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Résumé — Cet article présente une méthode pour calculer une matrice de covariance entre deux signaux 2 valeur sur SO(3). Pour chacun, sa
moyenne est calculée. Apres avoir projeté chaque signal dans le plan tangent de sa moyenne via 1’application log, chaque projection est translatée
pour étre dans le méme plan tangent. Une matrice de covariance classique peut alors étre calculée. Cette mesure peut alors étre utilisée pour
I’étude du mouvement humain. En attachant des capteurs inertiels au cou et au bassin d’un grimpeur, il est possible d’estimer la coordination du
roulis de différentes parties de son corps, indicateur de performance du grimpeur.

Abstract — This article describe a method to measure a covariance matrix between two SO(3) based signals. For each one, the mean value is
computed. After applying the log map to project each signal in the tangent space of its mean, they are both translated to the same tangent space.
A classic covariance matrix can the be determined. Using IMUs attached to the hip and the neck of an indoor climber, it can be used to create an

indicator of body kinematics coordination. Studying such coordinations might be useful for determining the climber skills.

1 Introduction

Indoor climbing requires a lot of motor skills and coordina-
tion. Analysing the motion of the body is a good way to indi-
cates the skill level of a climber. For example, beginners usually
climb with the body face to the wall leading to the emergence
of a horizontal hold grasping pattern, like "climbing a ladder",
which was assumed to be a cooperative situation where indivi-
duals exploited their pre-existing behavioral repertoires.

Conversely, expert climbers alternate position with the body
face to the wall with rolling motion of the trunk to the side of or
obliquely to the wall, like "opening/closing a door". This was
assumed to be a more competitive situation relative to the pre-
existing behavioral repertoire, where individuals explored new
behaviors. It was hypothesized that practicing during a lear-
ning protocol where the route is design to alternate those two
behaviours can help beginners to learn side to the wall body
position.

Once an individual has learned these two behaviours, an in-
dividual could both exploit the pre-existing behavioral reper-
toire (i.e., trunk face to the wall) and use the newly learned
behavior (i.e., rolling motion of the trunk side or obliquely to
the wall), which can finally be observed by (i) greater rolling
motion of trunk and (ii) greater variability of rolling motion of
trunk through a time-series. Such indicators have already been
measured in [1] for example.

However, it is also assumed that ruling motion of the trunk
could be achieved by rolling only the hip, only the shoulders,
simultaneously hips and shoulders but in opposite sides or si-
multaneously hips and shoulders but in the same direction. This
leads to a comparaison between the orientation of the hips and
the orientation of the shoulders with respect to the climbing
wall. For each climb, IMUs (Inertial Measurement Unit) atta-
ched to the hips and the shoulders records data [2] which leads
to the orientation of each IMU. These orientations are SO(3)
valued signals. Mathematically speaking, it corresponds to fin-
ding a way to measure the covariance between two SO(3) ba-
sed signals.

2 Method

Despite that the results presented here are dedicated to SO(3),
they can be easily generalized for any Lie group.

2.1 Geometry of SO(3)

The Lie group used in this case is the special orthogonal
group of R3 :

SO(3) = {R € R} |RR" = I,det(R) = 1}.



The Lie algebra associated to SO(3) is the set of skew sym-
metric matrix :

s0(3) = {r e R®*rT = —r}.

Let ¢ : R3 — s0(3) be the bijection :

To 0 —T9 1
ol m | = ) 0 -ro |. 9]
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The algebra s0(3) is the tangent space to SO(3) at the point

I. The tangent space at the point R € SO(3) is denoted TR SO(3).

The exp and log maps are the usual matrix exponential and
its inverse. The exp map applied from TrSO(3) is denoted
expp(.) = Rexp(.) and the log map applied from R € SO(3)
is denoted log z(.) = log(RT.).

The geodesic distance d : SO(3)? — R™ is defined as :
d(Ry, Ra) = [|¢~ " (log(Ry " Ri)|l2.

2.2 Computing the mean

For Euclidian space based signals, centering the signals is
needed for computing the covariance. Here, a similar step is
realized. However, due to the geometry of SO(3), an intre-
sic mean is computed. Let X; € SO(3) be a time-serie for
t € [0, T] running on SO(3) and let X be the intresic mean of

{Xt}te[(LT]-

Computing the mean can be done via different algorithms.
Here, two methods are presented, based on the definition of the
intresic mean, minimizing the function 1) :

X = argminy {;z;(y)_/t o d(Y,Xt)2dt} )
€10,

2.2.1 Mean Shift

The usual method is the mean shift algorithm. It consists in
an iterative algorithm whose minimization steps are preformed
in a linear space [3]. Let X* be a sequence defined by Algo-
rithm 2.2.1.

Algorithm 1 Mean shift algorithm
X0 =X/
for Iteration k = 1 to k,y,q dO
fort =0to T do
2= ¢~ (logr (X0)
end for
X* = expgrai ((T"))
end for

It can be proven that under proper conditions, the sequence
{X k} , Will converge to X from Equation 2. The number of
iterations, here fixed to be k,,,, can also be modified to stop
the algorithm increments on X* become small enough.

It should be noted that this method heavily requires the com-
putation of log. With a lot of samples, the computation, despite
being linear, can be quite time consuming. This is needed to
know the direction of the iteration to perform something simi-
lar to the gradient descent.

