
HAL Id: hal-01689366
https://hal.science/hal-01689366

Submitted on 22 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient evaluation of reliability-oriented sensitivity
indices

Gilles Defaux, Guillaume Perrin

To cite this version:
Gilles Defaux, Guillaume Perrin. Efficient evaluation of reliability-oriented sensitivity indices. Journal
of Scientific Computing, 2018. �hal-01689366�

https://hal.science/hal-01689366
https://hal.archives-ouvertes.fr


E�
ient evaluation of reliability-oriented sensitivity

indi
es

G. Perrin

a

, G. Defaux

a

a

CEA/DAM/DIF, F-91297, Arpajon, Fran
e

Abstra
t

The role of simulation keeps in
reasing for the reliability analysis of 
om-

plex systems. Most of the time, these analyses 
an be redu
ed to estimating

the probability of o

urren
e of an undesirable event, also 
alled failure prob-

ability, using a sto
hasti
 model of the system. If the 
onsidered event is rare,

sophisti
ated sample-based pro
edures are generally introdu
ed to get a rel-

evant estimate of the failure probability. Based on the samples 
onstru
ted

for the evaluation of this estimate, this work de�nes two types of reliability-

oriented sensitivity indi
es. The �rst ones are introdu
ed to identify the

model inputs whose variability has to be redu
ed in priority to de
rease this

probability. The se
ond ones are used to �nd the model inputs whose dis-

tribution has to be parti
ularly well-
hara
terized for the available estimate

to be realisti
. It is also shown how these sensitivity indi
es 
an be derived

when the true model is approximated by a surrogate model. In parti
ular, an

innovative pro
edure is proposed to take into a

ount the surrogate model

un
ertainty in the estimation of these sensitivity indi
es. The proposed ap-

proa
h is then applied to the reliability analysis of a series of numeri
al and

industrial examples.

Keywords:

Sobol indi
es, Gaussian pro
ess, sensitivity analysis, risk analysis.

1. Introdu
tion

The reliability analysis of 
omplex systems is more and more quanti�ed

using numeri
al simulations. Hen
e, 
omputer 
odes in the form y(x) =
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g(x;d) are generally involved. Here, x = (x1, . . . , xD) ∈ X is the ve
tor

of sto
hasti
 inputs and d is the ve
tor of deterministi
 inputs. Formally,

given an adapted threshold q, the problem of estimating the probability of

o

urren
e of an undesirable event, seen as y(x) ex
eeding q, 
an be redu
ed

to 
omputing the probability

p := Px(y(x) > q) = Ex

[
1y(x)>q

]
, (1)

1y(x)>q =

{
1 if y(x) > q,

0 otherwise.
(2)

While D in
reases and low values of p are 
onsidered, the evaluation

of p 
annot be handled with usual quadratures. Sampling te
hniques are

preferred, su
h as the Monte Carlo Simulation (MCS) [34℄. In MCS, the


ode is 
omputed in a large number of inputs, and probability p is esti-

mated by 
ounting the number of responses that are above the threshold

q. However, the square value of the 
oe�
ient of variation of the estimator

provided by MCS is proportional to 1/p. Hen
e, the number of 
ode evalu-
ations required for MCS to estimate small values of p (say p < 10−3

for the


onsidered appli
ations) qui
kly be
omes burdensome. To 
ir
umvent this

problem, various approa
hes have been proposed. On the one hand, several

nonstatisti
al approa
hes, su
h as the �rst-order or se
ond-order reliability

methods (FORM/SORM) [14, 31, 18, 5℄, propose to approximate the limit

state fun
tion as a parametri
 fun
tion. Then, these approximations are used

to evaluate p at a low 
omputational 
ost, but at the expense of a redu
ed

pre
ision. On the other hand, the splitting methods [16℄ propose to rewrite p
using a �nite sequen
e of in
reasing thresholds. Depending on the 
hoi
e of

the thresholds, the varian
e of the aggregated estimator 
an be mu
h smaller

than the one given by MCS, as it will be explained in the next se
tion.

In addition to this estimation of p, it is useful to quantify the impor-

tan
e of ea
h model input on the failure probability. This is the purpose of

reliability-oriented global sensitivity analysis (ro-GSA). Here, the word global

refers to the de�nition given by [36℄, as the whole variation domain of the

inputs is 
onsidered. Indeed, if one model input happens to be strongly in-

�uential, it 
ould be worth trying to de
rease its variability. On the 
ontrary,

if one model input seems to have no in�uen
e on p, its variability 
an be ne-

gle
ted, resulting in a simpler model. Several methods have been proposed
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to 
arry out su
h sensitivity analyses. A �rst approa
h aims at quantifying

how the probability of ex
eeding q is a�e
ted by �xing one input model to a

given value. It 
an be shown that this is equivalent to 
omputing the Sobol

indi
es asso
iated with the indi
ator fun
tion 1y(x)>q (see Se
tion 3). How-

ever, dedi
ated evaluations of the 
ode are generally required to assess su
h

indi
es [40℄, whi
h 
an be mu
h more numerous that the ones required to get

a good estimate of p. Hen
e, the �rst obje
tive of this work is to propose a

method using nonparametri
 statisti
s to evaluate su
h Sobol indi
es without

additional 
ode evaluations.

The sensitivity of probability p to ea
h model input 
an also be evaluated

by 
omparing the partial derivatives of p with respe
t to the statisti
al mo-

ments of ea
h model input. Using adapted strategies, su
h derivatives 
an

be 
omputed as a simple post-pro
essing of the 
ode evaluations that were


arried out for the estimation of p [33℄. Whereas Sobol indi
es are asso
iated

with a �xed distribution for the inputs, su
h indi
ators assess the sensitivity

of p to small 
hanges of the input distribution. Hen
e, the meanings of these

two sets of indi
ators are di�erent but 
omplementary. On the one hand, the

Sobol indi
es indi
ate the model inputs whose variability has to be redu
ed

in priority if we want to de
rease p. On the other hand, the derivative-based

indi
es show the model inputs whose statisti
al moments have to be par-

ti
ularly well-
ontrolled to get a relevant estimation of p. In that prospe
t,

generalizing the works a
hieved in [19℄, the se
ond obje
tive of this work is

to propose reliability-oriented indi
es that 
an 
onsider more general modi�-


ations of the model inputs distributions, and whi
h 
an be used to evaluate


ross-e�e
ts between model inputs. Su
h indi
es will also be 
omputed as a

simple post-pro
essing of the simulations used to estimate p.
When the numeri
al 
ost asso
iated with one evaluation of the 
ode is

high (between several minutes to several days CPU), surrogate models are


ommonly introdu
ed to emulate the time-demanding 
omputer 
ode for the

estimation of p. Among these methods, the Gaussian pro
ess regression

(GPR) method, or kriging, plays a major role. This is mostly due to its

ability to provide an un
ertainty on the evaluation of p that is due to the

substitution of the true 
ode by its emulator [35, 37℄. Finally, this paper

shows how to derive ea
h reliability-oriented sensitivity index in the 
ase

when the 
ode is repla
ed by a Gaussian emulator. In parti
ular, the impa
t

of the emulator un
ertainty on the estimation of these indi
es is quanti�ed.

