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Capturability-based Pattern Generation for
Walking with Variable Height

Stéphane Caron, Adrien Escande, Leonardo Lanari, and Bastien Mallein

Abstract—Capturability analysis of the linear inverted pendu-
lum (LIP) model enabled walking with constrained height based
on the capture point. We generalize this analysis to the variable-
height inverted pendulum (VHIP) and show how it enables 3D
walking over uneven terrains based on capture inputs. Thanks to
a tailored optimization scheme, we can compute these inputs fast
enough for real-time model predictive control. We implement this
approach as open-source software and demonstrate it in dynamic
simulations.

Index Terms—Bipedal walking, Capturability, Uneven terrain

I. INTRODUCTION

Capturability quantifies the ability of a system to come
to a stop. For a humanoid walking in the linear inverted
pendulum (LIP) mode, it is embodied by the capture point, the
point on the ground where the robot should step in order to
bring itself to a stop [1]. In recent years, one of the main lines
of research in LIP-based studies has explored the question of
walking by feedforward planning and feedback control of the
capture point [2], [3], [4], [5], [6], [7].

The LIP owes its tractability to two assumptions: no
angular-momentum variation around the center of mass
(CoM), and a holonomic constraint on the CoM height. As
a consequence of the latter, a majority of LIP-based walking
controllers assume a flat terrain. Removing this holonomic
constraint from the LIP leads to the variable-height inverted
pendulum (VHIP) model, for which our understanding is at
an earlier stage. Previous studies [8], [9], [10] focused on its
balance control for planar motions (sagittal and vertical only).
In a preliminary version of this work [11], we extended the
analysis from 2D to 3D balance control. In the present work,
we bridge the gap from balancing to walking.

Our contribution is three-fold. First, we provide a necessary
and sufficient condition for the capturability of the VHIP
model (Section II). Second, we show how to turn this condition
into an optimization problem (Section III) for which we de-
velop a tailored optimization scheme (Section IV). Finally, we
adapt this optimization into a model-predictive walking pattern
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generator for rough terrains (Section V) that we demonstrate
in dynamic simulations (Section VI).

II. CAPTURABILITY OF INVERTED PENDULUM MODELS

The critical part of the dynamics for a walking biped lies in
the Newton-Euler equation that drives its unactuated floating-
base coordinates: [

c̈

L̇c

]
=

[
1
mf
τc

]
+

[
g
0

]
(1)

where c is the position of the center of mass (CoM) of the
robot, g is the gravity vector (also written g = −gez with g
the gravitational constant), m is the total robot mass and Lc

is the angular momentum around c. The net contact wrench
(f , τc) consists of the resultant f of external contact forces
and their moment τc around the CoM.

A. Inverted pendulum models

The linear inverted pendulum (LIP) [12] model is based
on two constraints: a constant angular momentum around the
center of mass, and a constant CoM height with respect to a
reference plane:

L̇c = 0 (2)
n · (c− o) = h (3)

where n, o and h are respectively the normal vector, reference
point and reference height that define the CoM motion plane.
As a consequence of these two assumptions, the Newton-Euler
equation (1) simplifies1 to:

c̈ = ω2
LIP(c− r) + g (4)

where ωLIP :=
√
g/h is a constant and r is the center of

pressure (CoP), or zero-tilting moment point (ZMP) [14] when
there are multiple contacts. A strong limitation of the LIP
is the holonomic constraint (3) on the CoM, which can be
kinematically problematic in scenarios such as stair climbing.
One line of research sought to overcome this by constraining
the CoM to parametric or piecewise-planar surfaces [15], [16],
but the next question of deciding such surfaces based on terrain
topology has not attracted a lot of attention so far.

The variable-height inverted pendulum (VHIP) model strips
away the holonomic CoM constraint altogether [17], [18]. Its
equation of motion is:

c̈ = λ(c− r) + g (5)

1 See e.g. [13] for a reminder of the steps of this derivation.
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Fig. 1. Inputs and output of the linear inverted pendulum (LIP) and
variable-height inverted pendulum (VHIP) models. In the former, the stiffness
coefficient is fixed to a constant ω2

LIP , while it becomes an additional input
λ of the latter.

where λ > 0 is now a time-varying stiffness2 coefficient. The
two control inputs of this system are the center of pressure r
and the stiffness λ, as shown in Figure 1.

B. Feasibility conditions

To be feasible, the CoP r must belong to the contact area
C under the supporting foot. This area is also time-varying
but changes only discretely. The transition from one support
contact to the next is called a contact switch. A trajectory with
N contact switches is called an N -step trajectory.

We assume that all contact areas are planar and polygonal.
Let us denote by o the center of the area C and by n its
normal (such that n ·ez 6= 0). The CoP r belongs to the plane
of contact if and only if (r − o) · n = 0. The height of the
CoM c above the contact area is the algebraic distance h(c)
such that c− h(c)ez belongs to the contact plane:

h(c) :=
(c− o) · n

(ez · n)
(6)

Note how, when walking on a horizontal floor, ez and n are
aligned and h is simply the z coordinate of the center of mass.

