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Abstract

The role of simulation keeps increasing for the reliability analysis of com-
plex systems. Most of the time, these analyses can be reduced to estimating
the probability of occurrence of an undesirable event, also called failure prob-
ability, using a stochastic model of the system. If the considered event is rare,
sophisticated sample-based procedures are generally introduced to get a rel-
evant estimate of the failure probability. Based on the samples constructed
for the evaluation of this estimate, this work defines two types of reliability-
oriented sensitivity indices. The first ones are introduced to identify the
model inputs whose variability has to be reduced in priority to decrease this
probability. The second ones are used to find the model inputs whose dis-
tribution has to be particularly well-characterized for the available estimate
to be realistic. It is also shown how these sensitivity indices can be derived
when the true model is approximated by a surrogate model. In particular, an
innovative procedure is proposed to take into account the surrogate model
uncertainty in the estimation of these sensitivity indices. The proposed ap-
proach is then applied to the reliability analysis of a series of numerical and
industrial examples.

Keywords:
Sobol indices, Gaussian process, sensitivity analysis, risk analysis.

1. Introduction

The reliability analysis of complex systems is more and more quantified
using numerical simulations. Hence, computer codes in the form y(x) =
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g(x;d) are generally involved. Here, @ = (z1,...,2p) € X is the vector
of stochastic inputs and d is the vector of deterministic inputs. Formally,
given an adapted threshold ¢, the problem of estimating the probability of
occurrence of an undesirable event, seen as y(x) exceeding ¢, can be reduced
to computing the probability

pi=Po(y(x) > q) = Eq [1y(m)>q] (1)
1if y(x) > g,

Ly(a)>q = 2

y(@)>q {0 otherwise. @)

While D increases and low values of p are considered, the evaluation
of p cannot be handled with usual quadratures. Sampling techniques are
preferred, such as the Monte Carlo Simulation (MCS) Mg] In MCS, the
code is computed in a large number of inputs, and probability p is esti-
mated by counting the number of responses that are above the threshold
q. However, the square value of the coefficient of variation of the estimator
provided by MCS is proportional to 1/p. Hence, the number of code evalu-
ations required for MCS to estimate small values of p (say p < 1072 for the
considered applications) quickly becomes burdensome. To circumvent this
problem, various approaches have been proposed. On the one hand, several
nonstatistical approaches, such as the first-order or second-order reliability
methods (FORM/SORM) ﬂﬂ, , , B], propose to approximate the limit
state function as a parametric function. Then, these approximations are used
to evaluate p at a low computational cost, but at the expense of a reduced
precision. On the other hand, the splitting methods [@] propose to rewrite p
using a finite sequence of increasing thresholds. Depending on the choice of
the thresholds, the variance of the aggregated estimator can be much smaller
than the one given by MCS, as it will be explained in the next section.

In addition to this estimation of p, it is useful to quantify the impor-
tance of each model input on the failure probability. This is the purpose of
reliability-oriented global sensitivity analysis (ro-GSA). Here, the word global
refers to the definition given by [36], as the whole variation domain of the
inputs is considered. Indeed, if one model input happens to be strongly in-
fluential, it could be worth trying to decrease its variability. On the contrary,
if one model input seems to have no influence on p, its variability can be ne-
glected, resulting in a simpler model. Several methods have been proposed



to carry out such sensitivity analyses. A first approach aims at quantifying
how the probability of exceeding ¢ is affected by fixing one input model to a
given value. It can be shown that this is equivalent to computing the Sobol
indices associated with the indicator function 1)~ (see Section [§). How-
ever, dedicated evaluations of the code are generally required to assess such
indices [@], which can be much more numerous that the ones required to get
a good estimate of p. Hence, the first objective of this work is to propose a
method using nonparametric statistics to evaluate such Sobol indices without
additional code evaluations.

The sensitivity of probability p to each model input can also be evaluated
by comparing the partial derivatives of p with respect to the statistical mo-
ments of each model input. Using adapted strategies, such derivatives can
be computed as a simple post-processing of the code evaluations that were
carried out for the estimation of p ﬂﬁ] Whereas Sobol indices are associated
with a fixed distribution for the inputs, such indicators assess the sensitivity
of p to small changes of the input distribution. Hence, the meanings of these
two sets of indicators are different but complementary. On the one hand, the
Sobol indices indicate the model inputs whose variability has to be reduced
in priority if we want to decrease p. On the other hand, the derivative-based
indices show the model inputs whose statistical moments have to be par-
ticularly well-controlled to get a relevant estimation of p. In that prospect,
generalizing the works achieved in “ﬂ], the second objective of this work is
to propose reliability-oriented indices that can consider more general modifi-
cations of the model inputs distributions, and which can be used to evaluate
cross-effects between model inputs. Such indices will also be computed as a
simple post-processing of the simulations used to estimate p.

When the numerical cost associated with one evaluation of the code is
high (between several minutes to several days CPU), surrogate models are
commonly introduced to emulate the time-demanding computer code for the
estimation of p. Among these methods, the Gaussian process regression
(GPR) method, or kriging, plays a major role. This is mostly due to its
ability to provide an uncertainty on the evaluation of p that is due to the
substitution of the true code by its emulator [@, @] Finally, this paper
shows how to derive each reliability-oriented sensitivity index in the case
when the code is replaced by a Gaussian emulator. In particular, the impact
of the emulator uncertainty on the estimation of these indices is quantified.