The outline of this work is as follows. First, Se
tion 2 brie�y reviews exist-

ing sample-based methods for estimating p. Se
tion 3 introdu
es reliability-
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oriented sensitivity indi
es to 
ompare the in�uen
e of the inputs variability

on p. Another type of sensitivity indi
es is de�ned in Se
tion 4, in order to

quantify the robustness of the evaluation of p to small perturbations of the

input distribution. Then, Se
tion 5 introdu
es the estimation of these indi
es

when the 
omputer 
ode is repla
ed by a Gaussian emulator. At last, a series

of examples are shown in Se
tion 6 to illustrate the interest of the proposed

methods.

Notations

The following notations are adopted:

• x, y 
orrespond to s
alars.

• X, Y 
orrespond to integers.

• x,y 
orrespond to ve
tors.

• Let xi be the 
omponents of a ve
tor x.

• For all D-dimensional ve
tor x = (x1, . . . , xD), we denote by x−i :=
(x1, . . . , xi−1, xi+1, . . . , xD) the ve
tor that gathers all the 
omponents

of x but the ith.

• For all random ve
tor x, Ex [·] and Vx [·] denote the mathemati
al

expe
tation and the varian
e operator asso
iated with the distribution

of x.

2. Ba
kground : sample-based methods to estimate probabilities

of ex
eeding thresholds

Let S be the system we are interested in, whose properties (dimensions,

boundary 
onditions, material properties...) 
an be 
hara
terized by a ve
tor

of D ≥ 1 parameters x ∈ X, where X is a subset of R
D
. Ve
tor x is modelled

by a random ve
tor to take into a

ount the fa
t that these parameters are

not perfe
tly known. The 
omponents of x are assumed to be statisti
ally

independent. For all 1 ≤ i ≤ D, let Xi, fxi
and Fxi

be the de�nition domain,

the probability density fun
tion (PDF) and the 
umulative density fun
tion

(CDF) of 
omponent xi respe
tively. It follows that
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X =
D×
i=1

Xi, fx(x) =
D∏

i=1

fxi
(xi), Fx(x) =

D∏

i=1

Fxi
(xi), (3)

where fx and Fx are the PDF and the CDF of x respe
tively. In addition,

let

y :

{
X → R

x 7→ y(x)
(4)

be the real-valued deterministi
 mapping des
ribing the behaviour of S. In

this work, we are interested in the evaluation of the probability p for y(x) to
ex
eed a given threshold q ∈ R,

p := Px(y(x) > q) =

∫

X

1y(x)>qfx(x)dx = Ex

[
1y(x)>q

]
, (5)

but also in the identi�
ation of the 
omponents of x that play the most impor-

tant roles on this probability. We moreover assume that the 
omputational


ost asso
iated with one evaluation of y is high (between several minutes to

several hours CPU), so that the number of 
ode evaluations is supposed to

be bounded (less than 103 for instan
e). In that 
ontext, we are parti
ularly

interested by methods that 
ould allow all the 
omputational budget to be

used at the same time for the estimation of p and for the sensitivity analysis.

As the model inputs are assumed independent, they all 
an be 
onsidered

as normally distributed, 
entred and of varian
e equal to 1 without loss of

generality. Indeed, an isoprobabilist transform 
an been applied to ea
h

model input [32, 24, 17℄, impa
ting neither the de�nition of p nor the results
of the sensitivity analysis. Therefore, in the following,

fi(xi) = ϕ(xi; 0, 1), xi ∈ Xi = R, (6)

where for all (µ, σ) in R× R
+∗
,

ϕ(xi;µ, σ) :=
1√
2πσ

exp

(
−(xi − µ)2

2σ2

)
. (7)

The most famous sample-based method to estimate p is the MCS. If

xn, 1 ≤ n ≤ N , denote N independent 
opies of x, it is well known [34℄ that
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p
MC

:=
1

N

N∑

n=1

1y(xn)>q (8)

de�nes an unbiased estimator of p. The asso
iated 
oe�
ient of variation

veri�es

δ2
MC

=
1− p

Np
. (9)

This approa
h is parti
ularly easy to implement, but requires a lot of


ode evaluations to get a

eptable values for δ
MC

. Alternatively, the splitting

methods rewrite p using a �nite sequen
e of in
reasing thresholds (qk)
K
k=0,

p = Px(y(x) > qK |y(x) > qK−1)×· · ·×Px(y(x) > q1|y(x) > q0)×Px(y(x) > q0),
(10)

with q0 = −∞ and qK = q. Then, 
lassi
al Monte Carlo estimators 
an

be proposed for ea
h 
onditional probability. All these estimators being

unbiased and independent, the mean of their produ
t is still equal to p.
However, the varian
e of the aggregated estimator strongly depends on the


hoi
e of the thresholds. In pra
ti
e, the sequen
e of thresholds is de�ned

on the �y, whi
h is generally referred as Adaptive splitting [7℄. In parti
ular,

the Markov 
hain

yk := (y(x) | y(x) > yk−1), y0 = −∞, k ≥ 1, (11)

is 
alled an in
reasing random walk. And it 
an be shown that the 
ounting

random variable of the number of events before q, whi
h is denoted by M :=
Card {k ≥ 1 | yk ≤ q}, follows a Poisson law with parameter − log(p) [41℄.

Hen
e, given Q ≥ 1 independent random 
ounting variables (Mq)1≤q≤Q,

p
MP

:=

(
1− 1

Q

)∑Q
q=1 Mq

(12)

also de�nes an unbiased estimator of p, whose 
oe�
ient of variation is equal

to

√
− log(p)/Q. This approa
h is referred as Moving Parti
le (MP) method

in the following. Another strategy to 
hoose the di�erent thresholds is given

by the Subset Simulation (SS) method. The interested reader may refer to

[1, 8℄ for further details about this approa
h.
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The main di�
ulty in the splitting methods is the 
onditional sampling.

Indeed, if we fo
us on the Markov 
hain de�ned by Eq. (11), yk has to

be randomly generated 
onditionally greater than yk−1. This 
an be done

using the Metropolis-Hastings algorithm [22, 15℄. If T is the number of steps

that is used to 
ontrol the 
onvergen
e of the Markov 
hain to its stationary

distribution, it follows that, on average, 1 − T log(p) samples have to be

generated to get one realization of the 
ounting variableMq. Thus, the mean

total number of 
ode evaluations to get the Q samples M1, . . . ,MQ is equal

to N = Q(1 − T log(p)). It follows that the 
oe�
ient of variation of δMP


an be approximated as

δ2
MP

≈ log(p)(T log(p)− 1)

N
≈ T log(p)2

N
. (13)

This has to be 
ompared to δ2
MC

≈ 1/(pN) for the 
rude Monte Carlo.

In MCS, SS and MP methods, let p̂ denote the best estimate of p we

get on
e the maximal 
omputational budget is attained. For ea
h of these

methods, it 
an be noti
ed that the points x(k)
, where it was observed that

y(x(k)) is greater than q, are independent realizations of the 
onditioned

random ve
tor (x|y(x) > q). Let us gather all these realisations of (x|y(x) >
q) in the set Df :=

{
x(1), . . . ,x(N∗)

}
. Hen
e, in the following, N∗

denotes

the number of points that have been sampled in the failure domain.