To be feasible, the stiffness λ must be non-negative by
unilaterality of contact. We furthermore impose that λ ∈
[λmin, λmax] so that contact pressure is never exactly zero and
remains bounded. Note that we do not model Coulomb friction
conditions here: having found in a previous work that CoP
feasibility constraints are usually more stringent than friction
constraints when walking over uneven terrains [19], we assume
sufficient friction in the present study.

An input function t 7→ (λ(t), r(t)) is feasible when both
λ(t) and r(t) are feasible at all times t. A general control
problem is to find a feasible input function such that the
resulting output trajectory c(t) has certain properties. For the
locomotion problem of “getting somewhere”, we will focus
on the property of converging to a desired location.

C. Capture inputs and capture trajectories

A natural choice of the pendulum state consists of its CoM
position and velocity x = (c, ċ).

Definition 1 (Static equilibrium). A state x = (c, ċ) is a static
equilibrium when its velocity ċ is zero and can remain zero
with suitable constant controls (λf , rf).

2 All quantities being normalized by mass, we call λ a stiffness although its
unit is s−2 and not kg.s−2. Similarly, we will refer to frequencies (unit: s−1)
as dampings.

Static equilibria, also called capture states [1], are the
targets of capturability analysis, the desired locations that the
CoM should converge to. A static equilibrium is characterized
by its CoM position cf and the contact Cf upon which it rests at
height hf = h(cf). The only control input λf , rf that maintains
the pendulum in static equilibrium is such that cf = rf−g/λf ,
that is:

λf(cf) =
g

hf
rf(cf) = cf − hfez (7)

Given an N -step contact sequence, we say that a state
xi is (N -step) capturable when there exists a feasible input
function λ(t), r(t) such that applying Equation (5) from xi

brings the system asymptotically to an equilibrium xf . We
call such functions capture inputs of the capturable state xi,
and denote their set by Ixi,xf

. We call capture trajectory the
CoM trajectory c(t) resulting from a capture input. In what
follows, we use the subscript �i to denote the “initial” or
instantaneous state of the system, and the subscript �f for its
“final” or asymptotic state.

By definition, xi is capturable if and only if there exists xf

such that Ixi,xf
6= ∅. The set Ixi,xf

contains however several
solutions, including mathematical oddities such as functions
with ever-increasing frequencies. In what follows, we restrict
it to inputs that converge asymptotically:

Icxi,xf
=

{
(λ(t), r(t)) ∈ Ixi,xf

:
limt→∞ λ(t) = λf

limt→∞ r(t) = rf

}
(8)

Property 5 shows that this choice does not cause any loss of
generality (see Appendix A).

D. Dichotomy of the components of motion

One of the main findings in the control of the LIP model
is to focus on its divergent component of motion (DCM),
the capture point. Among other benefits, controlling only the
capture point reduces second-order dynamics to first order and
maximizes the basin of attraction of feedback controllers [2],
[3], [4]. An important step in the analysis of the VHIP model
is therefore to identify its DCM. Interestingly, the answer can
be found in a study of motorcycle balance [20], which we
recall here.

The equation of motion (5) of the VHIP can be inter-
preted as either nonlinear or linear time-variant, depending on
whether one focuses respectively on feedback or open-loop
control. We focus on the latter for walking pattern generation.
Let us then rewrite this equation as a first-order linear time-
variant system:[

ċ
c̈

]
=

[
0 I
λI 0

] [
c
ċ

]
+

[
0

g − λr

]
(9)

where I is the 3 × 3 identity matrix. This equation has the
form ẋ = A(t)x+ b(t) where the system matrix A depends
on the stiffness input λ, while the forcing term b varies with
both inputs λ and r.

Hauser et al. showed [20] how to obtain an exponential
dichotomy [21] of the state x (that is, how to decompose it into
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convergent and divergent components) by applying a change
of coordinates x = Sz with:

S =
1

γ + ω

[
I I
−ωI γI

]
⇐⇒ S−1 =

[
γI −I
ωI +I

]
(10)

The two functions γ(t) and ω(t) are positive and of class C1.
We will refer to them as dampings in accordance with their
(normalized) physical unit. The new state vector z = S−1x
then consists of two components ζ and ξ defined by:

ζ = γc− ċ (11)
ξ = ωc+ ċ (12)

They respectively correspond to the convergent and divergent
component of motion (DCM). In the case of a linear inverted
pendulum with constant ωLIP, the DCM ξ is simply propor-
tional to the capture point c+ ċ/ωLIP.

Collectively, the state vector z is subject to:

ż = Ãz + b̃ (13)

Ã = S−1(AS− Ṡ) (14)

b̃ = S−1b (15)

The calculation of b̃ is straightforward. That of Ã yields:

Ã =
1

γ + ω

[
(γ̇ − γω − λ)I (γ̇ + γ2 − λ)I
(ω̇ − ω2 + λ)I (ω̇ + ωγ + λ)I

]
(16)

To decouple the system, we can eliminate non-diagonal terms
in this state matrix by imposing the two following Riccati
equations:

γ̇ = λ− γ2 (17)

ω̇ = ω2 − λ (18)

This results in the following state dynamics:

ż =

[
ζ̇

ξ̇

]
=

[
−γI 0
0 ωI

] [
ζ
ξ

]
+

[
λr − g
g − λr

]
(19)

The linear time-varying system has thus been decoupled
into two linearly independent components ζ and ξ that evolve
according to their own dynamics, provided that there exists
two C1 positive finite solutions to (17) and (18). A proof of
this and a detailed analysis of damping functions are given in
Appendix A-B.

