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Heat transport in bulk semiconductors is well understood, and during the last few years, it has been

shown that it can be computed accurately from ab initio calculations. However, describing heat

transport in micro- and nanodevices used in applications remains challenging. In this paper, we

propose a method, based on the propagation of wave packets, for solving the phonon Boltzmann

transport equation parametrized with ab initio calculations. It allows computing the thermal

conductivity of micro- and nano-sized systems, without adjustable parameters, and for any materi-

als. The accuracy and applicability of the method are demonstrated by computing the cross plane

thermal conductivity of cubic and hexagonal silicon thin films as a function of their thickness.

Published by AIP Publishing. https://doi.org/10.1063/1.5010959

During the last few years, it has become possible to com-

pute the lattice thermal conductivity of bulk semiconductors

with good accuracy.1–3 Basically, information about the chemi-

cal binding is retrieved from density functional calculations,4–7

enabling building and solving the phonon Boltzmann transport

equation. From the solution of that equation, the lattice thermal

conductivity can then be computed without simplifying

assumptions. The agreement of those calculations with experi-

ments, for example, shown in Fig. 1(c) of Ref. 8, is remarkable.

The above mentioned calculations are performed for

bulk crystals. However, many current applications require

the study of heat transport in systems of finite dimensions,

eventually of nanoscale size. It is true for spintronics, where

heat transport needs to be described at the nano/micron scale

to evidence the competing effects of thermal and magnetic

interactions,9 or in thermoelectricity where heat transport is

degraded by inserting nanoinclusions in a bulk material to

increase its figure of merit.10

For finite sized systems, the current situation for the

computation of thermal conductivity is much less satisfac-

tory than for bulk crystals. This is mostly because the trans-

lational periodicity of the crystals is broken by the system

boundaries, depriving us from easy solution to the

Schr€odinger and Boltzmann equations in reciprocal space.

Two strategies are then possible to overcome this difficulty.

On the one hand, it is possible to perform all calculations in

direct space. This is the strategy used in molecular dynamics

calculations. Unfortunately, the physical picture is blurred in

this approach since collective modes are absent from the for-

malism. Another choice is to use a mixed representation

between direct and reciprocal space. It is the strategy com-

monly used when the Boltzmann equation is parametrized

using phonon wave properties, like frequency, group veloc-

ity, and lifetime, but solved in direct space to take care of the

boundary conditions. This approach has been used several

times in the past, with great success.11–14 However, it is often

used with simplifying models, where, for example, an isotro-

pic spectrum is assumed for the phonon dispersion, and an

empirical lifetime is used. Phonon properties obtained from

ab initio calculations have been used only very recently.15

In this letter, we report a strategy to solve a Boltzmann

equation parametrized with ab initio calculations, in micron-

size systems. It has been implemented in a computing code

and applied to solve the Boltzmann equation, and therefore

to compute the thermal conductivity, for any material and

film thickness.

This letter is organized as follows. We first review the

basic hypothesis of the method, and then we detail the compu-

tation strategy we propose. Finally, our computer code is used

to compute heat transport across a thin film of cubic and hex-

agonal silicon. The results of those calculations are discussed,

evidencing the peculiarities of each system.

When the system considered is out of thermodynamical

equilibrium, the occupation function nqj of the phonon

modes qj is not known and must be determined. Within a

semiclassical approximation, this can be done using the

Boltzmann transport equation

@nqj

@t
ðr; tÞ þ vqj �

@nqj

@r
ðr; tÞ ¼ @nqj

@t

����
col

ðr; tÞ; (1)

where vqj ¼ @xqj=@q is the phonon group velocity for wave-

vector q and polarization j and @nqj=@tjcol is the rate of change

in the occupation function due to collisions. Once the occupa-

tion function is obtained from this equation, the heat flux den-

sity, J ¼ 1=V
P

qj �hxqjvqjnqj, where V is the system volume,

can be computed. This allows evaluating a thermal conductiv-

ity as j ¼ jJj=jrTj, for a given temperature gradientrT.