3. Compared in�uen
e of the inputs variability on p

Based on the estimated value of p and the elements of Df only, the

purpose of this se
tion is to identify the 
omponents of x, whose vari-

ability has to be redu
ed in priority if we want to de
rease the value of

p. To this end, it 
an be interesting to quantify the e�e
t on p due to

the fa
t that xi is �xed to the parti
ular value x⋆
i . Indeed, the higher(

Px(y(x) > q)− Px−i
(y(x) > q | xi = x⋆

i )
)2
, the more in�uential xi. Thus,

averaging over xi, the quantity

Exi

[(
Px(y(x) > q)− Px−i

(y(x) > q | xi)
)2]

= Vxi

[
Ex−i

[
1y(x)>q | xi

]]

(14)
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an be used to analyse the sensitivity of p to model input xi. Normalizing

these quantities by Vx

[
1y(x)>s

]
, we �nd ba
k the well-known �rst order Sobol

indi
es [38℄ asso
iated with fun
tion 1y(x)>q:

si :=
Vxi

[
Ex−i

[
1y(x)>q | xi

]]

Vx

[
1y(x)>q

] . (15)

By 
onstru
tion, index si indi
ates the varian
e of 1y(x)>q 
aused by xi

individually. The varian
e of 1y(x)>q 
aused by xi in
luding intera
tions with

the 
omponents of x−i is given by the ith total Sobol index, denoted by ti,
whi
h veri�es:

ti := 1− Vx−i

[
Exi

[
1y(x)>q | x−i

]]

Vx

[
1y(x)>q

] . (16)

Based on Eqs. (15) and (16), the 
omputation of si and ti is nontrivial,
sin
e Ex−i

[·] and Vx−i
[·] refer to multidimensional integrals. This motivated

the introdu
tion of various algorithms to redu
e the 
omputational 
ost of

the Sobol' indi
es. In parti
ular, e�
ient sample-based methods 
an be found

in [40, 39, 25, 20℄ to repla
e the naive and very expensive double-loop MCS.

However, in spite of these developments, the number of dedi
ated 
ode eval-

uations that are needed for these methods is still very high. To 
ir
umvent

this problem, another approa
h is proposed in this paper, whi
h is based on

the Proposition 1, whose proof has been moved to Appendix.

Proposition 1. For all 1 ≤ i ≤ D, we have:

si =
p

1− p
Vxi

[
fxi|y(x)>q(xi)

fxi
(xi)

]
, (17)

ti = 1− p

1− p
Vx−i

[
fx−i|y(x)>q(x−i)

fx−i
(x−i)

]
, (18)

where, for all x in X,





f
x|y(x)>q(x) :=

1

p
1y(x)>qfx(x),

fxi|y(x)>q(xi) :=

∫

×1≤j≤D, j 6=i Xj

fx|y(x)>q(x)
∏

1≤j≤D, j 6=i

dxj ,

fx−i|y(x)>q(x−i) :=

∫

Xi

fx|y(x)>q(x)dxi.

(19)
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By 
onstru
tion, the �rst order and total Sobol indi
es asso
iated with the

indi
ator fun
tion are proportional to the varian
es of the ratios between the

a priori PDFs of xi and x−i and their PDFs 
onditioned by the fa
t that y(x)
is greater than q. In this work, we propose to approximate these PDFs using

one of the nonparametri
 approa
hes des
ribed in [30, 29℄. These methods are

parti
ularly suited for this kind of approximations, as the 
onstru
tion they

propose only requires the presen
e of independent realizations of the random

ve
tor to be modelled. For ea
h 1 ≤ i ≤ D, let f̂xi|y(x)>q and f̂x−i|y(x)>q

be these approximations of fun
tions fxi|y(x)>q and fx−i|y(x)>q based on the

elements of the set Df only. Sobol indi
es si and ti 
an then be approximated

as:

si ≈ ŝi :=
p̂

1− p̂
Vxi

[
f̂xi|y(x)>q(xi)

fxi
(xi)

]
, (20)

ti ≈ t̂i := 1− p̂

1− p̂
Vx−i

[
f̂
x−i|y(x)>q(x−i)

fx−i
(x−i)

]
, (21)

where it is reminded that p̂ is the estimated value of p based on one of

the sample-based methods presented in Se
tion 2. Finally, generating inde-

pendent realizations under f̂xi
and f̂x−i

being qui
k and easy, Monte-Carlo

estimations of ŝi and t̂i 
an be 
al
ulated numeri
ally with a 
ontrolled pre-


ision.

4. Robustness analysis of the estimation of p

Indi
es si and ti, whi
h are de�ned by Eqs. (17) and (18), are asso
iated

with a �xed distribution of the model inputs. In this se
tion, another type

of sensitivity indi
es is de�ned, whi
h 
an be used to quantify the robust-

ness of the evaluation of p to small 
hanges of the input distribution. As

explained in Introdu
tion, the information provided by these new indi
es is


omplementary to the information provided by si and ti. When si and ti
allow the identi�
ation of the 
omponents of x whose variability has to be

redu
ed in priority to de
rease the value of p, these new indi
es 
an be used

to identify the 
omponents of x whose distributions have to be parti
ularly

well-
hara
terized for a relevant estimation of p.
To quantify the robustness of the estimation of p to small 
hanges of the

input distribution, we generally 
ompute the gradient of the failure probabil-

ity with respe
t to the parameters that 
hara
terize the PDF of the inputs.
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Indeed, as it was originally proposed in [33℄, these gradients 
an e�
iently

be 
omputed from a simple post-pro
essing of a series of independent and

identi
ally distributed failure points provided by any sample-based reliability

analysis (su
h as MCS, SS or MP), without additional 
omputational 
ost. If

an isoprobabilist transform is applied to the model inputs, the link between

the parameters des
ribing the input PDF and p is no more expli
it. Nev-

ertheless, the PDF of x after the isoprobabilist transform being Gaussian,

it is possible to analyse the e�e
t due to small perturbations of the means

and of the standard deviations of ea
h model input xi in this standard spa
e.

Hen
e, at the �rst order, the sensitivity of p to a small perturbation of the

PDF of xi 
an be assessed by 
omputing m̂i and v̂i, so that:

m̂i :=
p̂

N∗

N∗∑

n=1

x
(n)
i ≈ Ex

[
1y(x)>qxi

]
=

∂p

∂E[xi]

∣∣∣∣
E[xi]=0

, (22)

v̂i :=
p̂

N∗

N∗∑

n=1

((x
(n)
i )2 − 1) ≈ Ex

[
1y(x)>q(x

2
i − 1)

]
=

∂p

∂sd[xi]

∣∣∣∣
sd[xi]=1

. (23)

There, sd[xi] denotes the standard deviation of xi, and we remind that

x
(1)
i , . . . , x

(N∗)
i are the ith 
omponents of the elements of Df . As the marginal

densities of x are the same, the quantities m̂i and v̂i 
an dire
tly be 
ompared

to identify the 
omponents of x, whose PDF has to be 
ontrolled in priority

for a 
orre
t estimation of p. The higher the absolute values of m̂i and v̂i are,
the more attention we have to pay to the way the PDF of xi was 
onstru
ted.

