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Abstrat

The role of simulation keeps inreasing for the reliability analysis of om-

plex systems. Most of the time, these analyses an be redued to estimating

the probability of ourrene of an undesirable event, also alled failure prob-

ability, using a stohasti model of the system. If the onsidered event is rare,

sophistiated sample-based proedures are generally introdued to get a rel-

evant estimate of the failure probability. Based on the samples onstruted

for the evaluation of this estimate, this work de�nes two types of reliability-

oriented sensitivity indies. The �rst ones are introdued to identify the

model inputs whose variability has to be redued in priority to derease this

probability. The seond ones are used to �nd the model inputs whose dis-

tribution has to be partiularly well-haraterized for the available estimate

to be realisti. It is also shown how these sensitivity indies an be derived

when the true model is approximated by a surrogate model. In partiular, an

innovative proedure is proposed to take into aount the surrogate model

unertainty in the estimation of these sensitivity indies. The proposed ap-

proah is then applied to the reliability analysis of a series of numerial and

industrial examples.

Keywords:

Sobol indies, Gaussian proess, sensitivity analysis, risk analysis.

1. Introdution

The reliability analysis of omplex systems is more and more quanti�ed

using numerial simulations. Hene, omputer odes in the form y(x) =
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g(x;d) are generally involved. Here, x = (x1, . . . , xD) ∈ X is the vetor

of stohasti inputs and d is the vetor of deterministi inputs. Formally,

given an adapted threshold q, the problem of estimating the probability of

ourrene of an undesirable event, seen as y(x) exeeding q, an be redued

to omputing the probability

p := Px(y(x) > q) = Ex

[
1y(x)>q

]
, (1)

1y(x)>q =

{
1 if y(x) > q,

0 otherwise.
(2)

While D inreases and low values of p are onsidered, the evaluation

of p annot be handled with usual quadratures. Sampling tehniques are

preferred, suh as the Monte Carlo Simulation (MCS) [34℄. In MCS, the

ode is omputed in a large number of inputs, and probability p is esti-

mated by ounting the number of responses that are above the threshold

q. However, the square value of the oe�ient of variation of the estimator

provided by MCS is proportional to 1/p. Hene, the number of ode evalu-
ations required for MCS to estimate small values of p (say p < 10−3

for the

onsidered appliations) quikly beomes burdensome. To irumvent this

problem, various approahes have been proposed. On the one hand, several

nonstatistial approahes, suh as the �rst-order or seond-order reliability

methods (FORM/SORM) [14, 31, 18, 5℄, propose to approximate the limit

state funtion as a parametri funtion. Then, these approximations are used

to evaluate p at a low omputational ost, but at the expense of a redued

preision. On the other hand, the splitting methods [16℄ propose to rewrite p
using a �nite sequene of inreasing thresholds. Depending on the hoie of

the thresholds, the variane of the aggregated estimator an be muh smaller

than the one given by MCS, as it will be explained in the next setion.

In addition to this estimation of p, it is useful to quantify the impor-

tane of eah model input on the failure probability. This is the purpose of

reliability-oriented global sensitivity analysis (ro-GSA). Here, the word global

refers to the de�nition given by [36℄, as the whole variation domain of the

inputs is onsidered. Indeed, if one model input happens to be strongly in-

�uential, it ould be worth trying to derease its variability. On the ontrary,

if one model input seems to have no in�uene on p, its variability an be ne-

gleted, resulting in a simpler model. Several methods have been proposed
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to arry out suh sensitivity analyses. A �rst approah aims at quantifying

how the probability of exeeding q is a�eted by �xing one input model to a

given value. It an be shown that this is equivalent to omputing the Sobol

indies assoiated with the indiator funtion 1y(x)>q (see Setion 3). How-

ever, dediated evaluations of the ode are generally required to assess suh

indies [40℄, whih an be muh more numerous that the ones required to get

a good estimate of p. Hene, the �rst objetive of this work is to propose a

method using nonparametri statistis to evaluate suh Sobol indies without

additional ode evaluations.

The sensitivity of probability p to eah model input an also be evaluated

by omparing the partial derivatives of p with respet to the statistial mo-

ments of eah model input. Using adapted strategies, suh derivatives an

be omputed as a simple post-proessing of the ode evaluations that were

arried out for the estimation of p [33℄. Whereas Sobol indies are assoiated

with a �xed distribution for the inputs, suh indiators assess the sensitivity

of p to small hanges of the input distribution. Hene, the meanings of these

two sets of indiators are di�erent but omplementary. On the one hand, the

Sobol indies indiate the model inputs whose variability has to be redued

in priority if we want to derease p. On the other hand, the derivative-based

indies show the model inputs whose statistial moments have to be par-

tiularly well-ontrolled to get a relevant estimation of p. In that prospet,

generalizing the works ahieved in [19℄, the seond objetive of this work is

to propose reliability-oriented indies that an onsider more general modi�-

ations of the model inputs distributions, and whih an be used to evaluate

ross-e�ets between model inputs. Suh indies will also be omputed as a

simple post-proessing of the simulations used to estimate p.
When the numerial ost assoiated with one evaluation of the ode is

high (between several minutes to several days CPU), surrogate models are

ommonly introdued to emulate the time-demanding omputer ode for the

estimation of p. Among these methods, the Gaussian proess regression

(GPR) method, or kriging, plays a major role. This is mostly due to its

ability to provide an unertainty on the evaluation of p that is due to the

substitution of the true ode by its emulator [35, 37℄. Finally, this paper

shows how to derive eah reliability-oriented sensitivity index in the ase

when the ode is replaed by a Gaussian emulator. In partiular, the impat

of the emulator unertainty on the estimation of these indies is quanti�ed.

The outline of this work is as follows. First, Setion 2 brie�y reviews exist-

ing sample-based methods for estimating p. Setion 3 introdues reliability-

3



oriented sensitivity indies to ompare the in�uene of the inputs variability

on p. Another type of sensitivity indies is de�ned in Setion 4, in order to

quantify the robustness of the evaluation of p to small perturbations of the

input distribution. Then, Setion 5 introdues the estimation of these indies

when the omputer ode is replaed by a Gaussian emulator. At last, a series

of examples are shown in Setion 6 to illustrate the interest of the proposed

methods.

Notations

The following notations are adopted:

• x, y orrespond to salars.

• X, Y orrespond to integers.

• x,y orrespond to vetors.