Although we defer the detailed analysis of damping func-
tions to this Appendix, its takeaway point is that γ and ω are, in
themselves, convergent and divergent components. A parallel
can be drawn between the DCM–CoP and ω–λ systems:
• In the LIP, with the CoP restricted to a support area,

the CoP is a repulsor of the DCM, and the DCM is
controllable if and only if it is above the support area [3].

• In the VHIP, with λ restricted to [λmin, λmax], λ is a
repulsor of ω, and ω is controllable if and only if it
belongs to [

√
λmin,

√
λmax] (Property 6).

This remark is central to the walking pattern generation
method in Section III, which reduces three-dimensional cap-
turability to one dimension.

It can be shown that, regardless of the initial state xi of the
system, any input function from Icxi,xf

makes ζ converge as

well (Property 9), owing it its name of convergent component
of motion. From a control perspective, spending additional
inputs to control this component is not necessary and can even
be wasteful.3 The main concern of capturability analysis is
therefore to prevent the other component ξ from diverging.

E. Boundedness condition

The divergent component of motion ξ corresponding to the
damping ω is subject to the differential equation:

ξ̇ = ωξ + g − λr (20)

The general solution to this equation is given by:

ξ(t) =

(
ξ(0) +

∫ t

0

e−Ω(τ)(g − λ(τ)r(τ))dτ

)
eΩ(t) (21)

where Ω(t) =
∫ t

0
ω(t)dt. In our working assumptions, this

integral is well-defined and finite (details in Appendix A-D).
Set aside the particular condition that we are about to

discuss, the function ξ(t) diverges as t→∞, giving ξ its name
of divergent component of motion (DCM) [4].4 However, a
careful match between future capture inputs and the initial
condition ξi can guarantee that ξ(t) converges as well. This
choice is known as the boundedness condition [22]:

Property 1 (Boundedness condition). Consider an input
function λ(t), r(t) such that limt→∞ λ(t) = λf and
limt→∞ r(t) = rf . Then, there exists a unique ξi = ωici + ċi

such that the solution ξ of (20) with ξ(0) = ξi remains finite
at all times. This initial condition is given by:

ξi =

∫ ∞
0

e−Ω(t)(λ(t)r(t)− g)dt (22)

where ωi is the initial value of the unique bounded solution ω
to the Riccati equation ω̇ = ω2−λ and Ω is the antiderivative
of ω such that Ω(0) = 0.

The proof of this property is given in Appendix A-D. In
the familiar setting of the LIP where λ = ω2

LIP is a constant,
taking a constant CoP rc yields:

ωLIPci + ċi =

∫ ∞
0

(ω2
LIPrc − g)e−ωLIPtdt (23)

= ωLIPrc −
g

ωLIP
(24)

Over horizontal coordinates, this equation implies that rxyc =
cxyi + ċxyi /ωLIP, i.e. the CoP is located at the capture point.
Over the z coordinate, it yields ωLIP =

√
g/h, the known

expression of the natural frequency of the LIP. Overall, the
boundedness condition characterizes the capturability of the
LIP. We will now conclude our capturability analysis by
showing how this is also the case for the VHIP.

3 For the LIP, it reduces the basin of attraction of feedback controllers [3].
4 More specifically, our analysis considers a time-varying divergent compo-

nent of motion [17]. While previous works such as [4], [6], [17] chose to write
their DCMs as positions c(t) + ċ(t)/ω(t), we cast them as velocities here
to simplify calculations (consider the derivative of a product uv compared to
that of a ratio u/v). The formula of the DCM itself is not a crucial design
choice, as we will discuss at the end of this Section.
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F. Capturability of the variable-height inverted pendulum

What we have established so far is a necessary condition:
if an input function belongs to Icxi,xf

, then it is feasible,
converging and satisfies the boundedness condition. The key
result of our capturability analysis is that this condition is also
sufficient, i.e. it characterizes capture inputs:

Property 2. Let xi = (ci, ċi) denote a capturable state and
xf = (cf ,0) a static equilibrium. Then, t 7→ λ(t), r(t) is a
capture input from xi to xf if and only if:

(i) its values λ(t) and r(t) are feasible for all t ≥ 0,
(ii) limt→∞ λ(t) = λf(cf) and limt→∞ r(t) = rf(cf),

(iii) it satisfies the boundedness condition:∫ ∞
0

(λ(t)r(t)− g)e−Ω(t)dt = ωici + ċi (25)

where ωi is the initial value of the unique bounded solution ω
to the Riccati equation ω̇ = ω2−λ and Ω is the antiderivative
of ω such that Ω(0) = 0.

A proof of this property is given in Appendix A-E. In the
remainder of this manuscript, we will see how this is not only
a theoretical but also a practical result with applications to
balance control and walking pattern generation.