The outline of this work is as follows. First, Section[2briefly reviews exist-
ing sample-based methods for estimating p. Section [ introduces reliability-



oriented sensitivity indices to compare the influence of the inputs variability
on p. Another type of sensitivity indices is defined in Section Ml in order to
quantify the robustness of the evaluation of p to small perturbations of the
input distribution. Then, Section[Elintroduces the estimation of these indices
when the computer code is replaced by a Gaussian emulator. At last, a series
of examples are shown in Section [fl to illustrate the interest of the proposed
methods.

Notations

The following notations are adopted:

e 1.y correspond to scalars.

e XY correspond to integers.

e x. y correspond to vectors.

e Let x; be the components of a vector .

e For all D-dimensional vector @ = (z1,...,xp), we denote by x_; :=
(X1, ..., Ti—1,Tiz1, ..., 2p) the vector that gathers all the components
of = but the *".

e For all random vector @, E;[-] and V. [-] denote the mathematical
expectation and the variance operator associated with the distribution
of x.

2. Background : sample-based methods to estimate probabilities
of exceeding thresholds

Let S be the system we are interested in, whose properties (dimensions,
boundary conditions, material properties...) can be characterized by a vector
of D > 1 parameters € X, where X is a subset of RP. Vector x is modelled
by a random vector to take into account the fact that these parameters are
not perfectly known. The components of x are assumed to be statistically
independent. For all 1 <¢ < D, let X, f,, and F}, be the definition domain,
the probability density function (PDF) and the cumulative density function
(CDF) of component x; respectively. It follows that



X=XXi, fol@)=]]ful@), Fulz)= Hin(ilfz)a (3)

i=1 i=1

where f, and F}, are the PDF and the CDF of x respectively. In addition,

let
X — R
y-{wHy(w) (4)

be the real-valued deterministic mapping describing the behaviour of §. In
this work, we are interested in the evaluation of the probability p for y(x) to
exceed a given threshold ¢ € R,

pi=Py(y(x) >q) = /X 1y(m)>qu(fl:)dfl: =Eg [1y(fc)>q} ) (5)

but also in the identification of the components of « that play the most impor-
tant roles on this probability. We moreover assume that the computational
cost associated with one evaluation of y is high (between several minutes to
several hours CPU), so that the number of code evaluations is supposed to
be bounded (less than 10? for instance). In that context, we are particularly
interested by methods that could allow all the computational budget to be
used at the same time for the estimation of p and for the sensitivity analysis.

As the model inputs are assumed independent, they all can be considered
as normally distributed, centred and of variance equal to 1 without loss of
generality. Indeed, an isoprobabilist transform can been applied to each
model input @, , ], impacting neither the definition of p nor the results
of the sensitivity analysis. Therefore, in the following,

filx:) = ¢(2:;0,1), z €X; =R, (6)
where for all (u,0) in R x R**,
1 (i — M)2>
Tis b, O) 1= exp | — . 7
90( K ) /—271_0 p( 202 ( )

The most famous sample-based method to estimate p is the MCS. If
x,, 1 <n <N, denote N independent copies of x, it is well known [@] that



N
1
bymc = N Z 1y(:tn)>q (8)
n=1
defines an unbiased estimator of p. The associated coefficient of variation
verifies

L—p
830 = ——. 9
e =3 9
This approach is particularly easy to implement, but requires a lot of
code evaluations to get acceptable values for dy;c. Alternatively, the splitting
methods rewrite p using a finite sequence of increasing thresholds (g )%,

p=Pa(y(®) > qxly(®) > qx-1) % - - xPa(y(x) > qly(x) > qO)XPm(y(w)(> ;]0),

10
with g9 = —oo and gx = ¢. Then, classical Monte Carlo estimators can
be proposed for each conditional probability. All these estimators being
unbiased and independent, the mean of their product is still equal to p.
However, the variance of the aggregated estimator strongly depends on the
choice of the thresholds. In practice, the sequence of thresholds is defined
on the fly, which is generally referred as Adaptive splitting [B] In particular,
the Markov chain

ye = (y(x) | y(x) > yr-1), o= —o0, k> 1, (11)

is called an increasing random walk. And it can be shown that the counting
random variable of the number of events before ¢, which is denoted by M :=
Card {k > 1 | yx < q}, follows a Poisson law with parameter — log(p) [|4_1|]
Hence, given () > 1 independent random counting variables (M,)i1<,<0,

1\ S Mo
pup = (1 - é) (12)

also defines an unbiased estimator of p, whose coefficient of variation is equal
to \/—log(p)/@. This approach is referred as Moving Particle (MP) method
in the following. Another strategy to choose the different thresholds is given
by the Subset Simulation (SS) method. The interested reader may refer to
Nj:] for further details about this approach.



The main difficulty in the splitting methods is the conditional sampling.
Indeed, if we focus on the Markov chain defined by Eq. (II)), yx has to
be randomly generated conditionally greater than g, ;. This can be done
using the Metropolis-Hastings algorithm “ﬁ, @] If T" is the number of steps
that is used to control the convergence of the Markov chain to its stationary
distribution, it follows that, on average, 1 — T'log(p) samples have to be
generated to get one realization of the counting variable AM,. Thus, the mean
total number of code evaluations to get the () samples M;, ..., My is equal
to N = Q(1 — T'log(p)). It follows that the coefficient of variation of dy/p
can be approximated as

52 og(p)(Tlog(p) — 1)  Tlog(p)*
MP N N :
This has to be compared to 03, & 1/(pN) for the crude Monte Carlo.

(13)

In MCS, SS and MP methods, let p denote the best estimate of p we
get once the maximal computational budget is attained. For each of these
methods, it can be noticed that the points ), where it was observed that
y(x®) is greater than ¢, are independent realizations of the conditioned
random vector (x|y(x) > ¢). Let us gather all these realisations of (z|y(x) >
q) in the set Dy := {:z:(l), e ,az(N*)}. Hence, in the following, N* denotes
the number of points that have been sampled in the failure domain.