Higher degrees derivatives of p 
an be 
omputed to assess the in�uen
e of

small 
hanges of the mean and the standard deviation at the same time, or

intera
tions between several 
omponents of x. However, all these quantities

are lo
al and their aggregation to 
onstru
t one single index that 
hara
ter-

izes the total e�e
t of xi (in
luding or not intera
tions with other 
omponents

of x) is not trivial. To 
ir
umvent this problem, a more global approa
h is

proposed, whi
h is based on the introdu
tion of the following set of univariate

Gaussian PDFs:

F(δ) :=
{
f ∈ F

+(R) | f(xi) = ϕ(xi;µi, 1 + εi), max(|εi|, |µi|) ≤ δ
}
, 0 < δ < 1.

(24)
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Here, F
+(R) is the set of fun
tions de�ned on R that are positive and

fun
tion ϕ is de�ned by Eq. (7). By 
onstru
tion, for all fun
tions f1, . . . , fD
in F(δ), the quantity

h(f1, . . . , fD) :=

∫

X

1y(x)>q

D∏

j=1

fj(xj)dx

= Ex

[
1y(x)>q

D∏

j=1

fj(xj)

fxj
(xj)

] (25)

de�nes the probability that y(x) is stri
tly greater than q, under the assump-

tion that the PDF of x is equal to

∏D
j=1 fj. Then, let p

δ
, pδi and pδ−i be the

solutions of the optimization problems de�ned by Eqs. (26), (27) and (28).

pδ := max
fj∈F(δ), 1≤j≤D

h(f1, . . . , fD), (26)

pδi := max
fi∈F(δ)

h(fx1 , . . . , fxi−1
, fi, fxi+1

, . . . , fxD
), (27)

pδ−i := max
fj∈F(δ), 1≤j≤D, j 6=i

h(f1, . . . , fi−1, fxi
, fi+1, . . . , fD). (28)

By 
onstru
tion, pδ 
orresponds to the worst 
ase probability asso
iated

with an un
ertainty on the PDFs of the inputs 
ontrolled by δ. In the same

manner, pδi is the worst 
ase probability when there are un
ertainties on

the PDF of xi only, whereas p
δ
−i is the worst 
ase probability when there are

un
ertainties on the PDFs of all the 
omponents of x but the ith. Thus, pδi −p

orresponds to the part of pδ − p that 
an be explained by un
ertainties on

the PDF of xi only, whereas pδ−i − p 
orresponds to the part of pδ − p that


an be explained by un
ertainties on the PDFs of all the 
omponents of x

but the ith.

Hen
e, the following indi
es:

0 ≤ ςδi :=
pδi − p

pδ − p
≤ 1, (29)

0 ≤ τ δi :=
pδ − pδ−i

pδ − p
≤ 1, (30)

11




an be used to quantify the sensitivity of p to perturbations on the PDF of

x. Approximations of these indi
es 
an be obtained by noti
ing that, for all

f1, . . . , fD in F(δ),

h(f1, . . . , fD) ≈ ĥ(f1, . . . , fD) :=
p̂

N∗

N∗∑

n=1

D∏

j=1

fj(x
(n)
j )

fxj
(x

(n)
j )

. (31)

Indeed, if p̂δ, p̂δi and p̂δ−i are the respe
tive approximations of pδ, pδi and

pδ−i repla
ing fun
tion h by ĥ in Eqs. (26), (27) and (28), it 
omes:

ςδi ≈ ς̂δi :=
p̂δi − p̂

p̂δ − p̂
, (32)

τ δi ≈ τ̂ δi :=
p̂δ − p̂δ−i

p̂δ − p̂
. (33)

Index ς̂δi 
an be seen as the individual e�e
t of xi on p, whereas τ̂ δi 
an

be interpreted as the e�e
t of xi on p in
luding intera
tions with the other


omponents of x. Contrary to the Sobol indi
es, for whi
h si ≤ ti, depending
on the 
ombined roles of the di�erent elements of x, it is possible to 
onstru
t


ases where ςδi > τ δi . However, when testing these indi
es on 
lassi
al test

fun
tions, we always found values of τ δi that were greater than ςδi .

Remarks.

• In this se
tion, an isoprobabilist transform has been applied to ea
h

model input before 
omputing the sensitivity indi
es. It is indeed a

very interesting tool to normalize ea
h model input, so that the dif-

ferent indi
es 
an be 
ompared quantitatively. However, the 
lass of

perturbations 
ould be de�ned in the "physi
al" spa
e instead. In that


ase, it would be important to adapt the perturbations of ea
h model

input for a quantitative 
omparison of the results. Nevertheless, what-

ever the "physi
al" distribution of xi before an eventual isoprobabilist

transform (uniform, beta, exponential, and so on), the meanings of in-

di
es ςδi and τ δi do not 
hange. They still quantify the in�uen
e on p of
small 
hanges of the mean and the standard deviation of xi. Moreover,

if for ea
h fi in F(δ), µi and εi are the two 
onstants so that:

fi(xi) =
1√

2π(1 + εi)
exp

(
−(xi − µi)

2

2(1 + εi)2

)
, (34)

12



the perturbed PDF in the "physi
al" spa
e that 
orresponds to fi 
an
be approximated by

d
dxi

Φµi,εi+1 ◦Φ−1
0,1 ◦Fxi

, where for all a, b in R×R
+∗
,

Φa,b(x) :=

∫ x

−∞

ϕ(z; a, 1 + b)dz, x ∈ R. (35)

As an illustration, Figure 1 
ompares the evolutions of fxi
and

d
dx
Φµi,εi+1◦

Φ−1
0,1 ◦ Fxi

for several values of µi and εi, and di�erent 
lasses for Fxi
.

• In theory, there is no restri
tion for the de�nition of the PDF pertur-

bations. But if we are interested in analysing the e�e
t on p due to


hanges of higher statisti
al moments (kurtosis, skewness,...), the iso-

probabilist transform may not be the most appropriate transformation

of the model inputs.