• Let xi be the omponents of a vetor x.

• For all D-dimensional vetor x = (x1, . . . , xD), we denote by x−i :=
(x1, . . . , xi−1, xi+1, . . . , xD) the vetor that gathers all the omponents

of x but the ith.

• For all random vetor x, Ex [·] and Vx [·] denote the mathematial

expetation and the variane operator assoiated with the distribution

of x.

2. Bakground : sample-based methods to estimate probabilities

of exeeding thresholds

Let S be the system we are interested in, whose properties (dimensions,

boundary onditions, material properties...) an be haraterized by a vetor

of D ≥ 1 parameters x ∈ X, where X is a subset of R
D
. Vetor x is modelled

by a random vetor to take into aount the fat that these parameters are

not perfetly known. The omponents of x are assumed to be statistially

independent. For all 1 ≤ i ≤ D, let Xi, fxi
and Fxi

be the de�nition domain,

the probability density funtion (PDF) and the umulative density funtion

(CDF) of omponent xi respetively. It follows that
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X =
D×
i=1

Xi, fx(x) =
D∏

i=1

fxi
(xi), Fx(x) =

D∏

i=1

Fxi
(xi), (3)

where fx and Fx are the PDF and the CDF of x respetively. In addition,

let

y :

{
X → R

x 7→ y(x)
(4)

be the real-valued deterministi mapping desribing the behaviour of S. In

this work, we are interested in the evaluation of the probability p for y(x) to
exeed a given threshold q ∈ R,

p := Px(y(x) > q) =

∫

X

1y(x)>qfx(x)dx = Ex

[
1y(x)>q

]
, (5)

but also in the identi�ation of the omponents of x that play the most impor-

tant roles on this probability. We moreover assume that the omputational

ost assoiated with one evaluation of y is high (between several minutes to

several hours CPU), so that the number of ode evaluations is supposed to

be bounded (less than 103 for instane). In that ontext, we are partiularly

interested by methods that ould allow all the omputational budget to be

used at the same time for the estimation of p and for the sensitivity analysis.

As the model inputs are assumed independent, they all an be onsidered

as normally distributed, entred and of variane equal to 1 without loss of

generality. Indeed, an isoprobabilist transform an been applied to eah

model input [32, 24, 17℄, impating neither the de�nition of p nor the results
of the sensitivity analysis. Therefore, in the following,

fi(xi) = ϕ(xi; 0, 1), xi ∈ Xi = R, (6)

where for all (µ, σ) in R× R
+∗
,

ϕ(xi;µ, σ) :=
1√
2πσ

exp

(
−(xi − µ)2

2σ2

)
. (7)

The most famous sample-based method to estimate p is the MCS. If

xn, 1 ≤ n ≤ N , denote N independent opies of x, it is well known [34℄ that
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p
MC

:=
1

N

N∑

n=1

1y(xn)>q (8)

de�nes an unbiased estimator of p. The assoiated oe�ient of variation

veri�es

δ2
MC

=
1− p

Np
. (9)

This approah is partiularly easy to implement, but requires a lot of

ode evaluations to get aeptable values for δ
MC

. Alternatively, the splitting

methods rewrite p using a �nite sequene of inreasing thresholds (qk)
K
k=0,

p = Px(y(x) > qK |y(x) > qK−1)×· · ·×Px(y(x) > q1|y(x) > q0)×Px(y(x) > q0),
(10)

with q0 = −∞ and qK = q. Then, lassial Monte Carlo estimators an

be proposed for eah onditional probability. All these estimators being

unbiased and independent, the mean of their produt is still equal to p.
However, the variane of the aggregated estimator strongly depends on the

hoie of the thresholds. In pratie, the sequene of thresholds is de�ned

on the �y, whih is generally referred as Adaptive splitting [7℄. In partiular,

the Markov hain

yk := (y(x) | y(x) > yk−1), y0 = −∞, k ≥ 1, (11)

is alled an inreasing random walk. And it an be shown that the ounting

random variable of the number of events before q, whih is denoted by M :=
Card {k ≥ 1 | yk ≤ q}, follows a Poisson law with parameter − log(p) [41℄.

Hene, given Q ≥ 1 independent random ounting variables (Mq)1≤q≤Q,

p
MP

:=

(
1− 1

Q

)∑Q
q=1 Mq

(12)

also de�nes an unbiased estimator of p, whose oe�ient of variation is equal

to

√
− log(p)/Q. This approah is referred as Moving Partile (MP) method

in the following. Another strategy to hoose the di�erent thresholds is given

by the Subset Simulation (SS) method. The interested reader may refer to

[1, 8℄ for further details about this approah.
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The main di�ulty in the splitting methods is the onditional sampling.

Indeed, if we fous on the Markov hain de�ned by Eq. (11), yk has to

be randomly generated onditionally greater than yk−1. This an be done

using the Metropolis-Hastings algorithm [22, 15℄. If T is the number of steps

that is used to ontrol the onvergene of the Markov hain to its stationary

distribution, it follows that, on average, 1 − T log(p) samples have to be

generated to get one realization of the ounting variableMq. Thus, the mean

total number of ode evaluations to get the Q samples M1, . . . ,MQ is equal

to N = Q(1 − T log(p)). It follows that the oe�ient of variation of δMP

an be approximated as

δ2
MP

≈ log(p)(T log(p)− 1)

N
≈ T log(p)2

N
. (13)

This has to be ompared to δ2
MC

≈ 1/(pN) for the rude Monte Carlo.

In MCS, SS and MP methods, let p̂ denote the best estimate of p we

get one the maximal omputational budget is attained. For eah of these

methods, it an be notied that the points x(k)
, where it was observed that

y(x(k)) is greater than q, are independent realizations of the onditioned

random vetor (x|y(x) > q). Let us gather all these realisations of (x|y(x) >
q) in the set Df :=

{
x(1), . . . ,x(N∗)

}
. Hene, in the following, N∗

denotes

the number of points that have been sampled in the failure domain.

