equivalent one on the same set of variables
whose size is also linear. We first need the following definition and reductions.

Let v and v′ be vertices in a Π−t circuit C. We say that v and v′ are equivalent if v and v′

correspond to the same literal, or if both v and v′ are 2-literal gates that are of the same type
(either both are and-gates or both are or-gates) and have the same two literals incoming to them.

We apply the following reduction rule repeatedly until it is not applicable:

Reduction Rule 3.1. Let C be a Π−t circuit, and let g be a gate in C. Let v be a literal or a
2-literal gate that is incoming to g. Do the following:

(a) If there exists a vertex v′ 6= v that is equivalent to v, such that v′ is incoming to g, then let
C ′ be the circuit resulting from C after removing the edge from v′ to g.

(b) If g is an or-gate and there exists a gate g′ 6= g in the subtree Tg of TC and a vertex v′

equivalent to v such that v′ is incoming to g′, then let C ′ be the circuit resulting from C
after performing the following: if g′ is an and-gate then remove g′, and if g′ is an or-gate
then remove the edge from v′ to g′.

(c) If g is an and-gate and there exists a gate g′ 6= g in Tg and a vertex v′ equivalent to v such
that v′ is incoming to g′, then let C ′ be the circuit resulting from C after performing the
following: if g′ is an or-gate then remove g′, and if g′ is an and-gate then remove the edge
from v′ to g′.

Then the resulting circuit C ′ is a Π−t circuit that is equivalent to C.

Proof. We prove the correctness for the case when v is a literal. The proof is very similar for the
case when v is a 2-literal gate.

It suffices to show that any truth assignment τ satisfies C if and only if it satisfies C ′. Since
the only differences between C and C ′ occur in Tg (including the literals connected to the gates
in Tg), it suffices to show that the value of g induced by τ in C is the same as that in C ′. This is
clear for part (a), so we prove it for part (b), and the proof for (c) is similar. Note that, by the
simplification rules, we can assume that every gate has indegree at least 2.

If v is assigned 1 by τ , then clearly the value of g induced by τ in both C and C ′ is 1, and
hence is the same. Suppose now that v is assigned 0 by τ . An and-gate in Tg that v is incoming
to evaluates to 0 by τ , and hence its removal from C does not affect the value of g induced by τ ;
similarly, the value of an or-gate in Tg to which v is incoming, is not affected by the removal of
the connection from v to this gate, and hence this removal does not affect the value of g induced
by τ . It follows that the value of g induced by τ is the same in both C and C ′.

Note that all the simplification rules and the reduction rule do not increase the genus of C,
nor do they decrease the number of variables/literals in C. Moreover, these operations can be
carried out in time polynomial in the size of the circuit.

Proposition 3.3. Let C be a Π−t circuit on n variables of genus g(n) ≤ n. In polynomial time
we can reduce C to an equivalent Π−t circuit C ′ of genus g(n) on the same set of variables such
that the number of occurrences of the literals in C ′ is O(n), and such that the size of C ′ is O(n).

Proof. We prove only the upper bound on the number of occurrences. The upper bound on the
size follows from the upper bound on the number of occurrences, the fact that each gate in C has
outdegree 1, and the fact that C has constant depth.
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We apply Reduction Rule 3.1 to C until this is no longer applicable. (We also assume that
the simplification rules are applied as discussed before.) Let C ′ be the resulting circuit. From the
above reduction rule, we know that C ′ is equivalent to C. Since none of these rules remove any
literals, C ′ has the same variables as C. Moreover, all operations performed by the reduction and
simplification rules either remove edges, gates, or are edge contractions. Therefore, the genus of
C ′ is at most g(n). It remains to show that the number of occurrences of the literals in C ′ is O(n).

By part (a) of Reduction Rule 3.1, we know that the number of literals incoming to the
output gate of C is O(n). Let C ′− be C ′ with the output gate removed. It suffices to show that
the number of occurrences in C ′− is O(n). To simplify the counting, we divide the occurrences
of the literals in C ′− into three types: (1) occurrences of literals incoming to a gate g′ such
that g′ has indegree at least 3 and all incoming edges to g′ are from literals; (2) occurrences of
literals incoming to 2-literal gates; and (3) all other occurrences, which are the occurrences of
literals incoming to a gate that has at least one gate incoming to it. Next, we upper bound the
number of occurrences of each type. (In Figure 1, with the output gate removed, the type-(1)
occurrences are the edges (1, b), (2, b), (3, b), (4, b), (5, b), (4, c), (5, c), (6, c), (7, c), (9, c); the type-
(2) occurrences are (1, a), (2, a), (7, d), (8, d), (1, h), (3, h), (6, j), (9, j); and all other occurences are
type-(3) occurrences.)

To upper bound the number of type-(1) occurrences, we define the multihypergraph H whose
vertex-set is the set of literals in C ′. Call a gate g′ of degree at least 3 whose incoming edges
are all from literals, a type-(1) gate. (In Figure 1, the type-(1) gates are the two gates labeled
b and c.) For each type-(1) gate g′, we correspond a hyperedge in H that contains the literals
that are incoming to g′. Clearly, the number of occurrences of the literals that are incoming
to the type-(1) gates is the same as the total number of occurrences of the vertices of H in its
hyperedges. Since the genus of C ′− is at most g(n), by the definition of the genus of a hypergraph,
the genus of H is at most g(n) since its incidence graph is a subgraph of the underlying graph
of C ′−. Since each hyperedge in H has size at least 3, by Lemma 2.1, the number of hyperedges
in the multihypergraph H is O(n + g(n)) = O(n). Therefore, the incidence graph I of H has
O(n) vertices and genus g(n). By Lemma 2.2, the number of edges in I, which is the same as the
total number of vertices in the hyperedges of H, is O(n). This shows that the number of type-(1)
occurrences is O(n).

To upper bound the number of type-(2) occurrences, we upper bound the number of 2-literal
gates. First, consider the set G0 of 2-literal gates that are incoming to the output gate of C ′, and
ignore all other gates for now. (In Figure 1, the 2-literal gates are the gates labeled a, d, h, j, and
only gates h and j are incoming to the output gate.) We start by upper bounding the cardinality
of G0. Since all gates in G0 are incoming to the output gate of C ′, by Reduction Rule 3.1, and
since all gates in G0 are or-gates, any pair of literals in C can be incoming to at most one gate
in G0. Therefore, we can define a (simple) graph whose vertex-set is the set of literals in C ′, and
whose edges correspond to the gates in G0. Clearly, the genus of the constructed graph is g(n). By
Lemma 2.2, the number of edges in this graph, which is the same as the number of gates in G0, is
O(n). It follows that the cardinality of G0 is O(n), and hence, the number of type-(2) occurrences
that are incoming to gates in G0 is O(n).