A noteworthy methodological point here is that the expres-
sion of the divergent component of motion is not unique.
Rather, a DCM is chosen by the roboticist. For example,
in [11] we considered a different DCM ξ̃ := ω(c−r) + ċ− ṙ
yielding a boundedness condition written:∫ ∞

0

(r̈(t)− g)e−Ω(t)dt = ωici + ċi (26)

This condition is the same as (25), which can be seen by
applying a double integration by parts. In the present work, we
chose the DCM from Equation (20) as it makes calculations
simpler. We preferred a velocity-based rather than position-
based DCM for the same reason, as the differential of a product
involves less operations than that of a ratio.

III. BALANCE CONTROL WITH VARIABLE HEIGHT

Let us consider first the problem of balance control, i.e.
zero-step capturability. The robot pushes against a stationary
contact area C in order to absorb the linear momentum of
its initial state xi, eventually reaching a static equilibrium
xf . This level of capturability enables push recovery [1],
[23], [10], [24] up to post-impact fall recovery in worst-case
scenarios [25], [26].

The gist of the method we propose thereafter is to reduce
the three-dimensional capturability condition over λ, r (Prop-
erty 2) into a one-dimensional condition over λ. To do so,
we couple the evolution of λ and r by a suitably-defined
intermediate variable s. The complete pipeline goes as follows:
• Change variable from time t to a new variable s
• Define the CoP evolution r(s) as a function of s
• Reduce capturability to an optimization over ω(s)
• Compute the optimal solution ω∗(s) of this problem
• Change variable from s to time t

From ω∗(t), it is then straightforward to compute the full
capture input t 7→ λ∗(t), r∗(t) as well as the capture trajectory

LIP feedback control
(time-invariant DCM)

Capture
Problem
Solver

CoP/stiffness
parameterization

Time
conversion

Contact area

CoM state

Fig. 2. Comparison between LIP and VHIP balance control. With the
linear inverted pendulum model, the natural frequency ωLIP is constant and
feedback control is realized by the center of pressure r(t) (ankle strategy).
With the variable-height inverted pendulum (VHIP), a time-varying natural
frequency ω(t) is computed, then converted to time-varying CoP r(t) (ankle
strategy) and pendulum stiffness λ(t) (height-variation strategy).

c∗(t). Figure 2 compares this pipeline with the traditional LIP
feedback control strategy with time-invariant DCM. Let us
now detail each step of this process.

A. Change of variable

Define the adimensional quantity:

s(t) = e−Ω(t) (27)

This new variable ranges from s = 1 when t = 0 to s → 0
when t→∞. Its time derivatives are:

ṡ(t) = −ω(t)s(t) s̈(t) = λ(t)s(t) (28)

Owing to the bijective mapping between t and s, we can define
ω, γ and λ as functions of s rather than as functions of t. This
approach is e.g. common in time-optimal control [27]. Let us
denote by �′ derivation with respect to s, as opposed to �̇
for derivation with respect to t. The Riccati equation (18) of
ω becomes:

λ = ω2 − ω̇ = ω2 − ṡω′ = ω(ω + sω′) = ω(sω)′ (29)

Injecting this expression into the time integral (25) of the
boundedness condition yields:∫ ∞

0

(λ(t)r(t)− g)s(t)dt =

∫ 1

0

(ω(sω)′r(s)− g)
ds

ω
(30)

We can then characterize capture inputs as functions of s:

Property 3. Let xi = (ci, ċi) denote a capturable state and
xf = (cf ,0) a static equilibrium. Then, s 7→ λ(s), r(s) is a
capture input from xi to xf if and only if:

(i) its values λ(s) and r(s) are feasible for all s ∈ [0, 1],
(ii) lims→0 λ(s) = λf(cf) and lims→0 r(s) = rf(cf),

(iii) it satisfies the boundedness condition:∫ 1

0

r(s)(sω)′ds− g
∫ 1

0

ds

ω(s)
= ωici + ċi (31)

where ωi denotes the initial value (at s = 1) of the solution
ω to the differential equation ω(sω)′ = λ.

With this reformulation, the infinite-time integral has be-
come finite over the [0, 1] interval and the antiderivative Ω
has been replaced by ω itself.
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Contact
Area

Fig. 3. Linear time-varying CoP trajectory. Variations of the center of
pressure inside the contact area allow the robot to reorient its velocity towards
a capture state without re-stepping.

B. Time-varying CoP strategy

The CoP and gravity terms of the boundedness condi-
tion (31) can be separated by projecting them in the (non-
orthogonal) basis (ex, ey,n):∫ 1

0

rxy(s)(sω)′ds = ωic
xy
i + ċxyi (32)∫ 1

0

ds

ω(s)
=
ωihi + ḣi

g
(33)

where hi := h(ci) is the initial CoM height and ḣi its velocity,
both known from the initial state ci. The gravity term (33) only
involves ω(s), but the CoP term (32) involves both r(s) and
ω(s). We reduce it to an integral over ω(s) by making the
CoP move along a line segment5 from ri to rf :

r(s) = rf + (ri − rf)f(sω) (34)

where f can be any smooth function that satisfies:
• f(ωi) = 1: the CoP is initially located at ri,
• f(0) = 0: the CoP converges to rf ,
• f is increasing: we exclude solutions where the CoP

would move back and forth along the line segment,
• f is integrable: let F denote its antiderivative F (x) :=∫ x

0
f(y)dy. It is positive by positivity of f .