3. Compared in�uene of the inputs variability on p

Based on the estimated value of p and the elements of Df only, the

purpose of this setion is to identify the omponents of x, whose vari-

ability has to be redued in priority if we want to derease the value of

p. To this end, it an be interesting to quantify the e�et on p due to

the fat that xi is �xed to the partiular value x⋆
i . Indeed, the higher(

Px(y(x) > q)− Px−i
(y(x) > q | xi = x⋆

i )
)2
, the more in�uential xi. Thus,

averaging over xi, the quantity

Exi

[(
Px(y(x) > q)− Px−i

(y(x) > q | xi)
)2]

= Vxi

[
Ex−i

[
1y(x)>q | xi

]]

(14)
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an be used to analyse the sensitivity of p to model input xi. Normalizing

these quantities by Vx

[
1y(x)>s

]
, we �nd bak the well-known �rst order Sobol

indies [38℄ assoiated with funtion 1y(x)>q:

si :=
Vxi

[
Ex−i

[
1y(x)>q | xi

]]

Vx

[
1y(x)>q

] . (15)

By onstrution, index si indiates the variane of 1y(x)>q aused by xi

individually. The variane of 1y(x)>q aused by xi inluding interations with

the omponents of x−i is given by the ith total Sobol index, denoted by ti,
whih veri�es:

ti := 1− Vx−i

[
Exi

[
1y(x)>q | x−i

]]

Vx

[
1y(x)>q

] . (16)

Based on Eqs. (15) and (16), the omputation of si and ti is nontrivial,
sine Ex−i

[·] and Vx−i
[·] refer to multidimensional integrals. This motivated

the introdution of various algorithms to redue the omputational ost of

the Sobol' indies. In partiular, e�ient sample-based methods an be found

in [40, 39, 25, 20℄ to replae the naive and very expensive double-loop MCS.

However, in spite of these developments, the number of dediated ode eval-

uations that are needed for these methods is still very high. To irumvent

this problem, another approah is proposed in this paper, whih is based on

the Proposition 1, whose proof has been moved to Appendix.

Proposition 1. For all 1 ≤ i ≤ D, we have:

si =
p

1− p
Vxi

[
fxi|y(x)>q(xi)

fxi
(xi)

]
, (17)

ti = 1− p

1− p
Vx−i

[
fx−i|y(x)>q(x−i)

fx−i
(x−i)

]
, (18)

where, for all x in X,





f
x|y(x)>q(x) :=

1

p
1y(x)>qfx(x),

fxi|y(x)>q(xi) :=

∫

×1≤j≤D, j 6=i Xj

fx|y(x)>q(x)
∏

1≤j≤D, j 6=i

dxj ,

fx−i|y(x)>q(x−i) :=

∫

Xi

fx|y(x)>q(x)dxi.

(19)
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By onstrution, the �rst order and total Sobol indies assoiated with the

indiator funtion are proportional to the varianes of the ratios between the

a priori PDFs of xi and x−i and their PDFs onditioned by the fat that y(x)
is greater than q. In this work, we propose to approximate these PDFs using

one of the nonparametri approahes desribed in [30, 29℄. These methods are

partiularly suited for this kind of approximations, as the onstrution they

propose only requires the presene of independent realizations of the random

vetor to be modelled. For eah 1 ≤ i ≤ D, let f̂xi|y(x)>q and f̂x−i|y(x)>q

be these approximations of funtions fxi|y(x)>q and fx−i|y(x)>q based on the

elements of the set Df only. Sobol indies si and ti an then be approximated

as:

si ≈ ŝi :=
p̂

1− p̂
Vxi

[
f̂xi|y(x)>q(xi)

fxi
(xi)

]
, (20)

ti ≈ t̂i := 1− p̂

1− p̂
Vx−i

[
f̂
x−i|y(x)>q(x−i)

fx−i
(x−i)

]
, (21)

where it is reminded that p̂ is the estimated value of p based on one of

the sample-based methods presented in Setion 2. Finally, generating inde-

pendent realizations under f̂xi
and f̂x−i

being quik and easy, Monte-Carlo

estimations of ŝi and t̂i an be alulated numerially with a ontrolled pre-

ision.

4. Robustness analysis of the estimation of p

Indies si and ti, whih are de�ned by Eqs. (17) and (18), are assoiated

with a �xed distribution of the model inputs. In this setion, another type

of sensitivity indies is de�ned, whih an be used to quantify the robust-

ness of the evaluation of p to small hanges of the input distribution. As

explained in Introdution, the information provided by these new indies is

omplementary to the information provided by si and ti. When si and ti
allow the identi�ation of the omponents of x whose variability has to be

redued in priority to derease the value of p, these new indies an be used

to identify the omponents of x whose distributions have to be partiularly

well-haraterized for a relevant estimation of p.
To quantify the robustness of the estimation of p to small hanges of the

input distribution, we generally ompute the gradient of the failure probabil-

ity with respet to the parameters that haraterize the PDF of the inputs.
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Indeed, as it was originally proposed in [33℄, these gradients an e�iently

be omputed from a simple post-proessing of a series of independent and

identially distributed failure points provided by any sample-based reliability

analysis (suh as MCS, SS or MP), without additional omputational ost. If

an isoprobabilist transform is applied to the model inputs, the link between

the parameters desribing the input PDF and p is no more expliit. Nev-

ertheless, the PDF of x after the isoprobabilist transform being Gaussian,

it is possible to analyse the e�et due to small perturbations of the means

and of the standard deviations of eah model input xi in this standard spae.

Hene, at the �rst order, the sensitivity of p to a small perturbation of the

PDF of xi an be assessed by omputing m̂i and v̂i, so that:

m̂i :=
p̂

N∗

N∗∑

n=1

x
(n)
i ≈ Ex

[
1y(x)>qxi

]
=

∂p

∂E[xi]

∣∣∣∣
E[xi]=0

, (22)

v̂i :=
p̂

N∗

N∗∑

n=1

((x
(n)
i )2 − 1) ≈ Ex

[
1y(x)>q(x

2
i − 1)

]
=

∂p

∂sd[xi]

∣∣∣∣
sd[xi]=1

. (23)

There, sd[xi] denotes the standard deviation of xi, and we remind that

x
(1)
i , . . . , x

(N∗)
i are the ith omponents of the elements of Df . As the marginal

densities of x are the same, the quantities m̂i and v̂i an diretly be ompared

to identify the omponents of x, whose PDF has to be ontrolled in priority

for a orret estimation of p. The higher the absolute values of m̂i and v̂i are,
the more attention we have to pay to the way the PDF of xi was onstruted.