Now we upper bound the number of 2-literal gates that are not in G0; let G1 be the set of these
gates. First, we upper bound the number of critical gates in C ′ that are not in G0 by O(n). To
do so, observe that each such critical gate g′ has at least three literals incoming to the gates in
Tg′ (note that there are no gates of indegree 1). By contracting the edges in Tg′ , for each critical
gate g′, and removing any resulting multiple edges, we obtain a vertex that is connected to at
least three distinct literals in C ′; the fact that the resulting vertex is connected to at least three
distinct literals follows from the simplification rules and from Reduction Rule 3.1, and can be
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easily verified by the reader. We correspond this resulting vertex with gate g′. Now by defining
a multihypergraph whose vertices are the literals in C ′, and whose hyperedges correspond to the
vertices resulting from the contractions, we can upper bound the number of such vertices, and
hence the number of critical gates in C ′ by O(n), in a similar fashion to that of bounding the
type-(1) gates above. (Note that the genus of the defined multihypergraph is at most g(n) since
its incidence graph is a subgraph of a contraction of C ′−.) To upper bound the number of gates in
G1, apply the following operation until it is no longer applicable: For each gate g′ in G1, if g′ is not
incoming to a critical gate, contract the edge between the parent of g′ in TC′ and the grandparent
of g′ in TC′ . After the application of the aforementioned operation, each gate in G1 is incoming to
a critical gate, and has exactly two literals incoming to it. Now define a multihypergraph whose
vertex-set consists of the set of literals in C ′ plus the critical gates, and whose hyperedges contain
the vertices that the gates in G1 are adjacent to after these contractions; note that each hyperedge
in this multihypergraph has size at least 3. Clearly, the defined multihypergraph has genus g(n)
since it is a contraction of a subgraph of C ′−. Since the number of critical gates in C ′ is O(n),
it follows from Lemma 2.1 that the number of gates in G1 is O(n). Summing up, the number of
2-literal gates in C ′ is O(n), and hence the number of type-(2) occurrences is O(n).

Finally, to upper bound the type-(3) occurrences, we again define a multihypergraph H of
genus g(n) whose vertex-set is the set of literals in C ′, and use a charging scheme to charge the
type-(3) occurrences to the total number of occurrences of the vertices of H in its hyperedges. To
ensure that the genus ofH is g(n), we rely on the forest F in C ′−, resulting from TC′ after removing
the output gate of C ′, when defining H. Call a gate a type-(3) gate if it has a type-(3) occurrence
incoming to it. (In Figure 1, the type-(3) gates are the gates labeled e, f, g, i.) We define the level
of a gate to be the distance from it to the output gate of C ′. We start the charging argument at
the type-(3) gates at the highest level of the circuit, and go from the top to the bottom (we assume
that the output gate is at the bottom of the circuit). Since C ′ has no zero-variables, no type-(3)
occurrence is incoming to the output gate of C ′, and hence this charging scheme will stop at the
critical gates of C ′. Consider a type-(3) gate g′ at the highest level. Since g′ is not a type-(2)
gate and its indegree is more than 1, the number of distinct literals incoming to the subtree Tg′

in F is at least 3. Note that any literal that is incoming to g′ is not incoming to any other gate
in Tg′ by Reduction Rule 3.1. Therefore, by contracting Tg′ to a single vertex and removing any
resulting multiple edges, we get a vertex that is adjacent to all the literals that are incoming to
Tg′ , including the type-(3) literals (i.e., the literals in the type-(3) occurrences) incoming to g′,
and such that the degree of this vertex is at least 3. We associate a hyperedge in H with the
vertex resulting from this contraction that contains the literals incoming to the resulting vertex.
Note that each type-(3) occurrence that is incoming to g′ corresponds to a literal contained in
the created hyperedge. In particular, since each type-(3) literal incoming to g′ is not incoming to
any other gate in Tg′ , no multiple edge that was removed corresponds to any such literal, and all
such literals incoming to g′ are accounted for (i.e., charged to) by the corresponding literals in
the defined hyperedge. Consider now a type-(3) gate g′, and assume inductively, that we finished
processing all type-(3) gates above it. We can assume that g′ has at least one type-(3) gate above
it; otherwise, the treatment is similar to that of the base case. If more than one type-(3) gate in
Tg′ have been charged in the above scheme, we keep one of them, and remove the edges between
each other gate and its parent in Tg′ , thus disconnecting the (contracted) vertex corresponding
to the gate from F ; after this process, exactly one type-(3) gate in the resulting Tg′ was charged
earlier in the charging scheme. Again, note that no type-(3) literal incoming to g′ can be incoming
to any gate in Tg′ . Now we contract the edges in Tg′ and remove any resulting multiple edges to
form a hyperedge of size at least 3 that contains all type-(3) occurrences incoming to g′ (this can
be viewed as if we are adding the type-(3) literals incoming to g′ to the hyperedge corresponding to
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the single charged type-(3) gate in Tg′). This charging scheme stops at the critical gates of C ′. At
that point, we have defined a multihypergraph H whose genus is g(n) since all the hyperedges in
H were defined based on contractions of subtrees in F . The total number of type-(3) occurrences
in C ′ is at most the total number of occurrences of the vertices of H in its hyperedges. Using a
similar argument to that used for upper bounding the number of type-(1) occurrences, we conclude
that the number of type-(3) occurrences in C ′ is O(n).

It follows that the total number of occurrences of the literals in C ′ is O(n). This completes
the proof.

The following theorem shows that a Π−t circuit with no zero-variables and with a linear number
of (literal) occurrences can always be satisfied with an (increasing) function of n variables assigned
1. This result is of independent interest, as we shall see in Section 5.

Theorem 3.4. Let C be Π−t circuit with n variables such that C has no zero-variables and the
number of occurrences of the literals in C is O(n). C has a satisfying assignment in which at

least f(n) = log(dt) n variables are assigned 1, where log(i) indicates the logarithm (base 2) applied
i times, and d > 0 is an integer constant that depends on the upper bound on the number of
occurrences.1

Proof. We will prove the statement of the theorem by induction on t. We will prove the statement
of the theorem for the case in which the degree of every variable (or equivalently literal) in C is
upper bounded by some integer constant d > 0; the statements is true for any constant upper
bound d on the maximum degree of the variables. If the degree of every variable in C is not upper
bounded by some constant d > 0, then since the number of occurrences of the literals is ≤ d′n, for
some constant d′, there is a linear number of variables n′ ≥ n/c′, for some constant c′ ≥ 1, in C each
of which is of degree at most d′. By assigning 0 to the variables of degree larger than d′ (satisfied
gates are then removed), we obtain a circuit C ′ with n′ variables, each of which is of degree at
most d′. Because we will prove the statement of the theorem when the degree of each variable is
upper bounded by a constant, and for any such constant upper bound, this will imply that C ′, and
hence C, has a satisfying assignment in which at least log(d′t) (n′) ≥ log(d′t) (n/c′) ≥ log(d′t) (n)−c′′
variables are assigned 1, for some constant c′′ > 0. By choosing an integer constant d > d′ large
enough, we conclude that C has a satisfying assignment in which at least log(dt) (n) variables
are assigned 1. Therefore, without loss of generality, it suffices to prove the theorem under the
assumption that every variable in C has degree at most an integer constant d > 0.

We say that a gate or a literal, g, contains a variable v if there is a path from the literal v to g.
Denote by V (g) the set of variables contained in g (if g is a literal, then g = v, and V (g) = {v}).
Let v be a variable contained in a gate g. We call v a zero-variable for g if assigning v the value
1 falsifies g; otherwise, v is called a nonzero-variable for g. In particular, a zero-variable (resp.
nonzero-variable) for the output gate of C is a zero-variable (resp. nonzero-variable) for C, as
previously defined.

