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Covariance for time series on Lie groups applied to climbing motion analysis

Cet article présente une méthode pour calculer une matrice de covariance entre deux signaux à valeur sur SO(3). Pour chacun, sa moyenne est calculée. Après avoir projeté chaque signal dans le plan tangent de sa moyenne via l'application log, chaque projection est translatée pour être dans le même plan tangent. Une matrice de covariance classique peut alors être calculée. Cette mesure peut alors être utilisée pour l'étude du mouvement humain. En attachant des capteurs inertiels au cou et au bassin d'un grimpeur, il est possible d'estimer la coordination du roulis de différentes parties de son corps, indicateur de performance du grimpeur.

Introduction

Indoor climbing requires a lot of motor skills and coordination. Analysing the motion of the body is a good way to indicates the skill level of a climber. For example, beginners usually climb with the body face to the wall leading to the emergence of a horizontal hold grasping pattern, like "climbing a ladder", which was assumed to be a cooperative situation where individuals exploited their pre-existing behavioral repertoires.

Conversely, expert climbers alternate position with the body face to the wall with rolling motion of the trunk to the side of or obliquely to the wall, like "opening/closing a door". This was assumed to be a more competitive situation relative to the preexisting behavioral repertoire, where individuals explored new behaviors. It was hypothesized that practicing during a learning protocol where the route is design to alternate those two behaviours can help beginners to learn side to the wall body position.

Once an individual has learned these two behaviours, an individual could both exploit the pre-existing behavioral repertoire (i.e., trunk face to the wall) and use the newly learned behavior (i.e., rolling motion of the trunk side or obliquely to the wall), which can finally be observed by (i) greater rolling motion of trunk and (ii) greater variability of rolling motion of trunk through a time-series. Such indicators have already been measured in [START_REF] Seifert | Environmental Design Shapes Perceptual-motor Exploration, Learning, and Transfer in Climbing[END_REF] for example. However, it is also assumed that ruling motion of the trunk could be achieved by rolling only the hip, only the shoulders, simultaneously hips and shoulders but in opposite sides or simultaneously hips and shoulders but in the same direction. This leads to a comparaison between the orientation of the hips and the orientation of the shoulders with respect to the climbing wall. For each climb, IMUs (Inertial Measurement Unit) attached to the hips and the shoulders records data [START_REF] Boulanger | Automatic Sensor-Based Detection and Classification of Climbing Activities[END_REF] which leads to the orientation of each IMU. These orientations are SO(3) valued signals. Mathematically speaking, it corresponds to finding a way to measure the covariance between two SO(3) based signals.

Method

Despite that the results presented here are dedicated to SO(3), they can be easily generalized for any Lie group.

Geometry of SO(3)

The Lie group used in this case is the special orthogonal group of R 3 :

SO(3) = {R ∈ R 3 |RR T = I, det(R) = 1}.
The Lie algebra associated to SO(3) is the set of skew symmetric matrix :

so(3) = {r ∈ R 3 |r T = -r}.
Let φ : R 3 → so(3) be the bijection :

φ   r 0 r 1 r 2   =   0 -r 2 r 1 r 2 0 -r 0 -r 1 r 0 0   . (1) 
The algebra so(3) is the tangent space to SO(3) at the point

I. The tangent space at the point R ∈ SO(3) is denoted T R SO(3).
The exp and log maps are the usual matrix exponential and its inverse. The exp map applied from T R SO( 3) is denoted exp R (.) = R exp(.) and the log map applied from R ∈ SO( 3)

is denoted log R (.) = log(R T .).
The geodesic distance d : SO(3) 2 → R + is defined as :

d(R 1 , R 2 ) = ||φ -1 (log(R -1 2 R 1 )|| 2 .

Computing the mean

For Euclidian space based signals, centering the signals is needed for computing the covariance. Here, a similar step is realized. However, due to the geometry of SO( 3), an intresic mean is computed. Let X t ∈ SO(3) be a time-serie for t ∈ [0, T ] running on SO(3) and let X be the intresic mean of

{X t } t∈[0,T ] .
Computing the mean can be done via different algorithms.

Here, two methods are presented, based on the definition of the intresic mean, minimizing the function ψ :

X = argmin Y ψ(Y ) = t∈[0,T ] d(Y, X t ) 2 dt
(2)

Mean Shift

The usual method is the mean shift algorithm. It consists in an iterative algorithm whose minimization steps are preformed in a linear space [START_REF] Subbarao | Nonlinear Mean Shift over Riemannian Manifolds[END_REF]. Let Xk be a sequence defined by Algorithm 2.2.1.

Algorithm 1 Mean shift algorithm X0 = X T /2 for Iteration k = 1 to k max do for t = 0 to T do x t = φ -1 (log Xk (X t )) end for xn = 1 T t x t dt Xk = exp Xk-1 (φ(x n )) end for
It can be proven that under proper conditions, the sequence Xk k will converge to X from Equation 2. The number of iterations, here fixed to be k max can also be modified to stop the algorithm increments on Xk become small enough.

It should be noted that this method heavily requires the computation of log. With a lot of samples, the computation, despite being linear, can be quite time consuming. This is needed to know the direction of the iteration to perform something similar to the gradient descent.