Higher degrees derivatives of p an be omputed to assess the in�uene of

small hanges of the mean and the standard deviation at the same time, or

interations between several omponents of x. However, all these quantities

are loal and their aggregation to onstrut one single index that harater-

izes the total e�et of xi (inluding or not interations with other omponents

of x) is not trivial. To irumvent this problem, a more global approah is

proposed, whih is based on the introdution of the following set of univariate

Gaussian PDFs:

F(δ) :=
{
f ∈ F

+(R) | f(xi) = ϕ(xi;µi, 1 + εi), max(|εi|, |µi|) ≤ δ
}
, 0 < δ < 1.

(24)
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Here, F
+(R) is the set of funtions de�ned on R that are positive and

funtion ϕ is de�ned by Eq. (7). By onstrution, for all funtions f1, . . . , fD
in F(δ), the quantity

h(f1, . . . , fD) :=

∫

X

1y(x)>q

D∏

j=1

fj(xj)dx

= Ex

[
1y(x)>q

D∏

j=1

fj(xj)

fxj
(xj)

] (25)

de�nes the probability that y(x) is stritly greater than q, under the assump-

tion that the PDF of x is equal to

∏D
j=1 fj. Then, let p

δ
, pδi and pδ−i be the

solutions of the optimization problems de�ned by Eqs. (26), (27) and (28).

pδ := max
fj∈F(δ), 1≤j≤D

h(f1, . . . , fD), (26)

pδi := max
fi∈F(δ)

h(fx1 , . . . , fxi−1
, fi, fxi+1

, . . . , fxD
), (27)

pδ−i := max
fj∈F(δ), 1≤j≤D, j 6=i

h(f1, . . . , fi−1, fxi
, fi+1, . . . , fD). (28)

By onstrution, pδ orresponds to the worst ase probability assoiated

with an unertainty on the PDFs of the inputs ontrolled by δ. In the same

manner, pδi is the worst ase probability when there are unertainties on

the PDF of xi only, whereas p
δ
−i is the worst ase probability when there are

unertainties on the PDFs of all the omponents of x but the ith. Thus, pδi −p
orresponds to the part of pδ − p that an be explained by unertainties on

the PDF of xi only, whereas pδ−i − p orresponds to the part of pδ − p that

an be explained by unertainties on the PDFs of all the omponents of x

but the ith.

Hene, the following indies:

0 ≤ ςδi :=
pδi − p

pδ − p
≤ 1, (29)

0 ≤ τ δi :=
pδ − pδ−i

pδ − p
≤ 1, (30)
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an be used to quantify the sensitivity of p to perturbations on the PDF of

x. Approximations of these indies an be obtained by notiing that, for all

f1, . . . , fD in F(δ),

h(f1, . . . , fD) ≈ ĥ(f1, . . . , fD) :=
p̂

N∗

N∗∑

n=1

D∏

j=1

fj(x
(n)
j )

fxj
(x

(n)
j )

. (31)

Indeed, if p̂δ, p̂δi and p̂δ−i are the respetive approximations of pδ, pδi and

pδ−i replaing funtion h by ĥ in Eqs. (26), (27) and (28), it omes:

ςδi ≈ ς̂δi :=
p̂δi − p̂

p̂δ − p̂
, (32)

τ δi ≈ τ̂ δi :=
p̂δ − p̂δ−i

p̂δ − p̂
. (33)

Index ς̂δi an be seen as the individual e�et of xi on p, whereas τ̂ δi an

be interpreted as the e�et of xi on p inluding interations with the other

omponents of x. Contrary to the Sobol indies, for whih si ≤ ti, depending
on the ombined roles of the di�erent elements of x, it is possible to onstrut

ases where ςδi > τ δi . However, when testing these indies on lassial test

funtions, we always found values of τ δi that were greater than ςδi .

Remarks.

• In this setion, an isoprobabilist transform has been applied to eah

model input before omputing the sensitivity indies. It is indeed a

very interesting tool to normalize eah model input, so that the dif-

ferent indies an be ompared quantitatively. However, the lass of

perturbations ould be de�ned in the "physial" spae instead. In that

ase, it would be important to adapt the perturbations of eah model

input for a quantitative omparison of the results. Nevertheless, what-

ever the "physial" distribution of xi before an eventual isoprobabilist

transform (uniform, beta, exponential, and so on), the meanings of in-

dies ςδi and τ δi do not hange. They still quantify the in�uene on p of
small hanges of the mean and the standard deviation of xi. Moreover,

if for eah fi in F(δ), µi and εi are the two onstants so that:

fi(xi) =
1√

2π(1 + εi)
exp

(
−(xi − µi)

2

2(1 + εi)2

)
, (34)

12



the perturbed PDF in the "physial" spae that orresponds to fi an
be approximated by

d
dxi

Φµi,εi+1 ◦Φ−1
0,1 ◦Fxi

, where for all a, b in R×R
+∗
,

Φa,b(x) :=

∫ x

−∞

ϕ(z; a, 1 + b)dz, x ∈ R. (35)

As an illustration, Figure 1 ompares the evolutions of fxi
and

d
dx
Φµi,εi+1◦

Φ−1
0,1 ◦ Fxi

for several values of µi and εi, and di�erent lasses for Fxi
.

• In theory, there is no restrition for the de�nition of the PDF pertur-

bations. But if we are interested in analysing the e�et on p due to

hanges of higher statistial moments (kurtosis, skewness,...), the iso-

probabilist transform may not be the most appropriate transformation

of the model inputs.

• As the gradient of any funtion in F(δ) with respet to its mean and

standard deviation is expliit, the optimization problems assoiated

with Eqs. (26), (27) and (28) an be e�iently solved using any multi-

start gradient-based solver. However, notiing that:

D∏

i=1

fi(xi)

fxi
(xi)

= 1 +
D∑

i=1

µixi + (εi +
µ2
i

2
)(x2

i − 1) +
ε2i
2
(2− 5x2

i + x4
i ) + εiµi(x

3
i − 3xi)

+
∑

1≤i<j≤D

(εi(x
2
i − 1) + µixi)(εj(x

2
j − 1) + µjxj) + o(δ2),

(36)

it follows that:

h(fx1 , . . . ,fxi−1
, fi, fxi+1

, . . . , fxD
)

= p+ aiµi + bi(εi +
µ2
i

2
) + ci

ε2i
2
+ diεiµi,

(37)

ai := Ex

[
1y(x)>qxi

]
, bi := Ex

[
1y(x)>q(x

2
i − 1)

]
, (38)

ci := Ex

[
1y(x)>q(2− 5x2

i + x4
i )
]
, di := Ex

[
1y(x)>q(x

3
i − 3xi)

]
. (39)
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Figure 1: Evolution of

d
dxi

(
Φµi,εi+1 ◦ Φ−1

0,1 ◦ Fxi

)
(xi) with respet to xi for several values

of µi and εi, and di�erent lasses for Fxi
. Blak ontinuous line ↔ (µi, εi) = (0, 0) . Red

dashed line ↔ (µi, εi) = (0, 0.1). Blue dashed-dotted line ↔ (µi, εi) = (−0.2, 0). Green

dotted line ↔ (µi, εi) = (0.05,−0.1).