• As the gradient of any fun
tion in F(δ) with respe
t to its mean and

standard deviation is expli
it, the optimization problems asso
iated

with Eqs. (26), (27) and (28) 
an be e�
iently solved using any multi-

start gradient-based solver. However, noti
ing that:

D∏

i=1

fi(xi)

fxi
(xi)

= 1 +
D∑

i=1

µixi + (εi +
µ2
i

2
)(x2

i − 1) +
ε2i
2
(2− 5x2

i + x4
i ) + εiµi(x

3
i − 3xi)

+
∑

1≤i<j≤D

(εi(x
2
i − 1) + µixi)(εj(x

2
j − 1) + µjxj) + o(δ2),

(36)

it follows that:

h(fx1 , . . . ,fxi−1
, fi, fxi+1

, . . . , fxD
)

= p+ aiµi + bi(εi +
µ2
i

2
) + ci

ε2i
2
+ diεiµi,

(37)

ai := Ex

[
1y(x)>qxi

]
, bi := Ex

[
1y(x)>q(x

2
i − 1)

]
, (38)

ci := Ex

[
1y(x)>q(2− 5x2

i + x4
i )
]
, di := Ex

[
1y(x)>q(x

3
i − 3xi)

]
. (39)
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Figure 1: Evolution of

d
dxi

(
Φµi,εi+1 ◦ Φ−1

0,1 ◦ Fxi

)
(xi) with respe
t to xi for several values

of µi and εi, and di�erent 
lasses for Fxi
. Bla
k 
ontinuous line ↔ (µi, εi) = (0, 0) . Red

dashed line ↔ (µi, εi) = (0, 0.1). Blue dashed-dotted line ↔ (µi, εi) = (−0.2, 0). Green

dotted line ↔ (µi, εi) = (0.05,−0.1).
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Thus, for ea
h 1 ≤ i ≤ D, initializing µi and εi at the points in [0, δ]×
[0, δ] that maximize the se
ond-order polynomial (µi, εi) 7→ aiµi+bi(εi+
µ2
i

2
)+ci

ε2i
2
+diεiµi is a good mean to a

elerate the 
onvergen
e of these

algorithms.

• The set F(δ) is parametrized by the s
alar δ, whi
h 
hara
terizes the

maximal amplitude of the perturbation of the PDF of x. For instan
e,

the value δ = 0.1 indi
ates that the un
ertainty on the mean and the

standard deviation of ea
h 
omponent of x is less than 10% of the

nominal value of the standard deviation. Alternatively, the value of δ

an be asso
iated with a 
hosen in
rease of the probability of ex
eeding

q. For instan
e, in the appli
ations that will be presented in Se
tion 5,

δ is 
hosen so that pδ = 2× p.

5. Surrogate model-based sensitivity indi
es

In the previous se
tion, the estimations of p and of the di�erent reliability-
oriented sensitivity indi
es are based on evaluations of the true 
ode. When

small values of p are 
onsidered, this implies the 
ode to be evaluated in a very

high number of input values. If the 
omputational 
ost asso
iated with one

evaluation of the 
ode is high, this may not be possible in pra
ti
e. Surrogate

models have therefore to be 
onstru
ted to emulate the 
ode answer from a

limited number of 
alls to the true 
ode. As presented in Introdu
tion, we

propose to fo
us on the Gaussian pro
ess regression (GPR) to build this

surrogate. To this end, performan
e fun
tion y is supposed to be a sample

path of a parti
ular sto
hasti
 pro
ess ỹ, whose mean fun
tion and 
ovarian
e

fun
tion are denoted by µ̃ and c̃:

ỹ ∼ GP(µ̃, c̃). (40)

Conditioning this sto
hasti
 pro
ess by R ≥ 1 
ode evaluations gathered

in the set S learn(R) :=
{
(x̃(r), y(x̃(r))), 1 ≤ r ≤ R

}
, a very interesting pre-

di
tor for the value of y in any unobserved point x in X 
an be obtained.

This predi
tor is denoted by ỹ | S learn(R), and it veri�es:

ỹ | S learn(R) := ỹR ∼ GP(µ̃R, c̃R). (41)

The interested reader is referred to [35, 37℄ for further details about the


hoi
e and the optimisation of fun
tions µ̃ and c̃, and about the expres-
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sions of the 
onditioned mean, µ̃R, and the 
onditioned 
ovarian
e, c̃R. For
the appli
ations presented in Se
tion 6, µ̃ will be 
hosen as a se
ond-order

polynomial, and c̃ will be 
hosen as an element of the 5/2-Matern 
lass of


ovarian
e fun
tions.

If we repla
e y by ỹR in the evaluation of probability p, whi
h is given by

Eq. (5), the quantity

p̃ := Px(ỹR(x) > q) (42)

is no longer deterministi
 but random, as for a �xed value of x in X, ỹR(x)
is random. Let ỹR(·;ω) denote one parti
ular realization of ỹR. Using Al-

gorithm 1, it is possible to gather in D̃f(ω) N
∗
points that are statisti
ally

independent, and whose distribution is f
x |ỹR(x;ω)>q. For this parti
ular real-

ization of ỹR, this algorithm also provides the estimate p̃(ω), so that:

p̃(ω) ≈ P(ỹR(x;ω) > q). (43)

Hen
e, based on D̃f(ω) and p̃(ω), it is possible to approximate the values

of the di�erent reliability-oriented sensitivity indi
es that were introdu
ed in

Se
tion 3. Repeating this pro
edure several times, we eventually 
ompute


on�den
e intervals for these sensitivity indi
es, whi
h aggregate two sour
es

of un
ertainties:

• the un
ertainty that is due to the repla
ement of true fun
tion y by its

surrogate model,

• the un
ertainty that is due to the �nite value of N∗
for the estimation

of p̃(ω) and the estimation of the reliability-oriented sensitivity indi
es.

In pra
ti
e, the un
ertainty due to the surrogate model 
an be redu
ed

by adding new 
ode evaluations to the learning set. Su
h new points are

generally 
hosen iteratively where the expe
ted value of ỹR is the 
losest

to the threshold q, with the largest un
ertainty. Hen
e, in the following

appli
ations, the 
onstru
tion of the surrogate models will be based on a

two-step pro
edure. First, the 
ode is evaluated in a small-dimensional spa
e

�lling design of experiments (see [21, 26, 23, 12, 28℄). Then, new points are

added one by one using a stepwise un
ertainty redu
tion (SUR) strategy
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(see [2, 6℄ for more details about this parti
ular sele
tion 
riterion, and [4, 9,

13, 27℄ for alternative sele
tion 
riteria) until the maximum 
omputational

budget is attained.

Remarks.

• Algorithm 1 is a parti
ular appli
ation of the Moving Parti
le approa
h

that is presented in Se
tion 2. Hen
e, for this algorithm, it 
an be

noti
ed that the mean number of points on whi
h ea
h realization of

ỹR has to be proje
ted is equal to R + N∗(1 − log(p)). Hen
e, the


omputational budget asso
iated with the di�erent 
onditionings of ỹ
in algorithm 1 stays reasonable, even for low values of p.

• Algorithm 1 is based on a simple Monte Carlo pro
edure for the gener-

ation of the realizations of x. If very low values of p were 
onsidered,

more e�
ient algorithms, su
h as Markov 
hain Monte Carlo (M
MC)

approa
hes, 
ould be used to better 
on
entrate the realizations of x

in the region of potentially high values of ỹR.

6. Appli
ations

Three examples are presented in this se
tion to illustrate the interest of

the former developments. The two �rst examples are based on analyti
al

data, whereas the third one is based on an industrial 
ase. The evaluations

of the di�erent failure probabilities are performed using the R pa
kage mistral

[11℄.