When t = 2, every or-gate incoming to the output gate of C contains at least two literals. Keep
only two literals for each such or-gate and remove the edges from the other literals to the or-gate
(without removing the literals from C). The problem asking whether C has a satisfying assignment
becomes equivalent to the independent set problem on multigraphs of degree bounded by d,
which can be easily seen to have a solution of size Ω(n). By assigning 1 to the variables in the
independent set and 0 to the remaining variables, the circuit is satisfied. The statement follows.

For simplicity of the presentation and to avoid repetition, the proof of the other base case
when t = 3 (we induct on t − 2) will be combined with the proof of the inductive step, with the

1The constant d depends on the hidden constant in the upper bound O(n) on the number of occurrences.
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understanding that when t = 3 the inductive hypothesis does not apply, as explained later in the
proof. Assume in what follows that t ≥ 3, and that the statement is true for any circuit of depth
smaller than t that satisfies the statement of the theorem.

First, observe that in the case when d = 1, C has a satisfying assignment in which at least n/2
variables are assigned 1. This can be seen as follows. Let g1, g2, . . . , gr be the vertices incoming
to the output gate of C. Since C has no zero-variables, each gi, for 1 ≤ i ≤ r, must be an or-gate
having at least two vertices incoming to it; we use a vertex here to denote a gate or a literal.
From each gi, pick a vertex vi incoming to it that contains at most half of the variables contained
in gi; this can be done since every literal in C occurs exactly once. By assigning all variables in
vi, for i = 1, . . . , r, the value 0, and all the remaining variables in C the value 1, we obtain an
assignment that satisfies C, and in which at least half of the variables are assigned 1.

Suppose now that d ≥ 2. Consider the following procedure:
Fix a variable in C; without loss of generality, let it be x1 and let g1, g2, . . . , gl, where l ≤ d, be

the or-gates incoming to the output and-gate of C that contain x1. For an arbitrary gi, 1 ≤ i ≤ l,
if assigning x1 the value 1 falsifies gi then x1 would be a zero-variable for the circuit, which is not
possible. Therefore, there must exist an and-gate or a literal, denoted w1

i , incoming to gi that is
not falsified by assigning x1 the value 1. Let U be the set of variables consisting of x1 plus all the
variables contained in w1

1, w
1
2, . . . , w

1
l . Consider the following cases:

Case 1. If |U | ≤ nd/(d+ 1), then assign x1 the value 1, and the other variables in U the value 0.
Every w1

i , and hence every gi, for i = 1, . . . , l, is satisfied by this assignment. Afterwards, every
gi can be removed, and the resulting circuit has at least n−nd/(d+ 1) = n/(d+ 1) variables left.

Case 2. If |U | > nd/(d + 1), then one of w1
1, w

1
2, . . . , w

1
l contains at least nd/(d+1)

l ≥ nd/(d+1)
d =

n/(d+1) variables in U ; without loss of generality, let w1
1 be such an AND-gate/literal. We further

distinguish the following subcases:

2.1. If at most half of the variables of w1
1 are zero-variables of w1

1 (note that this case does not
apply when t = 3, because when t = 3 all variables contained in w1

1 are zero-variables of w1
1),

then assign the zero-variables of w1
1 the value 0. Afterwards, w1

1 is a (t−2)-level circuit of at
least n/(2d+ 2) nonzero-variables. Applying the inductive hypothesis to w1

1, we know that

w1
1 has a satisfying assignment with at least log(dt−2)( n

2d+2) variables assigned 1. This means

that in the antimonotone circuit, if we assign 0 to all but these variables, w1
1 is satisfied and

so is g1, which can then be removed. Now the resulting circuit C has at least log(dt−2)( n
2d+2)

variables left, whose degree is at most d − 1 because they are all incoming to gates in Tg1 ,
which is removed.

2.2. If any of the and-gates or literals incoming to g1, say w2
1, shares fewer than n/(2d + 2)

variables with w1
1, then |V (w1

1) \ V (w2
1)| ≥ n/(2d+ 2). Assigning 0 to all variables in V (w2

1)
will satisfy w2

1 and hence will satisfy g1, which can then removed. So the circuit C will have
at least n/(2d+ 2) variables (in V (w1

1) \ V (w2
1)), whose degree is at most d− 1 (because g1

is satisfied and removed).

2.3. Now assume that each and-gate incoming to g1 shares at least n/(2d+2) variables with w1
1,

and hence each contains at least n/(2d+ 2) variables. Since the total number of occurrences
of the literals in C is at most dn, there are at most dn

n/(2d+2) = 2d(d+ 1) and-gates incoming
to g1. Let γ be the number of variables such that each is a nonzero-variable for at least one
and-gate incoming to g1. We distinguish two subcases:
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2.3.1. If γ ≥ n/(2d + 2), then there exists an and-gate incoming to g1, denoted by w′, that

contains at least n/(2d+2)
2d(d+1) = n

4d(d+1)2
nonzero-variables. (Note that this case does not

apply when t = 3, when every variable is a zero-variable for every and-gate incom-
ing to g1 that the variable is contained in.) By a similar argument to that made in
2.1, we apply the inductive hypothesis to w′. Afterwards, the circuit C has at least
log(dt−2)( n

4d(d+1)2
) variables, whose degree is at most d− 1.

2.3.2. If γ < n/(2d+2), assign 0 to every nonzero-variable contained in a gate that is incoming
to g1. The remaining variables of g1 are zero-variables of the and-gates (or literals)
incoming to g1 (by our simplification rules mentioned in Section 2). In other words,
what results of g1 is an or-gate of the form: w1

1∨w2
1∨ . . .∨ws1, where s ≤ 2d(d+1) and

each wj1 is a literal or an and-gate whose incoming edges are all from literals. Note that
there are at most 2d(d+ 1) and-gates (or literals) in g1 and w1

1 has at least n/(2d+ 2)
variables left. Denote by Uj the set of variables shared by all w1

1, . . . , w
j
1:

Uj = V (w1
1) ∩ . . . ∩ V (wj1).

Consider the following process:

If |U2| ≤ |U1|/2, then |U1 \ U2| ≥ |U1|/2 = |V (w1
1)|/2 ≥ n/(4d + 4). Assign 0 to all

variables except those in U1 \ U2, we have a circuit of at least n/(4d + 4) variables,
whose degree is at most d − 1 because g1 is satisfied and removed. If |U2| ≥ |U1|/2,
then proceed similarly: if |U3| ≤ |U2|/2, then assign 0 to all variables except those in
U2 \ U3, we have a circuit of at least |U2|/2 variables, whose degree is at most d − 1
because g1 is satisfied and removed. Proceed in this fashion, so we either have a circuit
of at least n/(d+1)

2s ≥ n/(d+1)

22d(d+1) variables whose degree is at most d − 1, or we end up

with |Us| > n/(d+1)
2s ≥ n/(d+1)

22d(d+1) > 0, which is impossible because any variable in Us is a
zero-variable of C.

This completes the description of the procedure.
Note that no zero-variables are created in any of the above cases. This is true because in

all cases except Case 1, we assign the variables in C only the value 0, which does not create
zero-variables, while in Case 1, x1 is assigned 1, but every gate containing x1 is removed (except
the output gate). Note also that the second base case of t = 3 can be treated by the above process
because t = 3 is only possible in Case/Subcase 1, 2.2, and 2.3.2, all of which do not rely on the
inductive hypothesis.