The final CoP location rf is already known from the desired
capture state xf , where the CoM is at the vertical above contact
with zero velocity, but the instantaneous CoP ri is a decision
variable. In the example depicted in Figure 3, it will be chosen
on the other side of the line ci + Rċi compared to rf in
order to progressively reorient ċ(t) toward the capture state
rf , similarly to the behavior observed in the LIP with linear
capture-point feedback control [3], [5], [6].

Combining Equations (32) and (34) yields:

rxyi = rxyf +
ωi(c

xy
i − r

xy
f ) + ċxyi

F (ωi)
(35)

At this stage, the roboticist can explore different CoP strategies
via the choice of a function F . We choose a power law
parameterized by α ∈ (0, 1):

f(sω) =

(
sω

ωi

) α
1−α

⇒ F (sω) = (1− α)ωi

(
sω

ωi

) 1
1−α

(36)

5 Strategies with two control points such as this one are the simplest one
can imagine, in the sense that it is in general impossible to realize three-
dimensional balance control with a stationary CoP (see Appendix A-F).

With this choice, F (ωi) = (1− α)ωi and the horizontal coor-
dinates of the instantaneous CoP imposed by the boundedness
condition become:

rxyi = rxyf +
1

1− α

[
cxyi +

ċxyi

ωi
− rxyf

]
(37)

where we recognize the same expression as in capture-point
feedback control of the LIP [3], [5], [6]. Note that the three-
dimensional position ri of the CoP is readily available from
rxyi by vertical projection:

ri = rxyi − h(rxyi )ez (38)

The current state xi and target capture state xf being given,
the only decision variable left on the right-hand side of Equa-
tion (37) is ωi. At this point, we have almost reduced the CoP
capturability conditions to ω: with respect to Property 3, r(s)
converges to rf (ii) and satisfies the boundedness condition by
selecting ri from Equation (37) (iii). We now need to make
sure that the CoP trajectory is feasible (i).

By convexity of the contact area, the CoP trajectory is
feasible if and only if both its ends ri and rf are in the area.
We assume the latter does by construction. For the former,
the constraint that ri belongs to the contact polygon can
be described in halfspace representation by a matrix-vector
inequality Hrxyi ≤ p, with H an m× 2 matrix and p an m-
dimensional vector. For example, a rectangular contact area
written in the contact frame (t, b,n) as:

±t · (ri − o) ≤ X (39)
±b · (ri − o) ≤ Y (40)

can be reformulated equivalently in the horizontal plane:

±(b× ez)(rxyi − o
xy) ≤ X(ez · n) (41)

±(t× ez)(rxyi − o
xy) ≤ Y (ez · n) (42)

Injecting Equation (37) into inequalities Hrxyi ≤ p yields:

[αHrxyf + (1− α)p−Hcxyi ]ωi ≥ Hċxyi (43)

Each line of this vector inequality uωi ≥ v provides a lower
or upper bound on ωi depending on the sign of the factor in
front of it:

ωi,min = max

(√
λmin,max

j

{
vj
uj
, uj > 0

})
(44)

ωi,max = min

(√
λmax,min

j

{
vj
uj
, uj < 0

})
(45)

We have thus reduced the feasibility condition on the CoP to
an inequality constraint on ωi:

∀s, r(s) ∈ C ⇐⇒ ωi,min ≤ ωi ≤ ωi,max (46)

Overall, the CoP strategy allows us to reduce the three-
dimensional capturability condition over s 7→ λ(s), r(s)
(Property 3) into a one-dimensional condition over s 7→ λ(s):

Property 4 (1D capturability). Let xi = (ci, ċi) denote a
capturable state and xf = (cf ,0) a static equilibrium. Under
the time-varying CoP strategy:

r(s) = rf + (ri − rf)

(
sω

ωi

) α
1−α

α ∈ (0, 1), (47)
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s 7→ λ(s) is a capture input from xi to xf if and only if:

(i) ωi ∈ [ωi,min, ωi,max] and ∀s ∈ [0, 1], λ(s) ∈ [λmin, λmax],
(ii) lims→0 λ(s) = λf(cf),

(iii) it satisfies the boundedness condition:∫ 1

0

ds

ω(s)
=
ωihi + ḣi

g
(48)

where ωi denotes the initial value (at s = 1) of the solution
ω to the differential equation ω(sω)′ = λ.