3. Compared influence of the inputs variability on p

Based on the estimated value of p and the elements of Dy only, the
purpose of this section is to identify the components of x, whose vari-
ability has to be reduced in priority if we want to decrease the value of
p. To this end, it can be interesting to quantify the effect on p due to
the fact that x; is fixed to the particular value z7. Indeed, the higher
(Pu(y(z) > q) — Po_,(y(x) > q | 2 = xl*))2, the more influential z;. Thus,
averaging over x;, the quantity

B, [(Paly(@) > 0) = Pa (y(@) > q | 20))°] = Ve, [Ea, [Lywq | 23]
(14)



can be used to analyse the sensitivity of p to model input z;. Normalizing
these quantities by V, [ w)>5} we find back the well-known first order Sobol
indices ﬂﬁ] associated W1th function 1y(zysq:

VY [Emﬂ' [1y(fc)>q | xlﬂ
S; 1= . (15)
Vo [Ly@)>q]
By construction, index s; indicates the variance of 1y(4)~, caused by x;
individually. The variance of 1,(;)-, caused by z; including interactions with
the components of x_; is given by the i*" total Sobol index, denoted by t;,

which verifies:

Va_, [sz [1y(m)>q l a’-l”
Ve [1y(w)>q}

Based on Eqs. ([T) and (I6]), the computation of s; and t; is nontrivial,
since E,_, [-] and V,_, [-] refer to multidimensional integrals. This motivated
the introduction of various algorithms to reduce the computational cost of
the Sobol’ indices. In particular, efficient sample-based methods can be found
in @ . . .] to replace the naive and very expensive double-loop MCS.
However, in spite of these developments, the number of dedicated code eval-
uations that are needed for these methods is still very high. To circumvent
this problem, another approach is proposed in this paper, which is based on
the Proposition [I, whose proof has been moved to Appendix.

ti=1-— (16)

Proposition 1. For all 1 <i < D, we have:

p fzi|y<w>>q(:vz)}
T | e (17)
fw~|y<w>>q(wi)]
tp=1- L v, |[l== : 18
e | (18)
where, for all x in X,
( 1

fw\y(fc)>q(w) = Zzly(m)>qu(-’13),

feiy@)>q(i) = / Jewsa®) []  de (19

Xi<j<p, j#i%i 1<j<D, j#i

Ja_ily(@) (T /fmly >q x)dx;.

8



By construction, the first order and total Sobol indices associated with the
indicator function are proportional to the variances of the ratios between the
a priori PDFs of z; and «_; and their PDFs conditioned by the fact that y(x)
is greater than ¢. In this work, we propose to approximate these PDFs using
one of the nonparametric approaches described in @, @] These methods are
particularly suited for this kind of approximations, as the construction they
propose only requires the presence of independent realizations of the random
vector to be modelled. For each 1 < i < D, let f,1y@)>q and fz_,|y@)>q
be these approximations of functions fy,y@)>¢ and fz_,|y@)>q based on the
elements of the set D only. Sobol indices s; and ¢; can then be approximated
as:

S RS = P ~V,, Srily@)>q(2i) ’ (20)
1-p o (i)
t; ~ ;5\@ =1 L/\Vwﬁ f”—i\y(fc)>q(‘1’37i) , 1)
1-p fo_ (i)

where it is reminded that p is the estimated value of p based on one of
the sample-based methods presented in Section 2l Finally, generating inde-
pendent realizations under f,, and f, ., being quick and easy, Monte-Carlo
estimations of 5; and E can be calculated numerically with a controlled pre-
cision.

4. Robustness analysis of the estimation of p

Indices s; and ¢;, which are defined by Eqs. (I) and (I])), are associated
with a fixed distribution of the model inputs. In this section, another type
of sensitivity indices is defined, which can be used to quantify the robust-
ness of the evaluation of p to small changes of the input distribution. As
explained in Introduction, the information provided by these new indices is
complementary to the information provided by s; and ¢;. When s; and ¢;
allow the identification of the components of & whose variability has to be
reduced in priority to decrease the value of p, these new indices can be used
to identify the components of & whose distributions have to be particularly
well-characterized for a relevant estimation of p.

To quantify the robustness of the estimation of p to small changes of the
input distribution, we generally compute the gradient of the failure probabil-
ity with respect to the parameters that characterize the PDF of the inputs.



Indeed, as it was originally proposed in ﬂﬁ], these gradients can efficiently
be computed from a simple post-processing of a series of independent and
identically distributed failure points provided by any sample-based reliability
analysis (such as MCS, SS or MP), without additional computational cost. If
an isoprobabilist transform is applied to the model inputs, the link between
the parameters describing the input PDF and p is no more explicit. Nev-
ertheless, the PDF of x after the isoprobabilist transform being Gaussian,
it is possible to analyse the effect due to small perturbations of the means
and of the standard deviations of each model input x; in this standard space.
Hence, at the first order, the sensitivity of p to a small perturbation of the
PDF of x; can be assessed by computing m; and v;, so that:

P ™ o EN 1o _Op 22
m; N* ;l‘ T [ y(m)>q$z} aE[l'z] E[xi}ZO’ ( )
~ N*
~ P (n)y2 2 Op
. (N2 1)~ By (1,00 F—1)] = 2
Ui N* ;((l’z ) ) [ y( )>‘1(xl )] asd[xz] sdfz]=1 ( 3)

There, sd[x;] denotes the standard deviation of x;, and we remind that

eV

3 . are the i components of the elements of D;. As the marginal
densities of « are the same, the quantities m; and v; can directly be compared
to identify the components of , whose PDF has to be controlled in priority
for a correct estimation of p. The higher the absolute values of m; and v; are,
the more attention we have to pay to the way the PDF of x; was constructed.