So in one iteration of the above process, we either: (1) reduce the number of variables
from n to n/(d + 1) and assign 1 to a variable (Case-1 operation), or (2) reduce the num-

ber of variables from n to a number of variables that is at least min{log(dt−2)( n
2d+2), n/(2d +

2), log(dt−2)( n
4d(d+1)2

), n/(d+1)

22d(d+1) } = log(dt−2)( n
4d(d+1)2

), and reduce the degree of the variables by 1

(Case-2 operation). Afterwards, we can repeat the process until f(n) variables are assigned 1, or
until the degree of the variables in the circuit is at most 1. After a number of iterations, if f(n)
variables are already assigned 1 and the circuit is not empty, then we can assign 0 to all other
variables and we are done. If the degree of the variables in the circuit is at most 1, then as we
mentioned at the beginning of the proof, at least half of the remaining variables can be assigned
1. So it remains to be shown that when the degree of the variables in the circuit is at most 1,
there are at least 2f(n) variables left.
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In any sequence of iterations, Case-1 operation is applied at most f(n) times and Case-2

operation is applied at most d times. Let g(n) = n/(d+ 1) and h(n) = log(dt−2)
(

n
4d(d+1)2

)
. Note

that g(h(n)) ≤ h(g(n)), i.e., g ◦ h ≤ h ◦ g. So the number of variables in the circuit after any
sequence of iterations is at least:

g ◦ . . . ◦ g︸ ︷︷ ︸
f(n)

◦h ◦ . . . ◦ h︸ ︷︷ ︸
d

(n).

Note that h(n) = log(dt−2)
(

n
4d(d+1)2

)
≥ log(dt−2) log n = log(dt−2+1) n. So we have:

h ◦ . . . ◦ h︸ ︷︷ ︸
d

(n) ≥ log(dt−2+1) ◦ . . . ◦ log(dt−2+1)︸ ︷︷ ︸
d

n = log(d(dt−2+1)) n = log(dt−1+d) n. (1)

On the other hand:

g ◦ . . . ◦ g︸ ︷︷ ︸
f(n)

(n) = n/(d+ 1)f(n) = n/(d+ 1)log(dt) n ≥ n/ log(dt−2) n > log n. (2)

Finally, since d ≥ 2 and t ≥ 3, we have:

g ◦ . . . ◦ g︸ ︷︷ ︸
f(n)

◦h ◦ . . . ◦ h︸ ︷︷ ︸
d

(n) ≥ log(log(dt−1+d) n) = log(dt−1+d+1) n ≥ 2 log(dt) n = 2f(n). (3)

This means that in any sequence of iterations, we either assign 1 to f(n) variables or end up
with at least 2f(n) variables of degree at most 1, in which case the circuit can be satisfied by
assigning 1 to f(n) variables. So in either case, the statement is true for circuits of depth t ≥ 2.

This completes the proof.

Lemma 3.5. Let c > 0 be a constant. The wsat−[t] (t ≥ 2) problem on circuits of genus
g(n) = Ω(nc), where n is the number of variables in the circuit, is W[t]-complete for odd t and
W[t− 1]-complete for even t.

Proof. To prove the hardness result in the theorem, we show that wsat−[t] is FPT-reducible to
wsat−[t] on circuits of genus g(n) = Ω(nc). Since wsat−[t] is W[t]-hard for odd t, and W[t− 1]-
hard for even t, the hardness result follows. Suppose that g(n) = c′nc, for some constant c′ > 0.

Let (C0, k) be an instance of wsat−[t], where C0 is a Π−t circuit and k is the parameter.
Suppose that C0 has n0 variables and m0 gates (including the variables). Therefore, the genus
of C0 is at most m2

0. If m2
0 ≤ c′nc0, then the FPT-reduction outputs the instance (C, k), where

C = C0. If m2
0 > c′nc0, let C be the circuit obtained from C0 by adding d(m2

0/c
′)(1/c)e − n0 new

negative literals that are incoming to the output and-gate of C0. The FPT-reduction outputs the
instance (C, k). Obviously, the genus of C is at most that of C0, which is at most m2

0. It can
be easily verified that the genus of C, in both cases, is at most c′nc, where n is the number of
variables in C. Noting that the new literals (if added) must be assigned value 1, and hence their
corresponding variables value 0, by any satisfying assignment of C, we conclude that C0 has a
weight-k satisfying assignment if and only if C has a weight-k satisfying assignment. It follows
that the above reduction is an FPT-reduction from wsat−[t] to wsat−[t] on circuits of genus
g(n) = Ω(nc).

The completeness of the problem follows from the membership of wsat−[t] in W[t] for odd t,
and in W[t− 1] for even t.
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Now we have a tight result on the parameterized complexity of the wsat−[t] problem with
respect to the genus of the circuit.

Theorem 3.6. The wsat−[t] (t ≥ 2) problem on circuits of genus g(n) = no(1) (n is the number of
variables) is FPT, and is W[t]-complete for odd t and W[t−1]-complete for even t if g(n) = nΩ(1).

Proof. Let g(n) = no(1) = n1/µ(n), where µ(n) is a complexity function, and let (C, k) be an
instance of the wsat−[t] (t ≥ 2) problem on circuits of genus g(n). By Proposition 3.2, we can
assume that C has no zero-variables, and that the number of variables n in C is least g(n). By
Proposition 3.3, we may assume that the number of occurrences of the literals in C is O(n); if
this is not the case then the genus of the circuit is not upper bounded by g(n), and we reject
the instance. By Theorem 3.4, C has a satisfying assignment in which at least f(n) variables are
assigned the value 1, where f(n) is the function given in the lemma. Therefore, if k ≤ f(n) then
we accept the instance (C, k); otherwise, k > f(n) and in FPT-time we can decide the instance by
a brute-force algorithm that enumerates every weight-k assignment. The hardness result follows
from Lemma 3.5.

4 The monotone case

In this section we investigate the parameterized complexity of the wsat+[t] problem, where t ≥ 2
is an integer, with respect to the genus of the circuit.

Proposition 4.1. Let (C, k) be an instance of wsat+[t] (t ≥ 2) such that C has genus g(n) =
no(1). There is an FPT-time algorithm that reduces (C, k) to h(k)nO(1) many instances (C ′, k′) of
wsat+[t], where h is a complexity function and k′ ≤ k, such that (C, k) is a yes-instance if and
only if at least one of the instances (C ′, k′) is, and such that each instance (C ′, k′) satisfies that:
(1) the number of critical gates in C ′ is at most 2k′, (2) every variable in C ′ is incoming to gates
in at most two subtrees Tp, Tq of T ′C rooted at critical gates p, q in C ′, and (3) the genus of C ′ is
at most g(n).

Proof. Let g(n) be a complexity function such that g(n) = no(1). Since g(n) = no(1), g(n) ≤ n1/µ(n)

for some complexity function µ(n).
Let (C, k) be an instance of wsat+[t], where C is a Π+

t circuit with set of variables X =
{x1, . . . , xn}, and k is the parameter. If more than k variables are incoming to the output gate
of C, then clearly C has no satisfying assignment of weight k, and we reject the instance (C, k).
Otherwise, we can assign the value 1 to the variables incoming to the output-gate of C, remove
these variables, and update C and k accordingly. So we may assume, without loss of generality,
that C has no variables incoming to its output gates, and that all gates incoming to the output
gates are or-gates (by the simplification rules discussed in Section 2), and hence are critical gates.