6.1. Polynomial fun
tion

In this se
tion, the quantity of interest is given by:

y :

{
R

3 → R

x = (x1, x2, x3) 7→ (1 + x1)(5 + x2)(10 + x3)
. (44)

Here, x1, x2, x3 are supposed to be three independent 
entred Gaussian

random variables, whose varian
e is one, and we are interested in the prob-

ability that y(x) ex
eeds the threshold q = 250. Three 
on�gurations asso-


iated with di�erent available 
omputational budgets are 
ompared for the

estimation of p and the 
omputation of the di�erent sensitivity indi
es.
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1 Initialization : ;

2 let x(1), . . . ,x(N∗)
be N∗

independent realizations of random ve
tor x ;

3 let (y(x(1), ω), . . . , y(x(N∗), ω)) be a parti
ular realization of the

random ve
tor (ỹR(x
(1)), . . . , ỹR(x

(N∗))) ;

4 ỹ⋆R := ỹR | ỹR(x(n)) = y(x(n), ω)), 1 ≤ n ≤ N∗
;

5 M = 0 ;

6 D̃f(ω) = ∅ ;

7 for 1 ≤ n ≤ N∗
do

8 x⋆ = x(n)
, z = y(x(n), ω) ;

9 while z<q do

10 draw at random a realization of x, denoted by x⋆
;

11 draw at random a realization of ỹ⋆R(x
⋆), denoted by y⋆(ω) ;

12 if y⋆(ω) > z then
13 z = y⋆(ω), M = M + 1 ;

14 ỹ⋆R = ỹ⋆R | ỹ⋆R(x⋆) = y⋆(ω) ;

15 end

16 end

17 D̃f(ω) = D̃f (ω) ∪ {x⋆} ;

18 end

19 p̃(ω) = (1− 1/N∗)M .

Algorithm 1: Generation of N⋆
failure points asso
iated with one parti
-

ular realization of Gaussian pro
ess ỹR, and estimation of the asso
iated

probability of ex
eeding q.
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1. "Referen
e". A 
rude Monte Carlo based on 6 × 106 
ode evaluations
is �rst 
onsidered as a referen
e. 5 × 106 evaluations will be used to


ompute the Sobol indi
es asso
iated with the indi
ator fun
tion in an

optimized sample-based approa
h using the R pa
kage "soboljansen".

Although the Sobol indi
es are positive and inferior to one by 
on-

stru
tion, negative values 
an be obtained when the true values are

very 
lose to zero, and in the same manner, values greater than one


an be obtained when the true value is very 
lose to one. This is due to

the �nite number of 
ode evaluations, and to the sample-based method

that is used to 
ompute these indi
es. The last 106 
ode evaluations

are used to assess the value of p = P(y(x) > q). Based on these evalua-

tions, the interval [8.0×10−4; 9.1×10−4] gives a 95% 
on�den
e interval

for p.

2. "Code+MP". Then, the MP approa
h presented in Se
tion 2 is 
on-

sidered, with Q = 100. It is 
oupled to a M
MC approa
h with T = 10
for the 
onditional sampling. In that 
ase, the sensitivity indi
es are


omputed from the sole simulations used to estimate p. It is re
alled

that the mean number of 
ode evaluations for the estimation of p is

Q(1− T log(p)) ≈ 7200.

3. "GP+MP". The third approa
h repla
es the true 
ode output by a

Gaussian surrogate. This surrogate is based on 50 
ode evaluations

only (30 for the initial design of experiments, plus 20 for the sequential

enri
hment using a SUR 
riterion). The estimations of p and the sen-

sitivity indi
es are based on the MP approa
h des
ribed in Algorithm

1. Hen
e, no additional 
ode evaluation is required on
e the surrogate

model is 
omputed. The un
ertainty due to the repla
ement of the

true 
ode by its surrogate 
an be empiri
ally estimated by repeating

the pro
edure several times.

The results are summarized in Table 1. For this simple example, ea
h

sensitivity index globally 
omes to the same 
on
lusion: the most important

role is played by x1, whereas x3 has the less signi�
ant impa
t on p. The

importan
e of the 
ombined e�e
t of the three parameters 
an also be quan-

ti�ed by 
omparing the values of ŝi and t̂i on the one hand, and the values

of ς̂δi and τ̂ δi on the other hand. The fa
t that the total e�e
ts t̂i are always
mu
h stronger than the individual ŝi 
learly indi
ates that y is sensitive to the
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three model inputs, and that spe
i�
 
ombinations are ne
essary to ex
eed

q. This is not really surprising, and we 
ould assume that, when q in
reases,
the values of t̂i should tend to 1 whereas the values of ŝi should tend to 0.

For indi
es ς̂δi and τ̂ δi , 1 ≤ i ≤ 3, it is re
alled that the value of δ is 
hosen

so that pδ = 2 × p. This 
orresponds to δ = 0.05 for this example, whi
h

means that a 5% un
ertainty on the means and the standard deviations of

x1, x2, x3 
an multiply, in the worst 
ase, the value of p by two. Looking at

the values of ς̂δi and τ̂ δi , we noti
e that more than half of this in
rease 
ould

be due to the individual e�e
t of x1. This even more lay stress on the 
ru
ial

role played by x1.

Additionally, we noti
e that the values of the di�erent sensitivity indi
es

are very 
lose whatever the 
onsidered 
on�guration. Hen
e, passing from a


rude Monte Carlo approa
h (the Referen
e 
on�guration) to a more sophis-

ti
ated splitting method (the Code + MP 
on�guration) does not a�e
t the

results of the sensitivity analysis. In the same manner, the e�e
t of repla
-

ing the true 
ode by a surrogate model that is re�ned in the region where

y(x) is 
lose to q has a redu
ed e�e
t on the values of the sensitivity indi
es.

In
luding the surrogate un
ertainty in the estimation only tends to in
rease

the amplitudes of the 
on�den
e intervals for these indi
es, but this is almost

negligible 
ompared to the un
ertainty due to the fa
t that there are only

few 
ode evaluations in the failure domain. Finally, 
oupling the Gaussian

pro
ess regression and the Moving Parti
le approa
h is a good mean to 
om-

pute at a very reasonable 
omputational 
ost the di�erent sensitivity indi
es

presented in Se
tions 3 and 4.

6.2. Non-linear os
illator

The se
ond example 
orresponds to the test 
ase in dimension D = 6
presented in [10, 3℄. Here, x1, . . . , x6 are still independent standard Gaussian

random variables, and we have:

y :





R
6 → R

x 7→ 0.15x4 +

∣∣∣∣
0.9 + 0.15x5

1.1 + 0.1x2 + 0.01x3
sin

(√
1.1 + 0.1x2 + 0.01x3

1 + 0.05x1

1 + 0.2x6

2

)∣∣∣∣
.