14



Thus, for eah 1 ≤ i ≤ D, initializing µi and εi at the points in [0, δ]×
[0, δ] that maximize the seond-order polynomial (µi, εi) 7→ aiµi+bi(εi+
µ2
i

2
)+ci

ε2i
2
+diεiµi is a good mean to aelerate the onvergene of these

algorithms.

• The set F(δ) is parametrized by the salar δ, whih haraterizes the

maximal amplitude of the perturbation of the PDF of x. For instane,

the value δ = 0.1 indiates that the unertainty on the mean and the

standard deviation of eah omponent of x is less than 10% of the

nominal value of the standard deviation. Alternatively, the value of δ
an be assoiated with a hosen inrease of the probability of exeeding

q. For instane, in the appliations that will be presented in Setion 5,

δ is hosen so that pδ = 2× p.

5. Surrogate model-based sensitivity indies

In the previous setion, the estimations of p and of the di�erent reliability-
oriented sensitivity indies are based on evaluations of the true ode. When

small values of p are onsidered, this implies the ode to be evaluated in a very

high number of input values. If the omputational ost assoiated with one

evaluation of the ode is high, this may not be possible in pratie. Surrogate

models have therefore to be onstruted to emulate the ode answer from a

limited number of alls to the true ode. As presented in Introdution, we

propose to fous on the Gaussian proess regression (GPR) to build this

surrogate. To this end, performane funtion y is supposed to be a sample

path of a partiular stohasti proess ỹ, whose mean funtion and ovariane

funtion are denoted by µ̃ and c̃:

ỹ ∼ GP(µ̃, c̃). (40)

Conditioning this stohasti proess by R ≥ 1 ode evaluations gathered

in the set S learn(R) :=
{
(x̃(r), y(x̃(r))), 1 ≤ r ≤ R

}
, a very interesting pre-

ditor for the value of y in any unobserved point x in X an be obtained.

This preditor is denoted by ỹ | S learn(R), and it veri�es:

ỹ | S learn(R) := ỹR ∼ GP(µ̃R, c̃R). (41)

The interested reader is referred to [35, 37℄ for further details about the

hoie and the optimisation of funtions µ̃ and c̃, and about the expres-
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sions of the onditioned mean, µ̃R, and the onditioned ovariane, c̃R. For
the appliations presented in Setion 6, µ̃ will be hosen as a seond-order

polynomial, and c̃ will be hosen as an element of the 5/2-Matern lass of

ovariane funtions.

If we replae y by ỹR in the evaluation of probability p, whih is given by

Eq. (5), the quantity

p̃ := Px(ỹR(x) > q) (42)

is no longer deterministi but random, as for a �xed value of x in X, ỹR(x)
is random. Let ỹR(·;ω) denote one partiular realization of ỹR. Using Al-

gorithm 1, it is possible to gather in D̃f(ω) N
∗
points that are statistially

independent, and whose distribution is f
x |ỹR(x;ω)>q. For this partiular real-

ization of ỹR, this algorithm also provides the estimate p̃(ω), so that:

p̃(ω) ≈ P(ỹR(x;ω) > q). (43)

Hene, based on D̃f(ω) and p̃(ω), it is possible to approximate the values

of the di�erent reliability-oriented sensitivity indies that were introdued in

Setion 3. Repeating this proedure several times, we eventually ompute

on�dene intervals for these sensitivity indies, whih aggregate two soures

of unertainties:

• the unertainty that is due to the replaement of true funtion y by its

surrogate model,

• the unertainty that is due to the �nite value of N∗
for the estimation

of p̃(ω) and the estimation of the reliability-oriented sensitivity indies.

In pratie, the unertainty due to the surrogate model an be redued

by adding new ode evaluations to the learning set. Suh new points are

generally hosen iteratively where the expeted value of ỹR is the losest

to the threshold q, with the largest unertainty. Hene, in the following

appliations, the onstrution of the surrogate models will be based on a

two-step proedure. First, the ode is evaluated in a small-dimensional spae

�lling design of experiments (see [21, 26, 23, 12, 28℄). Then, new points are

added one by one using a stepwise unertainty redution (SUR) strategy
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(see [2, 6℄ for more details about this partiular seletion riterion, and [4, 9,

13, 27℄ for alternative seletion riteria) until the maximum omputational

budget is attained.

Remarks.

• Algorithm 1 is a partiular appliation of the Moving Partile approah

that is presented in Setion 2. Hene, for this algorithm, it an be

notied that the mean number of points on whih eah realization of

ỹR has to be projeted is equal to R + N∗(1 − log(p)). Hene, the

omputational budget assoiated with the di�erent onditionings of ỹ
in algorithm 1 stays reasonable, even for low values of p.

• Algorithm 1 is based on a simple Monte Carlo proedure for the gener-

ation of the realizations of x. If very low values of p were onsidered,

more e�ient algorithms, suh as Markov hain Monte Carlo (MMC)

approahes, ould be used to better onentrate the realizations of x

in the region of potentially high values of ỹR.

6. Appliations

Three examples are presented in this setion to illustrate the interest of

the former developments. The two �rst examples are based on analytial

data, whereas the third one is based on an industrial ase. The evaluations

of the di�erent failure probabilities are performed using the R pakage mistral

[11℄.