For each critical gate p in C, consider the subtree Tp of TC . In the case when t = 2, this
subtree is trivial, and consists of gate p. We form an auxiliary graph B as follows. Starting at
each critical gate p, we contract the edges in Tp to form a single vertex p′ whose incoming variables
are the variables that are incoming to at least one gate in Tp. Note that if a variable is incoming
to several gates in Tp, then there will be multiple edges between p′ and this variable. Let G be the
set of vertices resulting from contracting each tree Tp corresponding to a critical gate p in C. Let
B = (G, X) be the underlying undirected bipartite graph resulting from this contraction with the
multiple edges removed. That is, there is an (undirected) edge in B between a variable xi ∈ X
and a gate p′ in G if and only if xi is incoming to some gate in Tp. Clearly, the genus of B is
at most g(n). Observe that since each critical gate p must be satisfied by every assignment that
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satisfies C, for any vertex p′ in G, at least one variable incident to p′ in B must be assigned 1 in
any truth assignment satisfying C. Let ng = |G|.

We partition the variables in X into two sets: X≥3 that consists of each variable in X whose
degree in B is at least 3, and X≤2 consisting of each variable in X whose degree in B is at most 2.
Let n3 = |X≥3| and n2 = |X≤2|. By defining a multihypergraph whose vertex-set is G, and whose
hyperedges correspond to the neighborhoods of the variables in X≥3, we obtain from Lemma 2.1
that n3 ≤ 2ng + 4g(n); if the preceding upper bound on n3 does not hold, then we reject the
instance (this means that the genus of the circuit is not at most g(n)). We perform the following
search-tree algorithm A that distinguishes two cases:

Case 1. ng ≤ n1/µ(n). In this case we have n3 ≤ 2ng + 4g(n) ≤ 6n1/µ(n). The number of subsets
of X≥3 of size at most k is at most Σk

i=0

(
n3

i

)
≤ knk3 ≤ k · (6n1/µ(n))k. We try each such subset of

X≥3 as a candidate subset of variables that will be assigned value 1 by a satisfying assignment of
weight k. For each such candidate subset S, we update the gates in C in a natural way according
to the partial assignment assigning the variables in S the value 1, and those in X≥3\S the value 0.
We remove all variables in X≥3 from C, and update C and k appropriately. Since each remaining
variable is in X≤2, each variable can satisfy at most 2 critical gates, and hence if the number of
critical gates in C is more than 2k, then we can reject the resulting instance (C, k). Therefore,
for each instance resulting from the enumeration of such a subset S of X≥3, either the number of
remaining critical gates in C is more than 2k and we reject the instance since k variables in X≤2

cannot satisfy all the critical gates of C, or the number of critical gates in C is at most 2k. Since
the number of candidate subsets of X≥3 is at most k · (6n1/µ(n))k, which can be enumerated in
FPT-time by Lemma 2.4, the statement of the theorem follows.

Case 2. ng > n1/µ(n). Let G be the subgraph of B induced by the set of vertices in G plus those
in X≥3. Since n3 ≤ 2ng+4g(n) ≤ 6ng, the number of vertices in G is at most 7ng. Since the genus
of G is at most g(n), by Lemma 2.2, the number of edges in G is at most 21ng + 6g(n) ≤ 27ng.
Let Y≥3 be the set of variables in X≥3 of degree at least 27ng/ log n in G. Since the number of
edges in G is at most 27ng, it follows that |Y≥3| ≤ log n. In time (log n)k, which is FPT-time
by Lemma 2.4, we can enumerate each subset of Y≥3 of size at most k as a candidate subset of
variables that are assigned value 1 by a satisfying assignment of weight k. For each such nonempty
candidate subset, C is updated appropriately (as in Case 1 above) and k is decreased by at least
the size of the subset, which is nonzero, and we can repeat the execution of the whole algorithm
A; this algorithm will be repeated at most k times. If the candidate subset is empty, then along
this branch we reject the instance (C, k) since C cannot be satisfied by an assignment of weight
k. The preceding statement can be justified as follows. In any satisfying assignment, the critical
gates, whose number is ng > n1/µ(n), must be satisfied. Since the chosen subset of Y≥3 is empty,
we are working under the assumption that no variable in Y≥3 is assigned 1 by any satisfying
assignment. Therefore, the variables assigned 1 by any satisfying assignment must be chosen from
X≥3−Y≥3 or from X≤2. Each variable in X≥3−Y≥3 can satisfy at most 27ng/ log n critical gates
in C, and each variable in X≤2 can satisfy at most 2 critical gates. Therefore, k variables from
(X≥3 − Y≥3) ∪ X≤2 can satisfy at most 27kng/ log n < ng critical gates in C, and hence cannot
satisfy C. We assumed here that k < log n/27; otherwise, we can decide the instance in FPT-time.

It follows that the algorithm A outlined above runs in FPT-time, and either solves the instance
(C, k), or reduces it to h(k)nO(1) many instances (C ′, k′) (k′ < k), such that (C, k) is a yes-instance
if and only if at least one of the instances (C ′, k′) is, and such that each of the instances (C ′, k′)
satisfies conditions (1), (2), and (3) in the statement of the theorem.
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The proof of the following lemma is similar to that of Lemma 3.5:

Lemma 4.2. Let c > 0 be a constant. The wsat+[t] (t ≥ 2) problem on circuits of genus
g(n) = Ω(nc) is W[t]-complete for even t and W[t− 1]-complete for odd t.

Theorem 4.3. The wsat+ problem on circuits of genus g(n) is FPT if g(n) = no(1), and is
W[2]-complete if g(n) = nΩ(1).

Proof. By Proposition 4.1, in FPT-time we can reduce an instance (C, k) of wsat+ on circuits of
genus g(n) = no(1) to h(k)nO(1) many instances (C ′, k′) of wsat+, such that each instance (C ′, k′)
satisfies the properties described in Proposition 4.1. It suffices to show that we can decide each
such instance (C ′, k′) in FPT-time. First, observe that since each subtree Tp rooted at a critical
gate p consists of a single critical gate of C ′, each variable in C ′ has outdegree at most 2; that is,
each variable in C ′ is incoming to at most two gates in C ′. For two variables xi and xj in C ′, if the
set of gates that xi is incoming to is a subset of that of xj , then we say that xj dominates xi. We
perform the following reductions. If more than k′ variables are incoming to the output gate of C ′,
then C ′ has no satisfying assignment of weight k′, and we reject (C ′, k′). Otherwise, we assign the
value 1 to the variables incoming to the output gate of C ′, remove them, and update C ′ and k′

accordingly. For any two 2-literal gates that have the same pair of variables incoming to them, we
remove one of the two gates from C ′. So assume, without loss of generality, that in the instance
(C ′, k′) the circuit C ′ contains no variables incoming to its output gate, and that there are no two
2-literal gates in C ′ with the same pair of variables incoming to them. For every two variables xi
and xj in C, if xi dominates xj then remove xj . After applying the previous reductions, it is easy
to see that the number of degree-1 variables is at most 2k′, and the number of degree-2 variables
is at most

(
2k′

2

)
. Therefore, the resulting circuit has size O(k′2), and in FPT-time we can decide

(C ′, k′). The hardness result follows from Lemma 4.2.

The rest of this section handles the cases when t > 2. We first have the following definition.