Higher degrees derivatives of p can be computed to assess the influence of
small changes of the mean and the standard deviation at the same time, or
interactions between several components of . However, all these quantities
are local and their aggregation to construct one single index that character-
izes the total effect of z; (including or not interactions with other components
of &) is not trivial. To circumvent this problem, a more global approach is
proposed, which is based on the introduction of the following set of univariate
Gaussian PDFs:

F(0) = {f € F'(R) | f(z:) = p(zs; pui, L + &1), max([ei], |pal) < 0}, 0 <(5 )< L.
24

10



Here, F*(R) is the set of functions defined on R that are positive and
function ¢ is defined by Eq. (). By construction, for all functions fi,..., fp
in F(0), the quantity

fi(@;)dx

Eu e S

h(fla"'afD) ::/le(w)>q

J

(25)

=E; |1

y(x)>q

Sy ()

f(z;) ]

defines the probability that y(x) is strictly greater than ¢, under the assump-
tion that the PDF of x is equal to HJD:1 fi- Then, let p°, p¢ and p°, be the
solutions of the optimization problems defined by Eqs. (28), (27) and (2.

§
= h 26
p fje]-'(n)l,ai(<]<D (fla 7fD)7 ( )
)
i = h Ty Jxi—1y Jiy Jxip1y oo Jrp )y 27
pi = 108X i farsooos foss fio P fop) (27)
pi, = max (fla"'7fi717fzi7fi+17"'7fD>- (28)

FEF (), 15D, j#i

By construction, p° corresponds to the worst case probability associated
with an uncertainty on the PDFs of the inputs controlled by §. In the same
manner, po is the worst case probability when there are uncertainties on
the PDF of z; only, whereas p°; is the worst case probability when there are
uncertainties on the PDFs of all the components of & but the i*". Thus, p)—p
corresponds to the part of p° — p that can be explained by uncertainties on
the PDF of z; only, whereas p°; — p corresponds to the part of p° — p that
can be explained by uncertainties on the PDFs of all the components of ax
but the 7*".

Hence, the following indices:

p; —Pp
oggf::pé_pgl (29)
—_ .
OSTZ(S p(s p—z<1 (30)
p =D



can be used to quantify the sensitivity of p to perturbations on the PDF of
x. Approximations of these indices can be obtained by noticing that, for all

fla---ny 1n]—"(5),

h(flw--,fD)%ﬁ(fl,--w

31
nlj 1f£l3] ) ( )

Indeed, if °, 7° and p° ; are the respective approximations of p°, p} and
p°; replacing function h by 1 in Egs. 26), @7) and ([2]), it comes:

/\5 o~

5 ~5 p; =P
o Q== (32)

P—-D

~
o=t (33)

P—Dp

Index ¢¥ can be seen as the individual effect of z; on p, whereas 72 can

7
be interpreted as the effect of x; on p including interactions with the other
components of . Contrary to the Sobol indices, for which s; < ¢;, depending
on the combined roles of the different elements of @, it is possible to construct
cases where ¢f > 77. However, when testing these indices on classical test

functions, we always found values of 70 that were greater than ¢.
Remarks.

e In this section, an isoprobabilist transform has been applied to each
model input before computing the sensitivity indices. It is indeed a
very interesting tool to normalize each model input, so that the dif-
ferent indices can be compared quantitatively. However, the class of
perturbations could be defined in the "physical" space instead. In that
case, it would be important to adapt the perturbations of each model
input for a quantitative comparison of the results. Nevertheless, what-
ever the "physical" distribution of z; before an eventual isoprobabilist
transform (uniform, beta, exponential, and so on), the meanings of in-
dices ¢/ and 70 do not change. They still quantify the influence on p of
small changes of the mean and the standard deviation of x;. Moreover,
if for each f; in F(0), u; and €; are the two constants so that:

P S G bl 1)
) = v e (St (34

12



the perturbed PDF in the "physical" space that corresponds to f; can
be approximated by %q)ﬂifﬂrl o CIJ(ﬂ o F,,, where for all a,bin R x R**,

Dy p(x) = / o(z;a,14+b)dz, = e€R. (35)

—00

As an illustration, Figure[Ilcompares the evolutions of f,, and %@Hi,siﬂo
D, 1 o F,, for several values of y; and ¢;, and different classes for F,,.

In theory, there is no restriction for the definition of the PDF pertur-
bations. But if we are interested in analysing the effect on p due to
changes of higher statistical moments (kurtosis, skewness,...), the iso-
probabilist transform may not be the most appropriate transformation
of the model inputs.

As the gradient of any function in F(6) with respect to its mean and
standard deviation is explicit, the optimization problems associated
with Eqs. (20), (21) and (28)) can be efficiently solved using any multi-
start gradient-based solver. However, noticing that:

D 2 &2
g —1—1—2;%:21 £ 2)(ZL‘ —1)+§Z(2—5x + 7)) + ey (]
C Y (e = D) e — 1)+ ) + o),
1<i<j<D
(36)
it follows that:
h(fzm s 7f:v¢717 fia f:v¢+17 R f:vD>
: e (37)
=p+a;p +bi(e; + /;Z)—f‘cz 5 + digifis,
a; =E, [1y(w)>q:pz~} . b =E, [1y(w)>q(acl2 — 1)} , (38)

¢ =By [Ly@)>q(2 =527 + 27)],  di :=Eq [Ly@)se(a) — 3x;)] . (39)