2.2.2 Simulated annealing

Instead of iterating to the proper direction to minimize equa-
tion 2, one could use a random step applied to several particles.
With enough particles, compared to the dimension of the Lie
group (in the case of SO(3), the dimension is 3), the direction
of the increment obtained from the mean shift algorithm will be
visited [4, 5]. Considering i,,4, particles, for k,,,, iterations,
the algorithm is presented in Algorithm 2.2.2.

Algorithm 2 Simulated annealing algorithm

for Particle P’ with i = 0 t0 i,,,q, do
P'=Xp
for Iteration &k = 1 to k;,q, doO
e Candidate C% = expp: (¢(c?))
with ¢ ~ N(0, I3/ log(k + 1))
e Accept P = C" with
probability min (1,4 (P%) /4 (C?))
end for
end for

Despite that this algorithm will require less computation of
exp and log, its output, the particles P? does not directly give
the mean but a sampling from the distribution of the mean on
SO(3). An additionnal step will be required but for long time
series { X} }, the computation is being performed on a smaller
set of data.

Another difference between these methods is that the mean
shift only gives one value. If the time serie is not stationnary, it
might completely bias the covariance in the next steps. The si-
mulated annealing can be used in the case of piece-wise constant
mean.

2.3 Covariance
For two SO(3) based time series X; and Y;, we define :
z =logg (Xy)
yr =logy (Y1)

By rewritting log ¢ (X;) = log(X ' X}), one can easily see

the two steps performed via this operation :
— Centering : By multiplying by X !, the data are trans-
lated around I3. This is the equivalent of centering the
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FIGURE 1 — Sensors attached to a climber. Only the ones cir-
cled in red are used in this article.

data by translating the time serie in classic covariance
computation. The main interest now is that the time se-
ries ; and y; are now both in the same tangent space
T;SO(3). They can therefore be compared.

— Linearization : The log operation realizes the lineariza-
tion of the time serie sample by sample. The linearization
step should be performed for each sample with respect to
the intrinsic mean contrary to an antidevelopment solu-
tion in order to prevent the creation of a drift due to a
long term integration.

As x; and y, are both in T;SO(3) = s0(3), ¢~ can be

applied and the covariance is then defined as :

C(X,Y) =cov (¢ (logx X¢),0 " '(logy V1)) (4)

where cov is the usual covariance in R3, X is defined at Equa-
tion 2 and ¢ is defined at Equation 1.

3 Application

An application to a recorded signals is presented in Figure 2
for the sensors attached to the hips and to the neck. Based on
these linearized signals, a covariance matrix can be determined,
based on Equation (4) :

Hips | Neck —» | Oz Oy Oz
Oz 0.22 | 0.05 | —0.01
Oy —0.04 | —0.01 | 0.02
Oz 0.06 | 0.02 | —0.01

In this case, the highest covariance is around the Oz-axis
(vertical) for the hips and the Ox axis for the neck. This indi-
cates that the hips and the shoulders are synchronized in their
rolling motion. Even if not presented here, this method could

also be used to determine the variance of each rotation signal,
based on the variance definition from [1].

A short study based on one climber during a 17 sessions trai-
ning program shows a large decrease in the diagonal terms of
the covariance matrix, mainly for the component around the
Oz axis. For each sessions, 3 different climbing conditions
were asked to the climber :

— Spontaneous climbing (no particular instructions)

— Climbing face to the wall

— Climbing side to the wall

Session | Condition Oz/Oz' | Oy/Oy" | Oz/0z%
1 | Spontaneous 0.20 0.06 0.06
1 | Face 0.25 0.06 0.11
1 | Side 0.31 0.08 0.11
17 | Spontaneous 0.02 0.05 0.05
17 | Face 0.03 0.05 0.06
17 | Side 0.06 0.04 0.10

Results of the training sessions show a large decrease in the
covariance terms. This seems to indicate that the climber tends
to make uncorrelated shoulder and hips movements, giving him
more freedom in the whole set of possible motions.

4 Limitations and openings

One limiting aspect to Equation 4 comes when the data is
not stationnary or when the data is not localized enough to be
linearized. In the case when the data drives away from the in-
tresic mean, the log map is no more a bijection and centering
the data is no more possible with the presented methods. A so-
lution to this problem would be, similarly to R™-based signals,
to perform local covariance on a time segment short enough to
consider the data localized enough.

Despite that Equation 4 is defined on SO(3), it can easily
be generalised to any Lie group. It would also be possible to
extend this method to Riemannian manifolds. Computing the
mean can be done in a very similar manner and therefore, for
a time serie X; € M, it can be maped as a T'g M-based time
serie. The main issue comes from the translation, as it cannot
be done by a simple muyltiplication. Given two time series,
X and Y}, one needs to compare elements from 7' M with
elements from 7y M. One way to do it would be to transport
the elements from T's M from X to Y along a geodesic using
parallel transport. Its reversibility ensures the symmetry of the
method.

5 Conclusion
The definition of the covariance presented at Equation 4 gives

a way to measure the synchronization between two SO(3) ba-
sed signals. This measure is useful for the study of body ki-
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FIGURE 2 — Signals from the hips sensor (top) and the neck
sensor (below).

nematics coordination for indoor climbing. A study applied to
several climbers is in preparation to measure of effects of lear-
ning protocols on body coordination and skills.

It should be noted that this method works when the signals
are localized around their means and that in other cases, the li-
nearization might not be properly defined.

The definitions used here can easily be extended to any Lie
groups and can be modified for processing Riemannian mani-
fold based signals, using a parallel transport between the tan-
gent spaces at the mean points.
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