Definition 4.4. Let G = (V,E) be a graph. A tree decomposition of G is a pair (V, T ) where V
is a collection of subsets of V such that

⋃
Xi∈V = V , and T is a tree whose node set is V, such

that:

1. for every edge {u, v} ∈ E, there is an Xi ∈ V, such that {u, v} ⊆ Xi;

2. for all Xi, Xj , Xk ∈ V, if the node Xj lies on the path between the nodes Xi and Xk in the
tree T , then Xi ∩Xk ⊆ Xj;

The width of the tree decomposition (V, T ) is defined to be max{|Xi| | Xi ∈ V} − 1. The
treewidth of the graph G is the minimum tree width over all tree decompositions of G.

Consider an (r× r)-grid. A corner vertex of the grid is a vertex of the grid of degree 2. By Γr
(see [14]) we denote the graph obtained from the (r× r)-grid as follows: construct first the graph
Γ′r by triangulating all internal faces of the (r × r)-grid such that all internal vertices of the grid
are of degree 6, and all non-corner external vertices of the grid are of degree 4. Notice that Γ′r is
unique up to isomorphism. Also, two of the corners of the initial grid have degree 2 in Γ′r; let x
be one of them. Γr is obtained from Γ′r by adding all the edges having x as an endpoint and a
vertex of the external face of the grid that is not already a neighbor of x as the other endpoint
(see Figure 2 for an illustration of Γ6). Observe again that Γr is unique up to isomorphism. The
following lemma is implied from Lemma 6 in [14]:
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x

Figure 2: The graph Γ6.

Lemma 4.5 (Lemma 6 in [14]). Let G be a graph of genus g, and let r be any positive integer. If
G excludes Γr as an s-contraction, then the treewidth of G is at most (2r + 4) · (g + 1)3/2.

We note that Lemma 6 in [14] uses the notion of smooth contraction instead of s-contraction,
but it is certainly true that if G excludes Γr as an s-contraction then it excludes Γr as a smooth
contraction as well.

Lemma 4.6. Let (C, k) be an instance of wsat+[t] (t ≥ 2) such that C has genus g(n) and at
most 2k critical gates. Let C− be the circuit resulting from C after removing the output gate. The
treewidth of the underlying graph of C− is O(

√
k · g3/2(n)).

Proof. We show that there exists an integer constant c > 0 such that the underlying graph of C−

excludes Γ(c·d
√
ke) as an s-contraction. The result will then follow from Lemma 4.5.

Suppose, to get a contradiction, that for every integer constant c > 0 the underlying graph of
C−, G, contains Γ(c·d

√
ke) as an s-contraction. Since the depth of C is at most t, every literal and

gate in C− is within distance (i.e., length of a shortest path) at most t from some critical gate of
C. Let S be the set of vertices in G, each of which either corresponds to a critical gate of C or to
an s-contraction of a critical gate of C, and note that |S| ≤ 2k. Clearly, every vertex in G must
be within distance at most t from one of the vertices in S. Since t is a constant, it is easy to see
that the number of vertices in G within distance t from at least one vertex in S is at most c′k,
for some integer constant c′ > 0 that is independent of c and k. On the other hand, the number
of vertices in G is (c · d

√
ke)2 ≥ c2k. By choosing c large enough (larger than

√
c′), we arrive at

a contradiction since there would be vertices in G that are not within distance t from any vertex
in S (note that k is assumed to be larger than any pre-specified constant).

Using the above lemma, we can design a dynamic programming approach based on tree de-
composition. To simplify the dynamic programming algorithm, we use the notion of a nice tree
decomposition defined as follows.

A (rooted) tree decomposition (V, T ) is nice if it satisfies the following conditions:

1. Each node in the tree T is either a leaf (has no children) or has at most two children.

2. If a node Xi has two children Xj and Xk in the tree T , then Xi = Xj = Xk; in this case
node Xi is called a join node.

3. If a node Xi has only one child Xj in the tree T , then either |Xi| = |Xj |+ 1 and Xj ⊂ Xi,
and in this case Xi is called an insert node; or |Xi| = |Xj | − 1 and Xi ⊂ Xj , and in this case
Xi is called a forget node.
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Proposition 4.7. Let C be a Π+
t circuit, and let G = (V,E) be the undirected underlying graph

of C with the output gate removed. If a tree decomposition for G of N nodes and treewidth ω is
given, then a minimum weight satisfying assignment of C can be computed in time O(9ωNO(1)).

Proof. Let X = 〈{Xi | i ∈ T }, T 〉 be a nice tree decomposition for the graph G. We assume that
the tree decomposition is nice; otherwise, based on T we can compute a nice tree decomposition
of the same width in polynomial time in the size of T [20]. To simplify the notation, we call a
vertex in G a “variable” (resp. a “gate”) if its corresponding vertex in C is a variable (resp. a
gate).

We use a dynamic programming approach to compute a minimum weight satisfying assignment
for C. Let Xi = (xi1 , . . . , xini

) be a bag in X , where each of xi1 , . . . , xini
is either a variable or a

gate. For an xir ∈ Xi, if xir is a variable we assign it either the color “white”, meaning that its
value is 0/false, or the color “black”, meaning that its value is 1/true; if xir is a gate, we assign
it one of three colors: “black”, “gray”, and “white”. Here are the interpretations of the colors,
and the rules for assigning them to the gates:

• black: true and justified. For an or-gate, this means that one of the vertices incoming to
xir is colored black or gray; for an and-gate, this means that all the vertices incoming to
xir are black or gray.

• gray: true but unjustified. For an or-gate, this means that every vertex incoming to xir
is either uncolored or is colored white; for an and-gate, this means that at least one vertex
incoming to xir is uncolored, and the colored vertices incoming to xir are black or gray.

• white: false, either justified or unjustified. For an or-gate, this means that every vertex
incoming to xir is either uncolored or is colored white; for an and-gate, this means that one
of the vertices incoming to xir is either uncolored or is white.

A vector ci = (ci1 , . . . , cini
) is called a coloring of the bag Xi, where cir is the color of xir . The

weight of a coloring ci of a bag Xi, denoted W (ci), is the minimum number of variables assigned
true in the graph induced by the subtree of T rooted at Xi, under the restriction that ci is the
coloring of Xi.

The dynamic programming algorithm will compute valid colorings of the bags in T and their
weights in a bottom-up fashion starting at the leaves of T . During this process, we check for
validity of the colorings according to the rules of assigning the colors, and purge invalid ones.
Additionally, if a gate in G is critical and is colored white, then the coloring is also invalid and
purged.

First, for each leaf bag in the tree decomposition, we compute the valid colorings and their
weights for this bag. The valid colorings can be computed by enumerating all colorings and
checking for their validity according to coloring rules. Next, we move up the tree from the leaves
to the root, computing the colorings and their weights of a parent depending on the colorings and
weights of its child (or children). We set the following ground rule regarding the coloring of a
vertex shared by a parent (bag) and its child (bag):

Ground Rule: If the shared vertex is a variable, then its color must be the same in
the parent and in the child; if the shared vertex is a gate, then either its color is the
same in the parent and in the child, or its color is gray (true but unjustified) in the
child and black (true and justified) in the parent.
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The ground rule is based on the following reasoning: A vertex that is colored black or white does
not change its color in a valid coloring; an and-gate colored gray can be upgraded (later) to black
when all vertices incoming to it are colored black or gray; and an or-gate colored gray can be
upgraded to black when a vertex incoming to it becomes black or gray.