In general, the collision integral is decomposed as

@nqj

@t

����
col

ðr; tÞ ¼ �
nqjðr; tÞ � n0

qjðr; tÞ
sqj

þ C nqj½ �; (2)

where n0
qj is the Bose Einstein occupation function, sqj the

lifetime of mode qj, and C½nqj� a correction to the exponentiala)Electronic mail: laurent.chaput@univ-lorraine.fr
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decays toward the equilibrium controlled by sqj. The explicit

expression of the linear functional C½nqj� is given by the colli-

sion operator X defined in Ref. 1. It can be seen that it

becomes zero if one assumes that the scattering events experi-

enced by phonons do not change the occupation of modes q0j0

for q0j0 6¼ qj. This is known as the single mode relaxation

time approximation. This approximation will be used in the

below paragraph, since it was shown to be accurate within

15% for silicon in Ref. 1. If this approximation allows saving

computational time in applications, it is not an essential sim-

plification in our approach. Therefore, the formalism will be

derived for a general collision integral whenever possible.

Within the single mode relaxation time approximation,

the Boltzmann equation is parametrized using the spectral

parameters, xqj; vqj, and sqj, which are material-dependent

quantities. In the below paragraph, heat propagation in a sili-

con thin film will be considered. Therefore, xqj; vqj, and sqj

have been computed using ab initio calculations for cubic

silicon, and hexagonal silicon as well, to discuss the effects

of material anisotropy. The details of the ab initio calcula-

tions are given in the supplementary material.

The characteristic lines16 of Eq. (1) are given by

drðtÞ
dt
¼ vqj () rðtÞ ¼ rðt0Þ þ vqjðt� t0Þ: (3)

Along these lines, the total variation16 of phonon occupation

function is given by

d

dt
nqjðrðtÞ; tÞ ¼

@nqj

@t

����
col

ðrðtÞ; tÞ; (4)

and therefore,

nqjðrðtÞ; tÞ ¼ nqjðrðt0Þ; t0Þ þ
ðt

t0

ds
@nqj

@t

����
col

ðrðsÞ; sÞ: (5)

Taking t¼ t0þ dt with a time step jdtj � t0

nqjðrðt0Þ þ vqjdt; t0 þ dtÞ

¼ nqjðrðt0Þ; t0Þ þ
@nqj

@t

����
col

ðrðt0Þ; t0Þ
" #

dt: (6)

This equation allows propagating the phonon distribution in

time. To approximate the integral in Eq. (5), we simply used

the rectangular rule, but, of course, more sophisticated

approximations may provide more stable solutions.

The number of phonon modes in a volume V¼ L3 is in the

order of 1011 for L¼ 1 lm. This is a too large a number to com-

pute Eq. (6) for each such mode. Fortunately, phonon properties

are usually smooth functions of the wavevector q; therefore, we

assume that the occupation function can be modeled using N
representative phonon modes, (qi, ji), i¼ 1, …, N. Each such

mode is then believed to be representable by a wave packet

with an envelop function d centered around ri. This gives

nqjðr; tÞ ¼
XN

i¼1

niðtÞdðr� riÞdqqi
djji
; (7)

where ni is the number of phonons per mode i and dqqi
and

djji are Kronecker delta over the wavevectors and band

indices, respectively. Within the linearized Boltzmann equa-

tion approximation, the collision integral is a linear func-

tional of the occupation function.1 Therefore, it can be

represented the same way, i.e.,

@nqj

@t
jcolðr; tÞ ¼

XN

i¼1

@ni

@t
jcolðtÞdðr� riÞdqqi

djji : (8)

Substituting Eqs. (7) and (8) into Eq. (6) and assuming that

the envelop functions do not overlap, we obtain

niðt0 þ dtÞ ¼ niðt0Þ þ
@ni

@t

����
col

ðt0Þ
" #

dt: (9)

If the single mode relaxation time approximation is used, the

above equation becomes

niðt0 þ dtÞ ¼ 1� dt

si

� �
niðt0Þ þ

dt

si
n0

i ðt0Þ: (10)

In our method, Eq. (10) is solved at each simulation time

step using the lifetime si given by density functional theory

calculations, for all computed phonon modes of cubic and

hexagonal silicon; the latter values of si are shown in the

supplementary material.