Simulated annealing

Instead of iterating to the proper direction to minimize equation 2, one could use a random step applied to several particles. With enough particles, compared to the dimension of the Lie group (in the case of SO(3), the dimension is 3), the direction of the increment obtained from the mean shift algorithm will be visited [START_REF] Boulanger | Adaptive Filtering and Parametric Estimation for Random Processes on Rotation Groups and Stiefel Manifolds[END_REF][START_REF] Baudoin | Ornstein-Uhlenbeck processes on Lie groups[END_REF]. Considering i max particles, for k max iterations, the algorithm is presented in Algorithm 2.2.2.

Algorithm 2 Simulated annealing algorithm

for Particle P i with i = 0 to i max do

P i = X T /2 for Iteration k = 1 to k max do • Candidate C i = exp P i (φ(c i )) with c i ∼ N (0, I 3 / log(k + 1))
• Accept P i = C i with probability min 1, ψ(P i )/ψ(C i ) end for end for Despite that this algorithm will require less computation of exp and log, its output, the particles P i does not directly give the mean but a sampling from the distribution of the mean on SO(3). An additionnal step will be required but for long time series {X t }, the computation is being performed on a smaller set of data.

Another difference between these methods is that the mean shift only gives one value. If the time serie is not stationnary, it might completely bias the covariance in the next steps. The simulated annealing can be used in the case of piece-wise constant mean.

Covariance

For two SO(3) based time series X t and Y t , we define :

x t =log X (X t ) y t =log Ȳ (Y t ) (3) 
By rewritting log X (X t ) = log( X-1 X t ), one can easily see the two steps performed via this operation : -Centering : By multiplying by X-1 , the data are translated around I 3 . This is the equivalent of centering the data by translating the time serie in classic covariance computation. The main interest now is that the time series x t and y t are now both in the same tangent space T I SO(3). They can therefore be compared. -Linearization : The log operation realizes the linearization of the time serie sample by sample. The linearization step should be performed for each sample with respect to the intrinsic mean contrary to an antidevelopment solution in order to prevent the creation of a drift due to a long term integration. As x t and y t are both in T I SO(3) = so(3), φ -1 can be applied and the covariance is then defined as :

C(X, Y ) = cov φ -1 (log X X t ), φ -1 (log Ȳ Y t ) ( 4 
)
where cov is the usual covariance in R 3 , X is defined at Equation 2 and φ is defined at Equation 1.

Application

An application to a recorded signals is presented in Figure 2 for the sensors attached to the hips and to the neck. Based on these linearized signals, a covariance matrix can be determined, based on Equation ( 4 In this case, the highest covariance is around the Ox-axis (vertical) for the hips and the Ox axis for the neck. This indicates that the hips and the shoulders are synchronized in their rolling motion. Even if not presented here, this method could also be used to determine the variance of each rotation signal, based on the variance definition from [START_REF] Seifert | Environmental Design Shapes Perceptual-motor Exploration, Learning, and Transfer in Climbing[END_REF].

A short study based on one climber during a 17 sessions training program shows a large decrease in the diagonal terms of the covariance matrix, mainly for the component around the Ox axis. For each sessions, 3 different climbing conditions were asked to the climber : -Spontaneous climbing (no particular instructions) -Climbing face to the wall -Climbing side to the wall

Session Condition

Ox/Ox Oy/Oy Oz/Oz Results of the training sessions show a large decrease in the covariance terms. This seems to indicate that the climber tends to make uncorrelated shoulder and hips movements, giving him more freedom in the whole set of possible motions.

Limitations and openings

One limiting aspect to Equation 4 comes when the data is not stationnary or when the data is not localized enough to be linearized. In the case when the data drives away from the intresic mean, the log map is no more a bijection and centering the data is no more possible with the presented methods. A solution to this problem would be, similarly to R n -based signals, to perform local covariance on a time segment short enough to consider the data localized enough.

Despite that Equation 4 is defined on SO(3), it can easily be generalised to any Lie group. It would also be possible to extend this method to Riemannian manifolds. Computing the mean can be done in a very similar manner and therefore, for a time serie X t ∈ M, it can be maped as a T X M-based time serie. The main issue comes from the translation, as it cannot be done by a simple muyltiplication. Given two time series, X t and Y t , one needs to compare elements from T X M with elements from T Ȳ M. One way to do it would be to transport the elements from T X M from X to Ȳ along a geodesic using parallel transport. Its reversibility ensures the symmetry of the method.

Conclusion

The definition of the covariance presented at Equation 4 gives a way to measure the synchronization between two SO(3) based signals. This measure is useful for the study of body ki- It should be noted that this method works when the signals are localized around their means and that in other cases, the linearization might not be properly defined.

The definitions used here can easily be extended to any Lie groups and can be modified for processing Riemannian manifold based signals, using a parallel transport between the tangent spaces at the mean points.
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 1 FIGURE 1 -Sensors attached to a climber. Only the ones circled in red are used in this article.
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 2 FIGURE 2 -Signals from the hips sensor (top) and the neck sensor (below).