13
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Figure 1: Evolution of d% (CIDME,L,H o (I)o_j o Fz) (z;) with respect to x; for several values
of p1; and ¢;, and different classes for F,. Black continuous line < (u;,&;) = (0,0) . Red
dashed line <> (pi,e;) = (0,0.1). Blue dashed-dotted line <+ (u;,¢;) = (—0.2,0). Green

dotted line <+ (u;,2;) = (0.05,—0.1).
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Thus, for each 1 <4 < D, initializing u; and €; at the points in [0, 0] X
0, 6] that maximize the second-order polynomial (p;, &;) — a;p;+b;(e;+
“2—2) —i—ci% +d,eg;p; is a good mean to accelerate the convergence of these
algorithms.

e The set F(§) is parametrized by the scalar §, which characterizes the
maximal amplitude of the perturbation of the PDF of . For instance,
the value 6 = 0.1 indicates that the uncertainty on the mean and the
standard deviation of each component of x is less than 10% of the
nominal value of the standard deviation. Alternatively, the value of §
can be associated with a chosen increase of the probability of exceeding
g. For instance, in the applications that will be presented in Section [,
§ is chosen so that p? = 2 x p.

5. Surrogate model-based sensitivity indices

In the previous section, the estimations of p and of the different reliability-
oriented sensitivity indices are based on evaluations of the true code. When
small values of p are considered, this implies the code to be evaluated in a very
high number of input values. If the computational cost associated with one
evaluation of the code is high, this may not be possible in practice. Surrogate
models have therefore to be constructed to emulate the code answer from a
limited number of calls to the true code. As presented in Introduction, we
propose to focus on the Gaussian process regression (GPR) to build this
surrogate. To this end, performance function y is supposed to be a sample
path of a particular stochastic process i, whose mean function and covariance
function are denoted by p and ¢:

y ~ GP(u,c). (40)
Conditioning this stochastic process by R > 1 code evaluations gathered
in the set S'*™(R) := {(.%(T),y(i(’"))), 1<r< R}, a very interesting pre-

dictor for the value of y in any unobserved point & in X can be obtained.
This predictor is denoted by ¥ | $'**™(R), and it verifies:

| S™™(R) ==yr ~ GP(jir,cp). (41)

The interested reader is referred to [@, @] for further details about the
choice and the optimisation of functions g and ¢, and about the expres-

15



sions of the conditioned mean, fir, and the conditioned covariance, ¢g. For
the applications presented in Section [B, z will be chosen as a second-order
polynomial, and ¢ will be chosen as an element of the 5/2-Matern class of
covariance functions.

If we replace y by yr in the evaluation of probability p, which is given by
Eq. (@), the quantity

p =Py (yr(x) > q) (42)
is no longer deterministic but random, as for a fixed value of « in X, yg(x)
is random. Let yr(-;w) denote one particular realization of yg. Using Al-
gorithm [T}, it is possible to gather in 5f(w) N* points that are statistically
independent, and whose distribution is f3 |7, (@w)>q- For this particular real-
ization of yg, this algorithm also provides the estimate p(w), so that:

p(w) = P(yr(e;w) > q). (43)

Hence, based on Ef(w) and p(w), it is possible to approximate the values
of the different reliability-oriented sensitivity indices that were introduced in
Section Repeating this procedure several times, we eventually compute
confidence intervals for these sensitivity indices, which aggregate two sources
of uncertainties:

e the uncertainty that is due to the replacement of true function y by its
surrogate model,

e the uncertainty that is due to the finite value of N* for the estimation
of p(w) and the estimation of the reliability-oriented sensitivity indices.

In practice, the uncertainty due to the surrogate model can be reduced
by adding new code evaluations to the learning set. Such new points are
generally chosen iteratively where the expected value of ygr is the closest
to the threshold ¢, with the largest uncertainty. Hence, in the following
applications, the construction of the surrogate models will be based on a
two-step procedure. First, the code is evaluated in a small-dimensional space
filling design of experiments (see “ﬂ, 2d, 23, [12, @]) Then, new points are
added one by one using a stepwise uncertainty reduction (SUR) strategy
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ﬁee , ] for more details about this particular selection criterion, and [@, ,
13, | for alternative selection criteria) until the maximum computational
budget is attained.

Remarks.

e Algorithm[lis a particular application of the Moving Particle approach
that is presented in Section Hence, for this algorithm, it can be
noticed that the mean number of points on which each realization of
yr has to be projected is equal to R + N*(1 — log(p)). Hence, the
computational budget associated with the different conditionings of y
in algorithm (Il stays reasonable, even for low values of p.

e Algorithm [ is based on a simple Monte Carlo procedure for the gener-
ation of the realizations of x. If very low values of p were considered,
more efficient algorithms, such as Markov chain Monte Carlo (McMC)
approaches, could be used to better concentrate the realizations of x
in the region of potentially high values of yz.

6. Applications

Three examples are presented in this section to illustrate the interest of
the former developments. The two first examples are based on analytical
data, whereas the third one is based on an industrial case. The evaluations
of the different failure probabilities are performed using the R package mistral

1.

6.1. Polynomial function

In this section, the quantity of interest is given by:

RP=R "
g x = (v1,79,23) — (1+21)(5+22)(10 + 23) (44)

Here, x1, x5, 3 are supposed to be three independent centred Gaussian
random variables, whose variance is one, and we are interested in the prob-
ability that y(x) exceeds the threshold ¢ = 250. Three configurations asso-
ciated with different available computational budgets are compared for the
estimation of p and the computation of the different sensitivity indices.