Combining Eqs. (9) and (3) provides a numerical solution

of the Boltzmann equation. The wavepacket centers are moved

as a function of time according to Eq. (3); this is the advection
step, while the number of phonons in such wave packet is

updated according to Eq. (9). This is the scattering step.

To proceed further with this algorithm, initial and

boundary conditions should be specified. The boundary con-

ditions are discussed below. According to Eq. (7), for the ini-

tial conditions, we may choose

nqjðr; t ¼ 0Þ ¼
XN

i¼1

niðt ¼ 0Þdðr� riÞdqqi
djji
; (11)

with N being the randomly chosen positions. The positions

of the wavepackets are chosen randomly to avoid any

unphysical correlations between the trajectories that may

result from a specific arrangement of the positions. ni(t¼ 0)

is determined assuming that at t¼ 0, the wavepackets belong

to a region of volume V0 which is at thermodynamic equilib-

rium at temperature T0. The occupation function must there-

fore fulfilð
V0

d3r
X

qj

nqjðr; t ¼ 0Þ ¼ V0

ð
dx gðxÞn0ðxÞ; (12)

where gðxÞ ¼
P

j

Ð
d3q

ð2pÞ3 dðx� xqjÞ is the phonon density of

states per unit volume. If N0 is the number of wave packets

within V0, we have

XN0

i¼1

niðt ¼ 0Þ ¼ V0

1

X0N
X

qj

n0ðxqjÞ
 !

; (13)

where the integral over the Brillouin zone is approximated

by a summation over N points. X0 is the volume of the crys-

tal primitive cell. If we choose N0 ¼ N , then
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niðt ¼ 0Þ ¼ V0

X0N
n0ðxqjÞ

fulfils Eq. (13). This is our model for initial conditions.

We now consider a thin film of variable thickness

0.1 lm� Lz� 40 lm. We would like to compute the cross-

plane thermal conductivity, in the z direction. As mentioned

above, we need to impose boundary conditions to solve the

Boltzmann equation. We chose periodic boundary condi-

tions in the x and y directions. This means that the thin film

is partitioned into cells of volume V¼LxLyLz, repeated peri-

odically up to infinity in the x and y directions. The

Boltzmann equation is then solved in only one of those cell,

and each time a phonon wavepacket leaves that cell in the x
or y directions, it immediately re-enters the cell from the

opposite face with the same group velocity. This preserves

heat flux in the z direction and does not introduce any resis-

tance effect to phonon transport such as those encountered

in nanowires.17

The left hand side of Eq. (13) depends on the tempera-

ture T0(r) through the Bose Einstein occupation function.

Therefore, the temperature field T0(r) should be given to start

the calculation. In practice, it is done by dividing the volume

V¼ LxLyLz into subcells of volume V 0¼LxLyDLz, where the

temperature field is assumed to be constant, and by applying

Eq. (13) locally into such subcell.

We have applied this strategy to compute the lattice

thermal conductivity of thin films of cubic or hexagonal sili-

con using Lx¼ Ly¼ 100 nm. The thickness Lz is partitioned

into subcells of length DLz¼Lz/Nz, with 10�Nz� 40, and

the initial temperature field is shown in Fig. 1. The tempera-

ture difference between the two extreme subcells is fixed to

DT¼ 4 K. The evolution of the temperature field as a func-

tion of time, as well as the heat flux, is shown in Fig. 1

between 0 and 5 ns. We can observe that the heat flux is uni-

form through the system after 5 ns, which means that the sys-

tem has reached a stationary regime. In the first and last

subcells, the flux is zero because these subcells are used to

impose the boundary conditions Tz¼0¼ 302 K and

Tz¼Lz
¼ 298 K. Therefore, it can be seen that the temperature

field does not converge to the linear variation predicted by

the heat equation over the whole system but only where the

heat flux has reached a stationary value. This shows that to

extract the thermal conductivity from the temperature field

and heat flux, j ¼ jJj=jrTj, we should not use the imposed

temperature gradient jrTj 6¼ ðTz¼Lz
� Tz¼0Þ=Lz but rather

jrTj ¼ Tz¼Lz�DLz
� Tz¼DLz

Lz � 2DLz
:

The latter issue becomes important as the length Lz gets smaller.