6.1. Polynomial funtion

In this setion, the quantity of interest is given by:

y :

{
R

3 → R

x = (x1, x2, x3) 7→ (1 + x1)(5 + x2)(10 + x3)
. (44)

Here, x1, x2, x3 are supposed to be three independent entred Gaussian

random variables, whose variane is one, and we are interested in the prob-

ability that y(x) exeeds the threshold q = 250. Three on�gurations asso-

iated with di�erent available omputational budgets are ompared for the

estimation of p and the omputation of the di�erent sensitivity indies.
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1 Initialization : ;

2 let x(1), . . . ,x(N∗)
be N∗

independent realizations of random vetor x ;

3 let (y(x(1), ω), . . . , y(x(N∗), ω)) be a partiular realization of the

random vetor (ỹR(x
(1)), . . . , ỹR(x

(N∗))) ;

4 ỹ⋆R := ỹR | ỹR(x(n)) = y(x(n), ω)), 1 ≤ n ≤ N∗
;

5 M = 0 ;

6 D̃f(ω) = ∅ ;

7 for 1 ≤ n ≤ N∗
do

8 x⋆ = x(n)
, z = y(x(n), ω) ;

9 while z<q do

10 draw at random a realization of x, denoted by x⋆
;

11 draw at random a realization of ỹ⋆R(x
⋆), denoted by y⋆(ω) ;

12 if y⋆(ω) > z then
13 z = y⋆(ω), M = M + 1 ;

14 ỹ⋆R = ỹ⋆R | ỹ⋆R(x⋆) = y⋆(ω) ;

15 end

16 end

17 D̃f(ω) = D̃f (ω) ∪ {x⋆} ;

18 end

19 p̃(ω) = (1− 1/N∗)M .

Algorithm 1: Generation of N⋆
failure points assoiated with one parti-

ular realization of Gaussian proess ỹR, and estimation of the assoiated

probability of exeeding q.
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1. "Referene". A rude Monte Carlo based on 6 × 106 ode evaluations
is �rst onsidered as a referene. 5 × 106 evaluations will be used to

ompute the Sobol indies assoiated with the indiator funtion in an

optimized sample-based approah using the R pakage "soboljansen".

Although the Sobol indies are positive and inferior to one by on-

strution, negative values an be obtained when the true values are

very lose to zero, and in the same manner, values greater than one

an be obtained when the true value is very lose to one. This is due to

the �nite number of ode evaluations, and to the sample-based method

that is used to ompute these indies. The last 106 ode evaluations

are used to assess the value of p = P(y(x) > q). Based on these evalua-

tions, the interval [8.0×10−4; 9.1×10−4] gives a 95% on�dene interval

for p.

2. "Code+MP". Then, the MP approah presented in Setion 2 is on-

sidered, with Q = 100. It is oupled to a MMC approah with T = 10
for the onditional sampling. In that ase, the sensitivity indies are

omputed from the sole simulations used to estimate p. It is realled

that the mean number of ode evaluations for the estimation of p is

Q(1− T log(p)) ≈ 7200.

3. "GP+MP". The third approah replaes the true ode output by a

Gaussian surrogate. This surrogate is based on 50 ode evaluations

only (30 for the initial design of experiments, plus 20 for the sequential

enrihment using a SUR riterion). The estimations of p and the sen-

sitivity indies are based on the MP approah desribed in Algorithm

1. Hene, no additional ode evaluation is required one the surrogate

model is omputed. The unertainty due to the replaement of the

true ode by its surrogate an be empirially estimated by repeating

the proedure several times.

The results are summarized in Table 1. For this simple example, eah

sensitivity index globally omes to the same onlusion: the most important

role is played by x1, whereas x3 has the less signi�ant impat on p. The

importane of the ombined e�et of the three parameters an also be quan-

ti�ed by omparing the values of ŝi and t̂i on the one hand, and the values

of ς̂δi and τ̂ δi on the other hand. The fat that the total e�ets t̂i are always
muh stronger than the individual ŝi learly indiates that y is sensitive to the
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three model inputs, and that spei� ombinations are neessary to exeed

q. This is not really surprising, and we ould assume that, when q inreases,
the values of t̂i should tend to 1 whereas the values of ŝi should tend to 0.

For indies ς̂δi and τ̂ δi , 1 ≤ i ≤ 3, it is realled that the value of δ is hosen

so that pδ = 2 × p. This orresponds to δ = 0.05 for this example, whih

means that a 5% unertainty on the means and the standard deviations of

x1, x2, x3 an multiply, in the worst ase, the value of p by two. Looking at

the values of ς̂δi and τ̂ δi , we notie that more than half of this inrease ould

be due to the individual e�et of x1. This even more lay stress on the ruial

role played by x1.

Additionally, we notie that the values of the di�erent sensitivity indies

are very lose whatever the onsidered on�guration. Hene, passing from a

rude Monte Carlo approah (the Referene on�guration) to a more sophis-

tiated splitting method (the Code + MP on�guration) does not a�et the

results of the sensitivity analysis. In the same manner, the e�et of repla-

ing the true ode by a surrogate model that is re�ned in the region where

y(x) is lose to q has a redued e�et on the values of the sensitivity indies.

Inluding the surrogate unertainty in the estimation only tends to inrease

the amplitudes of the on�dene intervals for these indies, but this is almost

negligible ompared to the unertainty due to the fat that there are only

few ode evaluations in the failure domain. Finally, oupling the Gaussian

proess regression and the Moving Partile approah is a good mean to om-

pute at a very reasonable omputational ost the di�erent sensitivity indies

presented in Setions 3 and 4.

6.2. Non-linear osillator

The seond example orresponds to the test ase in dimension D = 6
presented in [10, 3℄. Here, x1, . . . , x6 are still independent standard Gaussian

random variables, and we have:

y :





R
6 → R

x 7→ 0.15x4 +

∣∣∣∣
0.9 + 0.15x5

1.1 + 0.1x2 + 0.01x3
sin

(√
1.1 + 0.1x2 + 0.01x3

1 + 0.05x1

1 + 0.2x6

2

)∣∣∣∣
.