17



1 Initialization : ;

2 let &M, ... ™) be N* independent realizations of random vector « ;

s let (y(x™M,w),...,y(x™N"),w)) be a particular realization of the
random vector (Jr(x™),..., yr(z™")));

4 Ui = Ur | yr(z™) _y(%‘(”) w)), 1<n < N*;

5 M =0;

6 Di(w)=10;

7 for 1 <n < N*do

8 xt =™, 2=y, w);

9 while z<¢q do

10 draw at random a realization of @, denoted by x* ;

11 draw at random a realization of yj,(x*), denoted by y*(w) ;

12 ify()>zthen

13 y(w), M =M+1;

14 T | Thla) = ()

15 end

16 end

17| Dy(w) = Dy(w) U {z*} ;

18 end

19 p(w) = (1 - 1/N*)M
Algorithm 1: Generation of N* failure points associated with one partic-
ular realization of Gaussian process yr, and estimation of the associated
probability of exceeding g.
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1. "Reference". A crude Monte Carlo based on 6 x 10° code evaluations
is first considered as a reference. 5 x 10° evaluations will be used to
compute the Sobol indices associated with the indicator function in an
optimized sample-based approach using the R package "soboljansen".
Although the Sobol indices are positive and inferior to one by con-
struction, negative values can be obtained when the true values are
very close to zero, and in the same manner, values greater than one
can be obtained when the true value is very close to one. This is due to
the finite number of code evaluations, and to the sample-based method
that is used to compute these indices. The last 10° code evaluations
are used to assess the value of p = P(y(x) > ¢). Based on these evalua-
tions, the interval [8.0x 107%;9.1 x 10| gives a 95% confidence interval
for p.

2. "Code+MP". Then, the MP approach presented in Section ] is con-
sidered, with () = 100. It is coupled to a McMC approach with 7" = 10
for the conditional sampling. In that case, the sensitivity indices are
computed from the sole simulations used to estimate p. It is recalled
that the mean number of code evaluations for the estimation of p is

Q(1 —T'log(p)) ~ 7200.

3. "GP+MP". The third approach replaces the true code output by a
Gaussian surrogate. This surrogate is based on 50 code evaluations
only (30 for the initial design of experiments, plus 20 for the sequential
enrichment using a SUR criterion). The estimations of p and the sen-
sitivity indices are based on the MP approach described in Algorithm
Il Hence, no additional code evaluation is required once the surrogate
model is computed. The uncertainty due to the replacement of the
true code by its surrogate can be empirically estimated by repeating
the procedure several times.

The results are summarized in Table [l For this simple example, each
sensitivity index globally comes to the same conclusion: the most important
role is played by xy, whereas x3 has the less significant impact on p. The
importance of the combined effect of the three parameters can also be quan-
tified by comparing the values of §; and #; on the one hand, and the values
of & and 77 on the other hand. The fact that the total effects t; are always
much stronger than the individual §; clearly indicates that y is sensitive to the
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three model inputs, and that specific combinations are necessary to exceed
q. This is not really surprising, and we could assume that, when ¢ increases,
the values of E should tend to 1 whereas the values of s; should tend to 0.
For indices <Y and 77, 1 < i < 3, it is recalled that the value of § is chosen
so that p° = 2 x p. This corresponds to 6 = 0.05 for this example, which
means that a 5% uncertainty on the means and the standard deviations of
x1, T, x3 can multiply, in the worst case, the value of p by two. Looking at
the values of ¢ and 77, we notice that more than half of this increase could
be due to the individual effect of 1. This even more lay stress on the crucial
role played by z;.

Additionally, we notice that the values of the different sensitivity indices
are very close whatever the considered configuration. Hence, passing from a
crude Monte Carlo approach (the Reference configuration) to a more sophis-
ticated splitting method (the Code + MP configuration) does not affect the
results of the sensitivity analysis. In the same manner, the effect of replac-
ing the true code by a surrogate model that is refined in the region where
y(x) is close to ¢ has a reduced effect on the values of the sensitivity indices.
Including the surrogate uncertainty in the estimation only tends to increase
the amplitudes of the confidence intervals for these indices, but this is almost
negligible compared to the uncertainty due to the fact that there are only
few code evaluations in the failure domain. Finally, coupling the Gaussian
process regression and the Moving Particle approach is a good mean to com-
pute at a very reasonable computational cost the different sensitivity indices
presented in Sections [ and [l

6.2. Non-linear oscillator

The second example corresponds to the test case in dimension D = 6
presented in m, B] Here, x1, ..., x¢ are still independent standard Gaussian
random variables, and we have:

R® — R
: . 1 1.1 Nl Olzs 1 2
Yy z 0151’4+ 0.9+0 51’5 sin \/ +0 l’g—f-OO T3 +0 T
1.1+ 0.1z9 + 0.0125 1+ 0.0524 2
(45)

We focus on the threshold ¢ = 0.95. Using a crude Monte Carlo approach
based on 10° code evaluations, we found that p is around 3.7 x 1073. A
reliability-oriented sensitivity analysis was then carried out, whose results
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5(%) L% Q%) (%)

i=1 Reference  [1;21] [94;107] [57;61] [70;73]
Code+MP  [6;18]  [97;99] [54;64] [67;75]
GPMP  [8:15]  [96:99] [53:64] [67:76]

i=2  Reference [-14;10] [74:87] [18:21] [28:31]
CodetMP  [0;1]  [41:81] [16:22] [25:32]
GPAMP  [0:1]  [66:91] [15:23] [24:35)]

i=3 Reference  [-9:8]  [47;56]  [7;9]  [12;15]
Code+MP  [0;0] [41;78]  [6;11]  [10;18]
GPAMP  [0:0]  [50:83] [6:11] [10:18]