In such cases, ballistic transport through the thin film increases,

and the imposed temperature gradient is drastically reduced. For

instance, for Lz ¼ 100 nm; jrTj ¼ 23� 106 K=m, instead of

an imposed value of 40� 106 K/m. The thermal conductivities

we obtain are plotted in blue in Fig. 2 as a function of Lz, for

cubic and hexagonal silicon. For hexagonal silicon, two cases

are considered, as indicated with the [a] and [c] symbols. [a]

means that the a lattice vector of the primitive unit cell of hexag-

onal silicon has been chosen to be along the z direction, while

[c] means that the c lattice vector was used. This way, the crys-

talline anisotropy can be considered.

Moreover, we have also computed the thermal conduc-

tivity for a few thin films with the particle Monte Carlo
method of Refs. 11–14 but using our ab initio data as inputs.

The results of these computations are shown as dashed grey

lines in Fig. 2. The particle Monte Carlo method, within our

implementation, slightly overestimates the bulk value of

cubic and hexagonal silicon, while the method we propose,

based on characteristic lines, gives good agreement. Indeed,

in the method we propose, the effects of collisions on the

phonon occupation function are rigorously considered

through Eq. (9), and no special care is needed to fulfil

conservation of energy or momentum.

Assuming a Debye spectrum and sa / x�2,19 an analyti-

cal estimate for the thermal conductivity of films can be

obtained.18 This corresponds to the full grey curves shown in

FIG. 1. Temperature profile and energy flux at different times for cubic sili-

con at 300 K with Lz¼ 1 lm. The time step was chosen to be dt¼ 0.1 ps.

Vertical dashed lines are used to represent the subcells.

FIG. 2. Lattice thermal conductivity, as a function of thickness, for cubic

and hexagonal silicon. The results of the numerical method of II are shown

in blue, while the black curves correspond to the ab initio model, Eq. (14).

The dashed grey curves correspond to a Monte Carlo solution of Boltzmann

equation using ab initio data as input, as detailed in Refs. 11–14. The full

grey curve corresponds to the thermal conductivity obtained in the Debye

approximation.18
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Fig. 2, using the sound velocity in the z direction of 4232,

4349, and 4971 m/s for cubic silicon and hexagonal silicon

in the [a] and [c] orientations, respectively. Clearly, this sim-

ple model is a reasonable approximation, but it cannot be

considered to be a quantitative one when anisotropy needs to

be considered. Moreover, it should be noted that to get those

results, we have used the average value of the z component

of the velocity vectors of longitudinal and transverse modes

and not the average value of the modulus of the velocity vec-

tors, as it is usually done for the Debye model.

For the three cases we consider, we observe that the ther-

mal conductivity decreases as the thin film thickness is

decreased. This is well understood and can be attributed to the

reduction of the phonon mean free path because of the scatter-

ing on the boundaries. We can also observe that the thermal

conductivity of cubic silicon decreases much more rapidly than

the one of hexagonal silicon, in either the a or c orientation.