C. Formulation as an optimization problem

Let us compute piecewise-constant functions s 7→ λ(s) that
satisfy the three conditions from Property 4. We partition the
interval [0, 1] into n− 1 fixed segments 0 = s0 < s1 < . . . <
sn−1 < sn = 1 such that ∀s ∈ (sj , sj+1], λ(s) = λj . Note
how the interval is closed to the right (λ(sj+1) = λj) but open
to the left. Define:

ϕ(s) := s2ω2 δj := s2
j+1 − s2

j (49)

The quantity ϕ represents a squared velocity and is commonly
considered in time-optimal retiming [27], while δj’s can be
interpreted as corresponding discretization steps. In practice,
we use sj = j/n so that δj = (2j+1)/n2, which is one choice
among many. Remarking that ϕ′ = 2sλ from the Riccati
equation (29), we can compute ϕ(s) for s ∈ [sj , sj+1] as:

ϕ(s) =

j−1∑
k=0

λkδk + λj(s
2 − s2

j ) = ϕ(sj) + λj(s
2 − s2

j ) (50)

In what follows, we use the shorthand ϕj := ϕ(sj). The values
λ(s) and ω(s) for s ∈ (sj , sj+1] can be computed back from
ϕ using Equations (49) and (50):

λj =
ϕj+1 − ϕj

δj
ω(s) =

1

s

√
ϕj + λj(s2 − s2

j ) (51)

Owing to this property, we choose the vector ϕ :=
[
ϕ1 . . . ϕn

]
to be the decision variable of our optimization problem. Note
that this vector starts from ϕ1, as ϕ0 = 0 by definition.

a) Feasibility (i): noting how ϕn = ω2
i from the equation

above, both feasibility conditions can be expressed as:

ω2
i,min ≤ ϕn ≤ ω2

i,max (52)

∀j < n, λminδj ≤ ϕj+1 − ϕj ≤ λmaxδj (53)

b) Convergence (ii): λ(s) converges to lims→0 λ(s) =
λ1 = ϕ1/δ0. Convergence to λf can thus be expressed as:

ϕ1 = δ0λf =
δ0g

hf
(54)

(Recall that ϕ1 corresponds to the last time interval by
definition of s.) The parameter hf corresponds to the CoM
height of the capture state.

Capture Problem Equation (59)

Parameters:
• Feasibility bounds (λmin, λmax) and (ωi,min, ωi,max)
• Initial height hi, its derivative ḣi, and target height hf

• Discretization steps δ1, . . . , δn

minimize
ϕ∈Rn

n−1∑
j=1

[
ϕj+1 − ϕj

δj
− ϕj − ϕj−1

δj−1

]2

(59a)

subject to
n−1∑
j=0

δj√
ϕj+1 +

√
ϕj
−
hi
√
ϕn + ḣi

g
= 0 (59b)

ω2
i,min ≤ ϕn ≤ ω2

i,max (59c)

∀j < n, λminδj ≤ ϕj+1 − ϕj ≤ λmaxδj (59d)
ϕ1 = δ0g/hf (59e)

c) Boundedness (iii): the variables ϕj can also be used
to express the integral as a finite sum:∫ 1

0

ds

ω(s)
=

n−1∑
j=0

∫ sj+1

sj

sds√
ϕj + λj(s2 − s2

j )
(55)

=

n−1∑
j=0

∫ δj

0

dv

2
√
ϕj + λjv

(56)

=

n−1∑
j=0

1

λj

[√
ϕj + λjδj −

√
ϕj

]
(57)

=

n−1∑
j=0

δj√
ϕj+1 +

√
ϕj

(58)

To complete the optimization problem, we add a regulariz-
ing cost function over variations of λ so that the ideal behavior
becomes a constant λ = ω2

LIP, i.e. the LIP model. This way,
height variations are only added when required. This behavior
is e.g. depicted in Figure 4, where linear capture trajectories
are used until the CoP reaches the boundary of the support
area and height variations are used for additional braking.

The complete optimization problem is assembled in Equa-
tion (59). We will refer to it as the capture problem.

D. Computation and behavior of CoM capture trajectories

Suppose that we know the solution ϕ∗ to the capture
problem, e.g. computed using the solver from Section IV. The
first step to return from s to time trajectories is to calculate
the times tj = t(sj) where the stiffness λ switches from one
value to the next. With this definition, sn = 1 corresponds to
tn = 0 and the partition 1 = sn > . . . > s0 = 0 corresponds
to the time partition 0 = tn < tn−1 < . . . < t1 <∞.

Recall how the piecewise-constant values of λ are readily
computed from ϕ via Equation (51). On an interval [tj+1, tj)
where λ(t) = λj is constant, we can solve the differential
equation s̈ = λjs to obtain:

s(t) = sj+1

[
cosh(xj(t))−

ω(sj+1)√
λj

sinh(xj(t))

]
(60)
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Fig. 4. Zero-step capture trajectories for different contact locations. The
CoM starts from the red box with a given initial velocity and needs to come
to a stop at the blue line located at distance d. Red discs indicate where the
successful capture trajectory (magenta) puts its initial CoP ri. This CoP will
then vary on a line segment to its final position rf at the base of the blue
line. The LIP is able to stop over a range d ∈ [14, 20] cm using only CoP
variations, which corresponds to the ankle strategy. The VHIP is able to stop
over a wider range thanks to the addition of the height-variation strategy.

where xj(t) =
√
λj(t − tj+1). Solving for the boundary

condition s(tj) = sj yields the next time tj = t(sj):

t(sj) = tj+1 +
1√
λj

log

(√
ϕj+1 +

√
λjsj+1

√
ϕj +

√
λjsj

)
(61)

By backward recursion, we can thus compute the time partition
0 = tn < tn−1 < . . . < t1 < ∞. The set of values (λj , tj)
characterizes λ(t) as a function of time.