We distinguish three cases according to the types of the nodes in the tree decomposition.

0. Leaf node: Let Xi be the bag of a leaf node. We enumerate all colorings of the vertices in
Xi. For each possible coloring c, we check its validity according to the coloring rules, and
store it if it is valid.

1. Forget node: Let Xi be the bag of a forget node and Xj = Xi ∪ {x} be the bag of its
child, where x is the vertex to be “forgotten”. The colorings of Xi are the projection of the
colorings of Xj . The weight of a coloring c of Xi is the minimum weight of the colorings of
Xj that produce c. Note that by the time a gate g is to be forgotten, it will not be colored
gray because by then all vertices incoming to g have been considered, and hence its color
should not remain unjustified.

2. Insert node: Let Xi be the bag of an insert node and Xj = Xi \ {x} be the bag of its child,
where x is the vertex to be “inserted”. We will extend the colorings of Xj by assigning x its
possible color options. After inserting the new vertex and assigning it a color, a coloring may
become invalid, and in which case the coloring is discarded. After inserting the new vertex
and assigning it a color, it is possible that some gray gate may be upgraded to black, then
it is updated as such. Note that upgrading the color of a vertex v from gray to black does
not affect the colors of the vertex that v incoming to (by the coloring rules). The weight of
a coloring c of Xi is the minimum weight of the colorings of Xj that produce c, plus one if
the new vertex x is a variable and is assigned true.

3. Join node: Let Xi be the bag of a join node and Xj , Xk be the bags of its children, where
Xi = Xj = Xk. Let x be a vertex in Xi. If x is a variable, then the color of x must be the
same in Xi, Xj , and Xk according to the Ground Rule. If x is a gate, the color of x can be
the same in Xi, Xj , and Xk, or, according to the Ground Rule, one of the following cases
applies: (1) x is black in Xi and Xj , and gray in Xk (or symmetrically, black in Xi and Xk,
and gray in Xj), or (2) x is black in Xi, and gray in both Xj and Xk. In the following, we
discuss these cases based on the type of the gate x.

If x is an and-gate, case (1) happens when all the vertices incoming to x are true (either
justified or unjustified) and all of them are in the subtree rooted at Xj (and hence Xi), but
not all of them are in the subtree rooted at Xk. Case (2) happens when all the vertices
incoming to x are true (either justified or unjustified), and all of them are in the subtree
rooted at Xi, but not all of them are in the subtree rooted at Xj or Xk.

If x is an or-gate, case (1) happens when a vertex incoming to x is true in the resolved
portion of the subtree rooted at Xj (and hence Xi), but it is not in the subtree rooted at
Xk. Case (2) is impossible because if x has a vertex incoming to it that is colored black or
gray, this vertex should appear in Xj or in Xk.

In each of these cases, if a coloring ci of Xi is produced from a coloring cj of Xj and a
coloring ck of Xk, then W (ci) = min(W (cj) + W (ck) −#1(ci)) over all colorings cj and ck
that produce ci, where #1(ci) is the number of variables assigned true in coloring ci.

Since each vertex can be colored with at most three colors, it is easy to see that Cases 0–2
above can be executed in O(3ωNO(1)) time, and that Case 3 can be executed in O(9ωNO(1))
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time. Finally, the minimum weight satisfying assignment is the minimum weight of the colorings
of the root. The total running time of the dynamic programming algorithm outlined above is
O(9ωNO(1)). It may be possible to obtain improvement on the running time of the dynamic
programming algorithm above using the generalized subset convolution technique (see [27]).

Theorem 4.8. The wsat+[t] problem (t > 2) on circuits of genus g(n) = o(log2/3 (n)) is FPT,
and is W[t]-complete for even t and W[t− 1]-complete for odd t if g(n) = nΩ(1).

Proof. Let (C, k) be an instance of wsat+[t] on circuits of genus g(n) = λ(n), where λ(n) =
o(log2/3 (n)). By Proposition 4.1, in FPT-time we can reduce the instance (C, k) to h(k)nO(1)

many instances (C ′, k′) of wsat+[t], where h is a complexity function of k and k′ ≤ k, such that
(C, k) is a yes-instance if and only if at least one of the instances (C ′, k′) is, and such that C ′

has genus at most that of C and C ′ has at most 2k′ critical gates. Therefore, without loss of
generality, we may assume that C has at most 2k critical gates. By Lemma 4.6, the treewidth
of C is at most c1

√
k · λ′(n), where λ′(n) = o(log n). Using the algorithm in [3], we can decide

if the treewidth of C is at most c2

√
k · λ′(n) for some fixed constant c2 > 0 (if not, the genus

does not satisfy the given upper bound and we reject the instance), and if so, the algorithm
in [3] returns a tree decomposition of C of width c4

√
k · λ′(n), for some constant c4 > 0, in time

2O(
√
k·λ′(n))|C|O(1) = 2

√
k·o(logn)|C|O(1) = no(1)·

√
k|C|O(1), which is FPT-time by Lemma 2.4. By

Proposition 4.7, we can decide (C, k) in time 2O(
√
k·λ′(n))|C|O(1), which is FPT-time following the

same preceding analysis. The hardness result follows from Lemma 4.2.

The above approach can be extended to prove that wsat+[3] on circuits of genus no(1) is FPT,
thus obtaining tight results for t = 3 as well. Because the approach is very similar, to avoid
repetition, we only sketch the proof and emphasize the differences.

Theorem 4.9. The wsat+[3] problem on circuits of genus g(n) is FPT if g(n) = no(1), and
W [2]-complete if g(n) = nΩ(1).

Proof. We will sketch the proof. First, using a similar proof to that of Lemma 4.6, we can show
that a circuit whose genus is no(1) and having at most 2k critical gates has treewidth no(1). Using
the result of Bodlaender et al. [5], we can compute a tree decomposition of the underling graph
of the circuit of treewidth O(no(1) · log n).

We then modify the dynamic programming approach in Proposition 4.7 to work on a tree
decomposition of treewidth O(no(1) · log n). The basic observation needed for this proof is that
we can enumerate all necessary configurations of the vertices in the bags of size O(no(1) · log n) in
fpt-time. This can be seen as follows. For t = 3, the circuit consists of an output gate, at most
2k critical gates that must be satisfied, level-2 and-gates, and variables. Therefore, each bag of
the tree decomposition contains within it critical gates, level-2 and-gates, and variables. Observe
the following:

1. Critical gates must be satisfied, and hence no enumeration is needed to their status.

2. Since we are looking for a weight-k satisfying assignment, we only need to enumerate subsets
of variables of size at most k in a bag (in the tree decomposition) whose size is no(1) · log n.
Hence, we can enumerate all subsets of at most k variables in any bag in time O(no(1)k ·
(log n)k), which is FPT by Lemma 2.4.

3. A critical gate is satisfied if and only if at least one of its incoming level-2 and-gates (or
a variable) is satisfied. Therefore, we only need to enumerate the set of level-2 and-gates
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satisfying the condition that no two level-2 and-gates in the set are incident to the same
critical gate. Therefore, we only need to enumerate subsets of size at most k from the set of
level-2 and-gates in a bag, whose size is no(1) · log n.

It follows from Lemma 2.4 that we can enumerate all necessary configurations of the vertices
in a bag in fpt-time.