(45)

We fous on the threshold q = 0.95. Using a rude Monte Carlo approah

based on 106 ode evaluations, we found that p is around 3.7 × 10−3
. A

reliability-oriented sensitivity analysis was then arried out, whose results
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ŝi(%) t̂i(%) ς̂δi (%) τ̂ δi (%)
i=1 Referene [1;21℄ [94;107℄ [57;61℄ [70;73℄

Code+MP [6;18℄ [97;99℄ [54;64℄ [67;75℄

GP+MP [8;15℄ [96;99℄ [53;64℄ [67;76℄

i=2 Referene [-14;10℄ [74;87℄ [18;21℄ [28;31℄

Code+MP [0;1℄ [41;81℄ [16;22℄ [25;32℄

GP+MP [0;1℄ [66;91℄ [15;23℄ [24;35℄

i=3 Referene [-9;8℄ [47;56℄ [7;9℄ [12;15℄

Code+MP [0;0℄ [41;78℄ [6;11℄ [10;18℄

GP+MP [0;0℄ [50;83℄ [6;11℄ [10;18℄

Table 1: Values of the sensitivity indies for q = 250 (orresponding to p̂ = 8.5×10−4 [8.0×
10−4; 9.1 × 10−4]) for the polynomial funtion. 106 ode evaluations have been used to

ompute the referene values. The "ode+MP" values are based on around 7200 ode eval-

uations (around 710 iterations were required for the Moving Partiles algorithm, and the

burn-in parameter was hosen equal to 10 for the onditional generation using a MCMC

algorithm). The "GP+MP" values are based on only 50 ode evaluations (30 odes evalua-

tions for the initial DoE + 20 sequentially added ode evaluations using a SUR riterion).

The values between brakets orrespond to 95% on�dene intervals, whih have been

empirially omputed from 100 repetitions of the whole proedure.
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are gathered in Table 2. One again, the results of the three on�gurations

presented in the previous setion are ompared. Aording to the values

of the di�erent indies, we �nd that the most in�uential omponents of x

are x4 and x5, whih is ompletely oherent with the expression of y. For

this example, it is interesting to notie that although there is a priori no

interation between x4 and the other omponents of x in the expression of y,
t̂4 is muh bigger than ŝ4. This underlines an important di�erene between

lassial Sobol indies, whih fous on the mean answer of y, and the proposed
reliability-oriented Sobol indies, whih fous on high quantiles of y. Indeed,
even if there is no expliit link between x4 and the other omponents of x, for

y(x) to exeed relatively high values of q, spei� ombinations of most of the

omponents of x are required. For this example, to guarantee that pδ = 2×p,
δ was hosen equal to 0.058. Hene, relaxing the values of the mean and the

standard deviation of omponent x4 by less than 6% an lead to an inrease

of more than 50% for p, when almost no e�et would be notied if the same

relaxation was ahieved for x1 or x3. Thus, to get a relevant estimation of p,
a preise haraterization of the distribution of x4 is required.

In this example, the values for the three on�gurations (Referene, Code+MP

and GP+MP) are one again very lose, whih tends to validate the ou-

pling of the Gaussian proess regression and the Moving Partile approah

to arry out relevant reliability-oriented sensitivity analyses at a redued

omputational ost. Nevertheless, some di�erenes an be observed for the

estimation of the Sobol total indies. This is due to the fat that the non-

parametri estimations of the onditioned PDFs are based onQ = 100 points,
whih is few ompared to the dimension of their de�nition domain (equal to

d−1 = 5 for this example). Better estimates ould be obtained by inreasing

Q, without any additional ode evaluations.

6.3. Pressure tank under dynami pressure

The third example is derived from an industrial appliation, and deals

with the reliability analysis of a spherial ontainment vessel (inluding a

tap in a di�erent material) subjet to an internal blast. A piture of this

ontainment vessel is represented in Figure 2. The mehanial response (dis-

plaement, strain and stress tensors) of the vessel is modelled with a oupling

of two independent numerial odes. First, a hydrodynami ode simulates

the explosion of a bursting harge plaed at the enter of the tank using a

2-dimensional Eulerian sheme. The dynamial loading obtained at the inner
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ŝi(%) t̂i(%) ς̂δi (%) τ̂ δi (%)
i=1 Referene [-4;3℄ [11;14℄ [1;2℄ [2;4℄

Code+MP [0;1℄ [16;47℄ [1;4℄ [1;6℄

GP+MP [0;1℄ [14;36℄ [1;4℄ [1;7℄

i=2 Referene [-5;4℄ [29;33℄ [4;7℄ [7;11℄

Code+MP [0;2℄ [15;52℄ [3;9℄ [5;15℄

GP+MP [0;2℄ [10;33℄ [3;8℄ [5;15℄

i=3 Referene [-4;3℄ [3;4℄ [0;1℄ [0;3℄

Code+MP [0;0℄ [15:42℄ [0;2℄ [0;4℄

GP+MP [0;1℄ [10;33℄ [0;2℄ [1;4℄

i=4 Referene [19;28℄ [95;101℄ [54;61℄ [66;71℄

Code+MP [13;46℄ [89;97℄ [49;62℄ [61;73℄

GP+MP [17;62℄ [89;98℄ [51;62℄ [62;72℄

i=5 Referene [-4;6℄ [68;74℄ [18;22℄ [25;31℄

Code+MP [1;4℄ [39;82℄ [16;24℄ [23;34℄

GP+MP [1;8℄ [21;71℄ [15;24℄ [23;35℄

i=6 Referene [-4;4℄ [15;17℄ [1;3℄ [3;5℄

Code+MP [0;1℄ [17;47℄ [1;5℄ [2;8℄

GP+MP [0;0℄ [12;31℄ [1;4℄ [2;7℄

Table 2: Values of the sensitivity indies for q = 0.95 (orresponding to p̂ = 3.7×10−3 [3.6×
10−3; 3.8 × 10−3]) for the non linear osillator. 106 ode evaluations have been used to

ompute the referene values. The "ode+MP" values are based on around 5700 ode

evaluations (around 560 iterations were required for the Moving Partiles algorithm, and

the burn-in parameter was hosen equal to 10 for the onditional generation using a MCMC

algorithm). The "GP+MP" values are based on only 100 ode evaluations (60 odes

evaluations for the initial DoE + 40 sequentially added ode evaluations using a SUR

riterion). The values between brakets orrespond to 95% on�dene intervals, whih

have been omputed from 100 repetitions of the whole proedure.
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Figure 2: Piture of the studied ontainment vessel

surfae of the tank is then applied as input of a strutural ode, whih simu-

lates the vibrations of the vessel under this dynami exitation and omputes

the indued displaements at eah time step in eah position of the vessel.

For this third example, we are interested in the umulated equivalent plas-

ti strain over a given time range. Let z = (z1, . . . , z8) be eight unertain

parameters that haraterize the nested simulation, whose properties are

summarized in Table 3. Let x be the image of z by the isoprobabilist trans-

form, and y(x) be the maximum value in time and spae of the umulated

equivalent plasti strain.