(45)

We fo
us on the threshold q = 0.95. Using a 
rude Monte Carlo approa
h

based on 106 
ode evaluations, we found that p is around 3.7 × 10−3
. A

reliability-oriented sensitivity analysis was then 
arried out, whose results
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ŝi(%) t̂i(%) ς̂δi (%) τ̂ δi (%)
i=1 Referen
e [1;21℄ [94;107℄ [57;61℄ [70;73℄

Code+MP [6;18℄ [97;99℄ [54;64℄ [67;75℄

GP+MP [8;15℄ [96;99℄ [53;64℄ [67;76℄

i=2 Referen
e [-14;10℄ [74;87℄ [18;21℄ [28;31℄

Code+MP [0;1℄ [41;81℄ [16;22℄ [25;32℄

GP+MP [0;1℄ [66;91℄ [15;23℄ [24;35℄

i=3 Referen
e [-9;8℄ [47;56℄ [7;9℄ [12;15℄

Code+MP [0;0℄ [41;78℄ [6;11℄ [10;18℄

GP+MP [0;0℄ [50;83℄ [6;11℄ [10;18℄

Table 1: Values of the sensitivity indi
es for q = 250 (
orresponding to p̂ = 8.5×10−4 [8.0×
10−4; 9.1 × 10−4]) for the polynomial fun
tion. 106 
ode evaluations have been used to


ompute the referen
e values. The "
ode+MP" values are based on around 7200 
ode eval-

uations (around 710 iterations were required for the Moving Parti
les algorithm, and the

burn-in parameter was 
hosen equal to 10 for the 
onditional generation using a MCMC

algorithm). The "GP+MP" values are based on only 50 
ode evaluations (30 
odes evalua-

tions for the initial DoE + 20 sequentially added 
ode evaluations using a SUR 
riterion).

The values between bra
kets 
orrespond to 95% 
on�den
e intervals, whi
h have been

empiri
ally 
omputed from 100 repetitions of the whole pro
edure.
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are gathered in Table 2. On
e again, the results of the three 
on�gurations

presented in the previous se
tion are 
ompared. A

ording to the values

of the di�erent indi
es, we �nd that the most in�uential 
omponents of x

are x4 and x5, whi
h is 
ompletely 
oherent with the expression of y. For

this example, it is interesting to noti
e that although there is a priori no

intera
tion between x4 and the other 
omponents of x in the expression of y,
t̂4 is mu
h bigger than ŝ4. This underlines an important di�eren
e between


lassi
al Sobol indi
es, whi
h fo
us on the mean answer of y, and the proposed
reliability-oriented Sobol indi
es, whi
h fo
us on high quantiles of y. Indeed,
even if there is no expli
it link between x4 and the other 
omponents of x, for

y(x) to ex
eed relatively high values of q, spe
i�
 
ombinations of most of the


omponents of x are required. For this example, to guarantee that pδ = 2×p,
δ was 
hosen equal to 0.058. Hen
e, relaxing the values of the mean and the

standard deviation of 
omponent x4 by less than 6% 
an lead to an in
rease

of more than 50% for p, when almost no e�e
t would be noti
ed if the same

relaxation was a
hieved for x1 or x3. Thus, to get a relevant estimation of p,
a pre
ise 
hara
terization of the distribution of x4 is required.

In this example, the values for the three 
on�gurations (Referen
e, Code+MP

and GP+MP) are on
e again very 
lose, whi
h tends to validate the 
ou-

pling of the Gaussian pro
ess regression and the Moving Parti
le approa
h

to 
arry out relevant reliability-oriented sensitivity analyses at a redu
ed


omputational 
ost. Nevertheless, some di�eren
es 
an be observed for the

estimation of the Sobol total indi
es. This is due to the fa
t that the non-

parametri
 estimations of the 
onditioned PDFs are based onQ = 100 points,
whi
h is few 
ompared to the dimension of their de�nition domain (equal to

d−1 = 5 for this example). Better estimates 
ould be obtained by in
reasing

Q, without any additional 
ode evaluations.

6.3. Pressure tank under dynami
 pressure

The third example is derived from an industrial appli
ation, and deals

with the reliability analysis of a spheri
al 
ontainment vessel (in
luding a

tap in a di�erent material) subje
t to an internal blast. A pi
ture of this


ontainment vessel is represented in Figure 2. The me
hani
al response (dis-

pla
ement, strain and stress tensors) of the vessel is modelled with a 
oupling

of two independent numeri
al 
odes. First, a hydrodynami
 
ode simulates

the explosion of a bursting 
harge pla
ed at the 
enter of the tank using a

2-dimensional Eulerian s
heme. The dynami
al loading obtained at the inner
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ŝi(%) t̂i(%) ς̂δi (%) τ̂ δi (%)
i=1 Referen
e [-4;3℄ [11;14℄ [1;2℄ [2;4℄

Code+MP [0;1℄ [16;47℄ [1;4℄ [1;6℄

GP+MP [0;1℄ [14;36℄ [1;4℄ [1;7℄

i=2 Referen
e [-5;4℄ [29;33℄ [4;7℄ [7;11℄

Code+MP [0;2℄ [15;52℄ [3;9℄ [5;15℄

GP+MP [0;2℄ [10;33℄ [3;8℄ [5;15℄

i=3 Referen
e [-4;3℄ [3;4℄ [0;1℄ [0;3℄

Code+MP [0;0℄ [15:42℄ [0;2℄ [0;4℄

GP+MP [0;1℄ [10;33℄ [0;2℄ [1;4℄

i=4 Referen
e [19;28℄ [95;101℄ [54;61℄ [66;71℄

Code+MP [13;46℄ [89;97℄ [49;62℄ [61;73℄

GP+MP [17;62℄ [89;98℄ [51;62℄ [62;72℄

i=5 Referen
e [-4;6℄ [68;74℄ [18;22℄ [25;31℄

Code+MP [1;4℄ [39;82℄ [16;24℄ [23;34℄

GP+MP [1;8℄ [21;71℄ [15;24℄ [23;35℄

i=6 Referen
e [-4;4℄ [15;17℄ [1;3℄ [3;5℄

Code+MP [0;1℄ [17;47℄ [1;5℄ [2;8℄

GP+MP [0;0℄ [12;31℄ [1;4℄ [2;7℄

Table 2: Values of the sensitivity indi
es for q = 0.95 (
orresponding to p̂ = 3.7×10−3 [3.6×
10−3; 3.8 × 10−3]) for the non linear os
illator. 106 
ode evaluations have been used to


ompute the referen
e values. The "
ode+MP" values are based on around 5700 
ode

evaluations (around 560 iterations were required for the Moving Parti
les algorithm, and

the burn-in parameter was 
hosen equal to 10 for the 
onditional generation using a MCMC

algorithm). The "GP+MP" values are based on only 100 
ode evaluations (60 
odes

evaluations for the initial DoE + 40 sequentially added 
ode evaluations using a SUR


riterion). The values between bra
kets 
orrespond to 95% 
on�den
e intervals, whi
h

have been 
omputed from 100 repetitions of the whole pro
edure.
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Figure 2: Pi
ture of the studied 
ontainment vessel

surfa
e of the tank is then applied as input of a stru
tural 
ode, whi
h simu-

lates the vibrations of the vessel under this dynami
 ex
itation and 
omputes

the indu
ed displa
ements at ea
h time step in ea
h position of the vessel.

For this third example, we are interested in the 
umulated equivalent plas-

ti
 strain over a given time range. Let z = (z1, . . . , z8) be eight un
ertain

parameters that 
hara
terize the nested simulation, whose properties are

summarized in Table 3. Let x be the image of z by the isoprobabilist trans-

form, and y(x) be the maximum value in time and spa
e of the 
umulated

equivalent plasti
 strain.