Given both s(t) from Equation (60) and ω(s) from Equa-
tion (51), we can compute the CoP trajectory:

r(t) = rf + (ri − rf)

(
s(t)ω(s(t))
√
ϕn

) α
1−α

(62)

Finally, once both components λ(t) and r(t) of the capture
input are known, we can compute the CoM capture trajectory
by forward integration of the VHIP equation of motion (5).
Figure 4 shows various such trajectories for zero-step capture
scenarios with the same initial state xi but different contact
locations.

IV. OPTIMIZATION OF CAPTURE PROBLEMS

While the capture problem (59) belongs to the general
class of nonconvex optimization, we can leverage its structural
properties to solve it much faster than a generic nonconvex
problem. This Section presents a dedicated solver that can
solve capture problems within tens of microseconds. Readers
more interested in walking pattern generation can skip directly
to Section V.

In what follows, we assume that the reader is already
familiar with common knowledge in numerical optimization,
including the active-set method for quadratic programming
(QP) and the sequential quadratic programming (SQP) method
for nonlinear optimization. An overview of this background is
provided for reference in Appendix B.

A. Problem reformulation

The capture problem (59) has a linear least squares cost,
linear constraints and a single one-dimensional nonlinear

equality constraint. Its objective (59a) can be written ‖Jϕ‖2
where the cost matrix J is the (n− 1)× n matrix given by:

J =


−d0 − d1 d1

d1 −d1 − d2 d2

. . .
dn−2 −dn−2 − dn−1 dn−1


with dj = δ−1

j . Equation (59b) rewrites to b(ϕ) = 0 with:

b(ϕ) =

n−1∑
j=0

δj√
ϕj+1 +

√
ϕj
−
hi
√
ϕn + ḣi

g
(63)

where hi > 0 and ḣi ∈ R are problem parameters, i.e. constant
during the optimization. Linear constraints (59c)–(59e) have
the form:

l ≤ Cϕ ≤ u (64)

where the two vectors l ∈ Rn+1 and u ∈ Rn+1 are also
problem parameters, and C is the (n+ 1)× n matrix:

C =

[
CZ

eTn

]
where CZ =


1
−1 1

. . . . . .
−1 1


with en is the last column of the n×n identity matrix. Equality
constraints are specified by letting lj = uj .

Solutions to the capture problem (59) can be approximated
by solving:

minimize
ϕ∈Rn

1

2
‖Jϕ‖2 +

µ2

2
‖b(ϕ)‖2 (65a)

subject to l ≤ Cϕ ≤ u (65b)

which presents the advantage of having only linear constraints,
and whose solution tends to the original solution as µ goes
to infinity. This reformulation is reminiscent of penalty-based
methods, where the penalty parameter µ would be adapted
during successive iterations. Yet, a fixed parameter (typically
µ = 106) is enough to get a precise solution in practice, so
that we do not need to adapt this parameter.

B. Application of an SQP approach

We apply the SQP method to the reformulation (65). Let us
denote by f(ϕ) the objective (65a) of the problem and j :=
∇ϕb the gradient of the nonlinear constraint. The Lagrangian
of problem (65) is

L(ϕ,λ−,λ+) = f(ϕ) + λT−(l−Cϕ) + λT+(Cϕ− u)

with λ−,λ+ ∈ Rn+1 the corresponding Lagrange multipliers.
Let us index by �k the value of any quantity at iteration k

of the SQP method. The Hessian matrix at iteration k is then:

(∇2
ϕϕL)k = JTJ + µ2jkj

T
k + µ2bk(∇2

ϕϕb)k (66)

We adopt the Gauss-Newton approximation ∇2
ϕϕLk ≈ JTJ+

µ2jkj
T
k , a classical approach for nonlinear least squares. It

is particularly well-suited to the present case, as ∇2
ϕϕL is

exactly equal to JTJ+µ2jjT when the boundedness condition
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b = 0 is satisfied. Under this approximation, the problem for
one iteration of the SQP method becomes:

minimize
p∈Rn

1

2
‖Jp+ Jϕk‖2 +

µ2

2

∥∥jTk p+ bk
∥∥2

(67a)

subject to l′k ≤ Cp ≤ u′k (67b)

where l′k := l − Cϕk and u′k := u − Cϕk. If ϕk satisfies
the linear constraints (65b), then p = 0 is a feasible point for
the problem (67). This problem is a linear least squares with
inequality constraints (LSI), a particular case of QP, that we
can solve using the active-set method (Algorithm 1). Adopting
d and j for the step and iteration number of the QP (keeping
p and k for the SQP), an iteration of the active-set method
solves in this case:

minimize
d∈Rn

1

2
‖J(d+ pj +ϕk)‖2 +

µ2

2

∥∥jTk (d+ pj) + bk
∥∥2

(68a)
subject to CWjd = 0 (68b)

with Wj the set of active constraints at the current iteration j
and CWj

the corresponding matrix.
This can be solved in two steps using the nullspace ap-

proach. First, compute a matrix NW ∈ Rn×n−r whose
columns form a basis of the nullspace of CW , r being the
rank of CW . The vector d is then solution of the problem if
and only if d = NWz for some z ∈ Rn−r. The problem can
thus be rewritten as an unconstrained least squares:

minimize
z∈Rn−r

1

2

∥∥∥∥[µjTJ
]
NWz +

[
µ(jTpj + f)
J(pj +ϕ)