Indeed, in a 2 lm thick film, the bulk value of cubic silicon has

been reduced by 22%, while the reduction is only of 8% in

hexagonal silicon. The cumulative lattice thermal conductivity,

plotted as a function of the phonon mean free path jKqjj
¼ sqjjvqjj and computed using ab initio data, is presented in

Fig. 3. The phonons with the mean free path less than 2 lm

contribute 77% of the total thermal conductivity in cubic sili-

con and 97% of the total thermal conductivity in hexagonal sil-

icon. This explains the results of Fig. 2. Indeed, this means that

in hexagonal silicon, most of the phonons contributing to the

thermal conductivity have a mean free path much shorter than

2 lm, due to interactions with other phonons. This makes scat-

tering on boundaries only a marginal event. On the contrary,

for phonons with a longer mean free path, scattering on bound-

aries is one of the few interaction events experienced by pho-

nons and therefore contributes markedly, leading to a reduction

of thermal conductivity. This argument can be made more

quantitative. Indeed, if we consider the collision time with the

boundary to be position-independent and if h is the angle of vqj

with the z axis, then we can write sb
qjjvqjj ¼ Lz=ð2 cos hÞ,

where sb
qj is the phonon scattering time on the boundaries. This

gives 1=sb
qj ¼ 2jvz

qjj=Lz. Assuming the interactions with the

phonons and boundaries to be independent, we obtain for the

total lifetime, 1=sqj ¼ 1=sa
qj þ 1=sb

qj, which can be used with

the well know equation for the thermal conductivity of a bulk

material2

j0 ¼
1

X0N
X

qj

sqjv
z
qjv

z
qj �hxqj

@n0
qj

@T

� �
: (14)

The results of these calculations are plotted in black curves

in Fig. 2. Clearly, this very simple model is in reasonable

agreement with the numerical solution of the Boltzmann

equation in the simple geometry we consider. The agreement

is almost perfect at a large thickness, where the scattering on

boundary is less important, but becomes more approximate

below 2 lm. In this range, as expected, the details of the scat-

tering become important.

It should be noted that as long as the thin thickness

remains of the order of the average phonon mean free path in

the z direction [�155 nm for cubic silicon and 115 and

94 nm for hexagonal silicon in the [a] and [c] orientations, at

300 K (Ref. 22)], the value of the lattice thermal conductivity

is limited by the scattering of the phonons on the boundaries,

the so called Casimir limit. This is the case we have consid-

ered in this paper. Below such a limit, when the system size

becomes comparable to the characteristic wavelength of pho-

nons, phonon confinement effects should occur. This leads to

strong modifications of the phonon dispersion relations and

lifetimes,20 which are not captured in our model, since we

are using the bulk phonon properties. The dominant wave-

length of the phonons can be estimated using kd 	 hc/kBT.21

Taking 9000 m/s as an upper limit to the sound velocity c,

we obtain kd¼ 43 nm at 10 K and kd¼1.4 nm at room tem-

perature. Lz should be greater than kd for the results of Fig. 2

to be considered as accurate. Obviously, at such a small

length scale, the validity of the semiclassical Boltzmann

equation we are using should also be questioned.

To summarize, in this work, we have proposed a method

to solve the phonon Boltzmann transport equation parame-

trized with ab initio calculations. The method has then been

implemented and is applied to compute the thermal conduc-

tivity of cubic and hexagonal silicon thin films. In particular,

it allowed us to bring out the rapid decrease in the thermal

conductivity with the thin film thickness and to evidence the

differences between cubic and hexagonal silicon. In cubic

silicon, the mean free path of heat carrying phonons is longer

than that of hexagonal silicon; therefore, the thermal conduc-

tivity drops more rapidly as the thickness is reduced. This

has been obtained quantitatively by solving the Boltzmann

equation, evidencing the applicability of the method.

Moreover, the method we propose can be applied to any

device geometries and materials. Therefore, we believe it to

be useful for a better understanding of heat transport at the

micron scale. This is the purpose of future works.

See supplementary material for the details of the ab ini-
tio calculations.

This work was performed using HPC resources from

GENCI-IDRIS (Grant No. 2015-x2014097186).

FIG. 3. Cumulative ab initio lattice thermal conductivity, as a function of

the phonon mean free path. The inset shows the cumulative thermal conduc-

tivity, normalized to 1. The curves for hexagonal silicon along the a and c
axes are almost identical.
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