Table 1: Values of the sensitivity indices for ¢ = 250 (corresponding to p = 8.5x 107% [8.0 x
107%;9.1 x 1074]) for the polynomial function. 10° code evaluations have been used to
compute the reference values. The "code+MP" values are based on around 7200 code eval-
uations (around 710 iterations were required for the Moving Particles algorithm, and the
burn-in parameter was chosen equal to 10 for the conditional generation using a MCMC
algorithm). The "GP+MP" values are based on only 50 code evaluations (30 codes evalua-
tions for the initial DoE + 20 sequentially added code evaluations using a SUR criterion).
The values between brackets correspond to 95% confidence intervals, which have been
empirically computed from 100 repetitions of the whole procedure.
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are gathered in Table 2l Once again, the results of the three configurations
presented in the previous section are compared. According to the values
of the different indices, we find that the most influential components of x
are x4 and x5, which is completely coherent with the expression of y. For
this example, it is interesting to notice that although there is a priori no
interaction between x4 and the other components of « in the expression of y,
1, is much bigger than 5. This underlines an important difference between
classical Sobol indices, which focus on the mean answer of y, and the proposed
reliability-oriented Sobol indices, which focus on high quantiles of y. Indeed,
even if there is no explicit link between x4 and the other components of x, for
y(x) to exceed relatively high values of ¢, specific combinations of most of the
components of  are required. For this example, to guarantee that p® = 2 xp,
0 was chosen equal to 0.058. Hence, relaxing the values of the mean and the
standard deviation of component x, by less than 6% can lead to an increase
of more than 50% for p, when almost no effect would be noticed if the same
relaxation was achieved for x; or x3. Thus, to get a relevant estimation of p,
a precise characterization of the distribution of x4 is required.

In this example, the values for the three configurations (Reference, Code+MP
and GP+MP) are once again very close, which tends to validate the cou-
pling of the Gaussian process regression and the Moving Particle approach
to carry out relevant reliability-oriented sensitivity analyses at a reduced
computational cost. Nevertheless, some differences can be observed for the
estimation of the Sobol total indices. This is due to the fact that the non-
parametric estimations of the conditioned PDFs are based on () = 100 points,
which is few compared to the dimension of their definition domain (equal to
d—1 =5 for this example). Better estimates could be obtained by increasing
(), without any additional code evaluations.

6.3. Pressure tank under dynamic pressure

The third example is derived from an industrial application, and deals
with the reliability analysis of a spherical containment vessel (including a
tap in a different material) subject to an internal blast. A picture of this
containment vessel is represented in Figure[2l The mechanical response (dis-
placement, strain and stress tensors) of the vessel is modelled with a coupling
of two independent numerical codes. First, a hydrodynamic code simulates
the explosion of a bursting charge placed at the center of the tank using a
2-dimensional Eulerian scheme. The dynamical loading obtained at the inner
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S(%)  G(%) (%) T(%)

i=1 Reference [-4;3] [11;14]  [1;2] [2;4]
Code+MP  [0;1]  [16;47]  [1;4] [1;6]
GP+MP [0;1] [14;36] [1:4] [1;7]

i=2 Reference  [-5;4]  [29:33]  [47]  [7;11]
Code tMP  [0:2]  [15:52]  [3:9]  [5:15]
GPAMP  [0:2]  [10:33]  [3:8]  [5:15]

i=3 Reference  [-4;3] [3;4] [0;1] [0;3]
Code+MP  [0;0]  [15:42]  [0;2] [0:4]
GP+MP  0;1]  [10:33]  [0:2]  [1:4]

i=4 Reference [19;28] [95;101] [54;61] [66;71]
Code+MP [13;46] [89;97] [49;62] [61;73]
GPIMP  [17:62] [89:98] [51:62] [62:72

i=b Reference  [-4;6]  [68;74] [18;22] [25;31]
Code tMP  [134]  [39:82] [16:24] [23:34]
GPAMP  [1:8]  [2L;71] [15:24] [23:35]

i=6 Reference [-4;4]  [15;17]  [1;3] [3;5]
CodetMP  [0;1]  [17:47]  [1:5]  [2:8]
GP-+MP [0;0]  [12;31]  [1;4] [2;7]

Table 2: Values of the sensitivity indices for ¢ = 0.95 (corresponding to p = 3.7x 1073 [3.6 x
1073;3.8 x 107?]) for the non linear oscillator. 10 code evaluations have been used to
compute the reference values. The "code+MP" values are based on around 5700 code
evaluations (around 560 iterations were required for the Moving Particles algorithm, and
the burn-in parameter was chosen equal to 10 for the conditional generation using a MCMC
algorithm). The "GP+MP" values are based on only 100 code evaluations (60 codes
evaluations for the initial DoE + 40 sequentially added code evaluations using a SUR
criterion). The values between brackets correspond to 95% confidence intervals, which
have been computed from 100 repetitions of the whole procedure.
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Figure 2: Picture of the studied containment vessel

surface of the tank is then applied as input of a structural code, which simu-
lates the vibrations of the vessel under this dynamic excitation and computes
the induced displacements at each time step in each position of the vessel.
For this third example, we are interested in the cumulated equivalent plas-
tic strain over a given time range. Let z = (z1,...,25) be eight uncertain
parameters that characterize the nested simulation, whose properties are
summarized in Table[3l Let @ be the image of z by the isoprobabilist trans-
form, and y(x) be the maximum value in time and space of the cumulated
equivalent plastic strain.