We fo
us on the 
ase q = 0.05. Ea
h evaluation of y being extremely time-

demanding, the idea is to estimate p and 
arry out the reliability-oriented

sensitivity analysis using as few 
alls to y as possible. In that 
ase, nor

the Monte-Carlo neither the Code+MP 
on�gurations are admissible. Thus,

a surrogate model was 
onstru
ted using 1286 
ode evaluations (500 
odes

evaluations for the initial DoE + 786 sequentially added 
ode evaluations

using a SUR 
riterion). The estimation of p and the sensitivity analysis was

then 
arried out on the surrogate instead of the true 
ode, but taking into

a

ount the un
ertainties due to the substitution of the true 
ode. The results

are summarized in Table 4. These values are asso
iated with an estimation

of p 
lose to 2.2×10−3
(a 95% 
on�den
e interval for this estimation is given

by [1.3× 10−3; 3.4× 10−3]).
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Model input Meaning Distribution Parameters

z1 Internal radius of the tank (m) Normal (0.720, 0.005)
z2 Thi
kness (m) Log-normal (0.073, 0.0015)
z3 S
aling fa
tor on inner pressure Weibull (24.95, 1.022)
z4 S
aling fa
tor on time Weibull (24.95, 1.022)
z5 Young modulus of the tank (Pa) Log-normal (2.1× 1011, 2.1× 1010)
z6 Elasti
 limit of the tank (Pa) Normal (7× 108, 3× 107)
z7 Young modulus of the tap (Pa) Log-normal (2.1× 1011, 2.1× 1010)
z8 Elasti
 limit of the tap (Pa) Normal (8.6× 108, 3× 107)

Table 3: Sto
hasti
 model of the pressure tank. For Normal and Log-normal distributions,

the two parameters 
orresponds to the mean and the standard deviation. For Weibull

distribution, the two parameters are the shape and the s
ale parameters. Inputs z3 and

z4 
hara
terize the inner pressure history 
hanging the impulsive load seen by the vessel.

The di�erent model inputs are statisti
ally independent.

First, if we fo
us on the values of ŝi and t̂i, we noti
e that, for this

appli
ation, the fa
t that y ex
eeds q seems not to be due to the a
tion

of one unique parameter, but to a 
ombined e�e
t of all the parameters.

This is typi
al for optimized systems, for whi
h the values of ea
h input

parameters are generally 
hosen as a 
ompromise between performan
e and


ost limitation. However, if we look at the values of ς̂δi and τ̂ δi , it appears
that the value of p is very sensitive to the PDF of z5 (the Young modulus

of the tank). For this appli
ation, the amplitude of the PDF perturbation is


ontrolled by δ = 0.077 to make pδ be twi
e as high as p. To better realize

that this value of δ only allows small perturbations of the input PDF, Figure

3 
ompares the marginal densities of the initial PDF of z to the marginal

densities of the worst 
ase PDF of z. Hen
e, to guarantee a 
orre
t estimation

of p, it is 
ru
ial to pay a parti
ular attention to the de�nition of the PDF

of z5.

7. Con
lusions

This work 
onsiders the 
hallenging problem of 
arrying out at the same

time the reliability and the sensitivity analyses of a 
omplex system, whose

behaviour 
an be modelled by a 
omputationally demanding 
omputer 
ode.

To this end, several reliability-oriented sensitivity indi
es were presented.

These indi
es allow us to identify the model inputs whose variability has

to be redu
ed in priority to minimize the failure probability p, but also the
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Figure 3: Comparison between the original and the perturbed PDFs of the 
omponents

of z. Considering the perturbed PDFs instead of the original ones multiply the value of

p by a fa
tor two. Bla
k 
ontinuous line ↔ original PDFs. Red dashed line ↔ perturbed

PDFs.

26



ŝi(%) t̂i(%) ς̂δi (%) τ̂ δi (%)
i=1 [0;2℄ [44;89℄ [0;4℄ [1;7℄

i=2 [0;2℄ [50;91℄ [2;9℄ [3;14℄

i=3 [0;0℄ [47;89℄ [3;9℄ [5;15℄

i=4 [0;1℄ [64;93℄ [5;8℄ [12;16℄

i=5 [4;13℄ [88;99℄ [45;64℄ [57;76℄

i=6 [0;0℄ [45;89℄ [2;10℄ [3;17℄

i=7 [0;0℄ [43;89℄ [1;5℄ [1;9℄

i=8 [0;0℄ [43;90℄ [0;2℄ [1;8℄

Table 4: Values of the sensitivity indi
es for q = 0.05 (
orresponding to p̂ = 2.2×10−3 [1.3×
10−3; 3.4 × 10−3]) for the pressure tank. The "GP+MP" values are based on 1286 
ode

evaluations (500 
odes evaluations for the initial DoE + 786 sequentially added 
ode evalu-

ations using a SUR 
riterion). The values between bra
kets 
orrespond to 95% 
on�den
e

intervals, whi
h have been 
omputed from 100 repetitions of the whole pro
edure, but for

a unique surrogate model.

model inputs whose distribution has to be parti
ularly well-
hara
terized for

a 
orre
t estimation of p. Based on the 
oupling of a Gaussian pro
ess regres-

sion and a Moving Parti
le approa
h, a method was proposed to e�
iently

estimate p and these sensitivity indi
es from a redu
ed set of 
ode evalua-

tions. The relevan
e of this approa
h was illustrated on three examples.

In the di�erent appli
ations, it has been shown that small perturbations

(su
h as modi�
ations of less than 5% of the mean and/or the standard devi-

ation) of the input PDFs 
ould strongly 
hange the value of p. This questions
the interest of 
omputing very small failure probabilities for �xed input PDFs,

when these PDFs are not perfe
tly known, as it is the 
ase in many engineer-

ing appli
ations. On the 
ontrary, 
omputing di�erent values of p asso
iated
with di�erent perturbations of the input PDF seems more appropriate. In

this work, we limited these perturbations to small 
hanges of the means and

the standard deviations of the di�erent model inputs. But working on more

sophisti
ated perturbations seems an interesting perspe
tive.

Appendix

Proof of Proposition 1

First, let us noti
e that Vx

[
1y(x)>s

]
= p(1 − p). Then, using Bayes

theorem and the equality given by Eq. (14), it follows that:
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Exi

[(
Px(y(x) > q)− Px−i

(y(x) > q | xi)
)2]

= Exi

[(
p− p

fxi|y(x)>q(xi)

fxi
(xi)

)2
]

= p2Exi

[(
1− fxi|y(x)>q(xi)

fxi
(xi)

)2
]
,

(46)

Ex−i

[
(P(y(x) > q)− P(y(x) > q | x−i))

2] = p2Ex−i

[(
1− f

x−i|y(x)>q(x−i)

fx−i
(x−i)

)2
]
.

(47)

As Exi

[
fxi|y(x)>q(xi)

fxi(xi)

]
= Ex−i

[
f
x−i|y(x)>q(x−i)

fx−i
(x−i)

]
= 1, we eventually �nd the

sear
hed results.
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