5 Applications

We show applications of the above complexity results to some natural problems. The parameter-
ized red-blue nonblocker problem is: Given a bipartite graph with one partition colored red
and the other blue and a parameter k, decide whether or not there exists a set S of k red vertices
such that every blue vertex has a red neighbor not in S. The red-blue dominating set problem
is: Given a bipartite graph with one partition colored red and the other blue and a parameter k,
decide whether or not there exists a set S of k red vertices such that every blue vertex has a red
neighbor in S (i.e., a set of red vertices of size k that dominates all blue vertices). The hitting
set problem is: Given a hypergraph H and a parameter k, decide whether or not there exists
a set C of k vertices that intersects every hyperedge in H (i.e., the vertex cover problem on
hypergraphs). The independent set on hypergraphs problem is: Given a hypergraph H and
a parameter k, decide whether or not there exists a set I of k vertices such that no hyperedge in
H is a subset of I. The set cover problem is: Given a hypergraph H and a parameter k, decide
if there are at most k hyperedges whose union is V (H). Recall that, by definition, the genus of a
hypergraph is the genus of its bipartite incidence graph (see Section 2).

Theorem 5.1. The parameterized red-blue dominating set, hitting set, and set cover
are FPT on graphs/hypergraphs of genus No(1) and W[2]-complete on graphs/hypergraphs of genus
NΩ(1), where N is the number of red vertices in red-blue dominating set, the number of
vertices in hitting set, and the number of hyperedges in set cover.

Proof. The FPT results follow by simple and standard FPT-reductions that preserve the genus
(and N) from the red-blue dominating set, hitting set and set cover problems to wsat+

combined with Theorem 4.3. We briefly sketch these standard reductions, and refer the reader
to [12,13] for more details about these reductions.

The reduction from red-blue dominating set on graphs of genus No(1) to wsat+ corre-
sponds to every red vertex in the bipartite graph a variable and to every blue vertex a critical
(or) gate; an edge is drawn between a variable and a gate if and only if an edge exists between the
corresponding vertices in the graph. The reduction from hitting set on hypergraphs of genus
No(1) to wsat+ corresponds to every vertex in the hypergraph a variable and to every hyperedge
a critical gate; an edge exists between a variable and a gate if and only if the vertex corresponding
to the variable is contained in the hyperedge corresponding to the gate. The reduction from set
cover on hypergraphs of genus No(1) to wsat+ corresponds to every hyperedge in the hyper-
graph a variable and to every vertex in the hypergraph a critical gate; an edge exists between a
variable and a gate if and only if the hyperedge corresponding to the variable contains the vertex
corresponding to the gate. The parameter k remains unchanged in all the aforementioned reduc-
tions. It is easy to verify that the aforementioned reductions are FPT-reduction that preserve the
genus of the the underlying graph/hypergraph.

The W[2]-hardness results follow by standard FPT-reductions that preserve the genus from
wsat+ on circuits of genus NΩ(1) to red-blue dominating set, hitting set, and set cover
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combined with Theorem 4.3; these reductions are basically the “inverse” reductions of the ones
described above. We briefly describe these reductions next.

The reduction from wsat+ on circuits of genus NΩ(1) to red-blue dominating set corre-
sponds with every variable a red vertex, and with every critical gate a blue vertex; an edge exists
between a red vertex and a blue vertex if and only if the variable corresponding to the red vertex
is incoming to the gate corresponding to the blue vertex. The reduction from wsat+ on circuits of
genus NΩ(1) to hitting set corresponds to every variable a vertex in the hypergraph and to every
gate a hyperedge containing all the vertices corresponding to the variables incoming to the gate
in the circuit. The reduction from wsat+ on circuits of genus NΩ(1) to set cover corresponds
with every gate a vertex in the hypergraph, and with every variable a hyperedge containing all
the vertices corresponding to the gates to which the variable is incoming. The parameter k re-
mains unchanged in all the aforementioned reductions. It is easy to verify that the aforementioned
reductions are FPT-reductions that preserve the genus of the underlying circuit.

Theorem 5.2. The parameterized red-blue nonblocker and independent set on hyper-
graphs problems are FPT on graphs/hypergraphs of genus No(1) and W[1]-complete on
graphs/hypergraphs of genus NΩ(1), where N is the number of red vertices in red-blue non-
blocker, and the number of vertices in independent set on hypergraphs.

Proof. The FPT results follow by standard FPT-reductions that preserve the genus from red-
blue nonblocker and independent set on hypergraphs on graphs/hypergraphs of genus
No(1) to wsat− combined with Theorem 3.6. We briefly sketch these standard reductions, and
refer the reader to [12,13] for more details about these reductions.

The reduction from red-blue nonblocker on graphs of genus No(1) to wsat− corresponds
to every red vertex in the bipartite graph a variable and to every blue vertex a critical (or)
gate; an edge is drawn between a variable and a gate if and only if an edge exists between the
corresponding vertices in the graph. The reduction from independent set on hypergraphs
on hypergraphs of genus No(1) to wsat− corresponds to every vertex in the hypergraph a variable
and to every hyperedge a critical (or) gate; an edge is drawn between a variable and a gate if and
only if the vertex corresponding to the variable is contained in the hyperedge corresponding to
the gate. The parameter k remains unchanged in all the aforementioned reductions. It is easy to
verify that the aforementioned reductions are FPT-reductions that preserve the genus of the the
underlying graph/hypergraph.

The W[1]-hardness results follow by standard FPT-reductions that preserve the genus from
wsat− on circuits of genus No(1) to red-blue nonblocker and independent set on hyper-
graphs combined with Theorem 3.6. We briefly sketch these standard reductions.

The reduction from wsat− on circuits of genus NΩ(1) to red-blue nonblocker corresponds
with every variable a red vertex, and with every critical gate a blue vertex; an edge exists between
a red vertex and a blue vertex if and only if the variable corresponding to the red vertex is incoming
to the gate corresponding to the blue vertex. The reduction from wsat− on circuits of genus NΩ(1)

to independent set on hypergraphs corresponds to every variable a vertex in the hypergraph
and to every gate a hyperedge containing all the vertices corresponding to the variables incoming to
the gate in the circuit. The parameter k remains unchanged in all the aforementioned reductions.
It is easy to verify that the aforementioned reductions are FPT-reductions that preserve the genus
of the the underlying graph/hypergraph.
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6 Concluding remarks

In this paper we tried to characterize the parameterized complexity of the canonical monotone
and antimonotone normalized wsat[t] problems in terms of the genus of the circuit. For wsat−[t],
the characterization we provided is precise. For wsat+[t], however, there is still a gap between
the two genus bounds of o(log2/3 (n)) and no(1). Closing this gap, or even reducing it, is a very
interesting question that we leave open.

Similar characterizations of the subexponential-time computability of wsat−[t] and wsat+[t]
in terms of the genus can be obtained. It is not difficult to prove by combining some results in
this paper with a standard divide-and-conquer approach based on the separator theorem in [11],
that wsat−[t] and wsat+[t] are solvable in subexponential-time if the genus is o(n), and that
they are not solvable in subexponential-time if the genus is O(n) unless the exponential-time
hypothesis (ETH) fails. We refer the reader to [8] for examples of how this standard approach
can be applied to obtain such subexponential-time computability results. It would be interesting
to see if any characterization of the approximation of the optimization versions of wsat−[t] and
wsat+[t] based on the genus of the circuit can be derived. We also leave this as an open question.
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