We fous on the ase q = 0.05. Eah evaluation of y being extremely time-

demanding, the idea is to estimate p and arry out the reliability-oriented

sensitivity analysis using as few alls to y as possible. In that ase, nor

the Monte-Carlo neither the Code+MP on�gurations are admissible. Thus,

a surrogate model was onstruted using 1286 ode evaluations (500 odes

evaluations for the initial DoE + 786 sequentially added ode evaluations

using a SUR riterion). The estimation of p and the sensitivity analysis was

then arried out on the surrogate instead of the true ode, but taking into

aount the unertainties due to the substitution of the true ode. The results

are summarized in Table 4. These values are assoiated with an estimation

of p lose to 2.2×10−3
(a 95% on�dene interval for this estimation is given

by [1.3× 10−3; 3.4× 10−3]).
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Model input Meaning Distribution Parameters

z1 Internal radius of the tank (m) Normal (0.720, 0.005)
z2 Thikness (m) Log-normal (0.073, 0.0015)
z3 Saling fator on inner pressure Weibull (24.95, 1.022)
z4 Saling fator on time Weibull (24.95, 1.022)
z5 Young modulus of the tank (Pa) Log-normal (2.1× 1011, 2.1× 1010)
z6 Elasti limit of the tank (Pa) Normal (7× 108, 3× 107)
z7 Young modulus of the tap (Pa) Log-normal (2.1× 1011, 2.1× 1010)
z8 Elasti limit of the tap (Pa) Normal (8.6× 108, 3× 107)

Table 3: Stohasti model of the pressure tank. For Normal and Log-normal distributions,

the two parameters orresponds to the mean and the standard deviation. For Weibull

distribution, the two parameters are the shape and the sale parameters. Inputs z3 and

z4 haraterize the inner pressure history hanging the impulsive load seen by the vessel.

The di�erent model inputs are statistially independent.

First, if we fous on the values of ŝi and t̂i, we notie that, for this

appliation, the fat that y exeeds q seems not to be due to the ation

of one unique parameter, but to a ombined e�et of all the parameters.

This is typial for optimized systems, for whih the values of eah input

parameters are generally hosen as a ompromise between performane and

ost limitation. However, if we look at the values of ς̂δi and τ̂ δi , it appears
that the value of p is very sensitive to the PDF of z5 (the Young modulus

of the tank). For this appliation, the amplitude of the PDF perturbation is

ontrolled by δ = 0.077 to make pδ be twie as high as p. To better realize

that this value of δ only allows small perturbations of the input PDF, Figure

3 ompares the marginal densities of the initial PDF of z to the marginal

densities of the worst ase PDF of z. Hene, to guarantee a orret estimation

of p, it is ruial to pay a partiular attention to the de�nition of the PDF

of z5.

7. Conlusions

This work onsiders the hallenging problem of arrying out at the same

time the reliability and the sensitivity analyses of a omplex system, whose

behaviour an be modelled by a omputationally demanding omputer ode.

To this end, several reliability-oriented sensitivity indies were presented.

These indies allow us to identify the model inputs whose variability has

to be redued in priority to minimize the failure probability p, but also the
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Figure 3: Comparison between the original and the perturbed PDFs of the omponents

of z. Considering the perturbed PDFs instead of the original ones multiply the value of

p by a fator two. Blak ontinuous line ↔ original PDFs. Red dashed line ↔ perturbed

PDFs.

26



ŝi(%) t̂i(%) ς̂δi (%) τ̂ δi (%)
i=1 [0;2℄ [44;89℄ [0;4℄ [1;7℄

i=2 [0;2℄ [50;91℄ [2;9℄ [3;14℄

i=3 [0;0℄ [47;89℄ [3;9℄ [5;15℄

i=4 [0;1℄ [64;93℄ [5;8℄ [12;16℄

i=5 [4;13℄ [88;99℄ [45;64℄ [57;76℄

i=6 [0;0℄ [45;89℄ [2;10℄ [3;17℄

i=7 [0;0℄ [43;89℄ [1;5℄ [1;9℄

i=8 [0;0℄ [43;90℄ [0;2℄ [1;8℄

Table 4: Values of the sensitivity indies for q = 0.05 (orresponding to p̂ = 2.2×10−3 [1.3×
10−3; 3.4 × 10−3]) for the pressure tank. The "GP+MP" values are based on 1286 ode

evaluations (500 odes evaluations for the initial DoE + 786 sequentially added ode evalu-

ations using a SUR riterion). The values between brakets orrespond to 95% on�dene

intervals, whih have been omputed from 100 repetitions of the whole proedure, but for

a unique surrogate model.

model inputs whose distribution has to be partiularly well-haraterized for

a orret estimation of p. Based on the oupling of a Gaussian proess regres-

sion and a Moving Partile approah, a method was proposed to e�iently

estimate p and these sensitivity indies from a redued set of ode evalua-

tions. The relevane of this approah was illustrated on three examples.

In the di�erent appliations, it has been shown that small perturbations

(suh as modi�ations of less than 5% of the mean and/or the standard devi-

ation) of the input PDFs ould strongly hange the value of p. This questions
the interest of omputing very small failure probabilities for �xed input PDFs,

when these PDFs are not perfetly known, as it is the ase in many engineer-

ing appliations. On the ontrary, omputing di�erent values of p assoiated
with di�erent perturbations of the input PDF seems more appropriate. In

this work, we limited these perturbations to small hanges of the means and

the standard deviations of the di�erent model inputs. But working on more

sophistiated perturbations seems an interesting perspetive.

Appendix

Proof of Proposition 1

First, let us notie that Vx

[
1y(x)>s

]
= p(1 − p). Then, using Bayes

theorem and the equality given by Eq. (14), it follows that:
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Exi

[(
Px(y(x) > q)− Px−i

(y(x) > q | xi)
)2]

= Exi

[(
p− p

fxi|y(x)>q(xi)

fxi
(xi)

)2
]

= p2Exi

[(
1− fxi|y(x)>q(xi)

fxi
(xi)

)2
]
,

(46)

Ex−i

[
(P(y(x) > q)− P(y(x) > q | x−i))

2] = p2Ex−i

[(
1− f

x−i|y(x)>q(x−i)

fx−i
(x−i)

)2
]
.

(47)

As Exi

[
fxi|y(x)>q(xi)

fxi(xi)

]
= Ex−i

[
f
x−i|y(x)>q(x−i)

fx−i
(x−i)

]
= 1, we eventually �nd the

searhed results.
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