We focus on the case ¢ = 0.05. Each evaluation of y being extremely time-
demanding, the idea is to estimate p and carry out the reliability-oriented
sensitivity analysis using as few calls to y as possible. In that case, nor
the Monte-Carlo neither the Code+MP configurations are admissible. Thus,
a surrogate model was constructed using 1286 code evaluations (500 codes
evaluations for the initial DoE + 786 sequentially added code evaluations
using a SUR criterion). The estimation of p and the sensitivity analysis was
then carried out on the surrogate instead of the true code, but taking into
account the uncertainties due to the substitution of the true code. The results
are summarized in Table . These values are associated with an estimation
of p close to 2.2 x 1073 (a 95% confidence interval for this estimation is given
by [1.3 x 1073; 3.4 x 1073]).
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Model input Meaning Distribution Parameters

2 Internal radius of the tank (m) Normal (0.720,0.005)

29 Thickness (m) Log-normal (0.073,0.0015)

23 Scaling factor on inner pressure Weibull (24.95,1.022)

24 Scaling factor on time Weibull (24.95,1.022)

25 Young modulus of the tank (Pa) TLog-normal (2.1 x 10",2.1 x 10'?)
% Elastic limit of the tank (Pa) Normal (7 x 108,3 x 107)
27 Young modulus of the tap (Pa)  Log-normal (2.1 x 10'1,2.1 x 10'9)
28 Elastic limit of the tap (Pa) Normal (8.6 x 108,3 x 107)

Table 3: Stochastic model of the pressure tank. For Normal and Log-normal distributions,
the two parameters corresponds to the mean and the standard deviation. For Weibull
distribution, the two parameters are the shape and the scale parameters. Inputs z3 and
z4 characterize the inner pressure history changing the impulsive load seen by the vessel.
The different model inputs are statistically independent.

First, if we focus on the values of §; and %;, we notice that, for this
application, the fact that y exceeds ¢ seems not to be due to the action
of one unique parameter, but to a combined effect of all the parameters.
This is typical for optimized systems, for which the values of each input
parameters are generally chosen as a compromise between performance and
cost limitation. However, if we look at the values of ¢ and 77, it appears
that the value of p is very sensitive to the PDF of z5 (the Young modulus
of the tank). For this application, the amplitude of the PDF perturbation is
controlled by § = 0.077 to make p° be twice as high as p. To better realize
that this value of § only allows small perturbations of the input PDF, Figure
Bl compares the marginal densities of the initial PDF of z to the marginal
densities of the worst case PDF of z. Hence, to guarantee a correct estimation
of p, it is crucial to pay a particular attention to the definition of the PDF
of zZ5.

7. Conclusions

This work considers the challenging problem of carrying out at the same
time the reliability and the sensitivity analyses of a complex system, whose
behaviour can be modelled by a computationally demanding computer code.
To this end, several reliability-oriented sensitivity indices were presented.
These indices allow us to identify the model inputs whose variability has
to be reduced in priority to minimize the failure probability p, but also the
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Figure 3: Comparison between the original and the perturbed PDFs of the components
of z. Considering the perturbed PDFs instead of the original ones multiply the value of
p by a factor two. Black continuous line <+ original PDFs. Red dashed line <+ perturbed

PDFs.



5(%) (%) Q%) (%)
i=1 [0:2] [44;89] [0:4]  [1;7]
=2 [0:2] [50:91] [2:9]  [3:14]
i=3 [0;0] [47:89] [3;9]  [5;15]
=4 [0;1] [64:93] [5:8]  [12:16]
i=5 [4:13] [88:99] [45:64] [57:76]
=6 [0:0] [45:89] [2:10] [3:17]
i=7 [0;0] [43;89] [1;5] [1;9]
i=8 [0;0] [43;90] [0;2] [1;8]

Table 4: Values of the sensitivity indices for ¢ = 0.05 (corresponding to p = 2.2x 1073 [1.3x
1073;3.4 x 1073]) for the pressure tank. The "GP+MP" values are based on 1286 code
evaluations (500 codes evaluations for the initial DoE + 786 sequentially added code evalu-
ations using a SUR criterion). The values between brackets correspond to 95% confidence
intervals, which have been computed from 100 repetitions of the whole procedure, but for
a unique surrogate model.

model inputs whose distribution has to be particularly well-characterized for
a correct estimation of p. Based on the coupling of a Gaussian process regres-
sion and a Moving Particle approach, a method was proposed to efficiently
estimate p and these sensitivity indices from a reduced set of code evalua-
tions. The relevance of this approach was illustrated on three examples.

In the different applications, it has been shown that small perturbations
(such as modifications of less than 5% of the mean and/or the standard devi-
ation) of the input PDFs could strongly change the value of p. This questions
the interest of computing very small failure probabilities for fixed input PDFs,
when these PDFs are not perfectly known, as it is the case in many engineer-
ing applications. On the contrary, computing different values of p associated
with different perturbations of the input PDF seems more appropriate. In
this work, we limited these perturbations to small changes of the means and
the standard deviations of the different model inputs. But working on more
sophisticated perturbations seems an interesting perspective.

Appendix

Proof of Proposition [

First, let us notice that V, [1y(m)>s] = p(1 — p). Then, using Bayes
theorem and the equality given by Eq. (), it follows that:
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E,, |(Paly(@) > 0) = Po_,(y(@) > ¢ | 7))"] = E.,

(o) |

2
= p°E,, (1 _ fxz'y(m)>q(xi)) ’
(46)
2 _ 2 fo_iy@>a(@-0)\’
E, . [(P(y(z) > q) —Ply(x) > q | )" = p*Ea, |1 - A ,
(47)
As E,, [%:)(M} =E; , [%} = 1, we eventually find the

searched results.
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