]∥∥∥∥2

(69)

Second, solve this unconstrained problem: taking T and u
such that the above objective writes 1

2 ‖Tz + u‖2, compute
the QR decomposition T = QR, and solve QRz = −u. The
latter is equivalent to z = −R−1QTu if R has full rank [28,
Chapter 10]. Both of these steps can be significantly tailored
to the case of capture problems.

C. Tailored operations

In the SQP, most of the time is spent in solving the under-
lying LSI: the computation of NW , the post-multiplication by
NW to obtain T, the QR decomposition of T and the com-
putation of the Lagrange multipliers are the main operations,
performed each roughly in O(n3) [29], at least for the first
iteration of each LSI.6 We can reduce this complexity to at
most O(n2) for capture problems:
• The matrix NW does not need to be computed explicitly.

Rather, the cost matrix T of the unconstrained least
squares problem can be built directly in O(n) operations
by taking advantage of the structure of CW and J
(Appendix B-D)

• Lagrange multipliers needed to check KKT conditions
can be computed in O(n2) by taking advantage of the
structure of CW (Appendix B-E)

6 We could refine these estimates by taking into account the number of
active constraints. Note also that subsequent LSI iterations can perform some
of these operations in O(n2).

• The QR decomposition of T can be carried out in
O(n2) by leveraging the tridiagonal structure of JW
(Appendix B-F)

The last point to consider is finding an initial pair (ϕ0,λ0)
for the SQP. While in a classical SQP this is done through a
so-called Phase I which can be almost as costly as running the
main loop of the algorithm itself, we can leverage the geometry
of our constraints to get such a pair in O(n) (Appendix B-G).

D. Numerical and algorithmic considerations

The implementation of a general-purpose QP or SQP solver
is an extensive work due to the numerous numerical difficulties
that can arise in practice: active-set methods need to perform
a careful selection of their active constraints in order to keep
the corresponding matrix well conditioned, while SQPs require
several refinements, some of which imply solving additional
QPs at each iteration [28]. While the tailored operations we
presented reduce the theoretical complexity w.r.t. general-
purpose solvers, there are also a number of features of
Problem (65) that allow us to stick with a simple, textbook
implementation, and contribute to the general speed-up.

On the QP side, the matrix CZ is always full rank and well
conditioned, while the last row eTn of C is a linear combination
of all rows from CZ (en = CT

Z1n). As a consequence, all
matrices CW are full rank and well conditioned, save for the
case where all n + 1 constraints are active. This case can be
easily detected and avoided.7 It is thus safe to use a basic
active-set scheme.

All QR decompositions are performed on matrices with rank
deficiency of at most one. As a consequence, it is not necessary
to use more involved column-pivoting algorithms, and the rank
deficiency can be detected by simply monitoring the bottom-
right element of the triangular factor. While we don’t prove
that the matrices JW are well conditioned, we verified this
assertion for n ≤ 20 in a systematic way. Even for large values
of µ, the QR decomposition of T is stable as the row with
largest norm appears first [30, p. 169].

On the SQP side, the odds are very favorable: constraints
are linear and the Gauss-Newton approach offers a good
approximation of the Hessian matrix. As a consequence, we
observed that the method takes full steps 98.5% of the time
in practice, and converges in very few iterations (four on
average). Since we start from a feasible point, all subsequent
iterates are guaranteed to be feasible and the line search
needs only monitor the objective function, in an unconstrained-
optimization fashion.

E. Pre-computation of QR decompositions

It is important to note that the matrices J and C only depend
on the problem size n and partition s0, . . . , sn, which are the
same across all capture problems that we solve in this work.
If n is small enough (say n ≤ 20), we can precompute and
store the QR decompositions of all possible JW := JNW .
Note that there are 2n+1 − 1 different sets W , including all

7 With the notations of Appendix B-G, this can only happen if a− or a+
is equal to 0 or 1. A workaround is then to slightly perturb ωi,min or ωi,max.
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TABLE I
COMPUTATION TIMES OVER 20000 SAMPLE PROBLEMS FROM WALKING
PATTERN GENERATION. AVERAGES AND STANDARD DEVIATIONS IN µS.

Solver n = 10 n = 15 n = 20 n = 50

IPOPT8 7.1× 103 9.4× 103 1.1× 104 2.2× 104

SQP + LSSOL 86± 60 130± 86 220± 160 1700± 1700
SQP + cLS 22± 12 33± 18 54± 41 210± 180
SQP + cLS + pre. 18± 10 25± 14 35± 22 –

combinations of up to n active constraints among n+1. These
pre-computations can be done in a reasonable amount of time
thanks to our specialized QR decompositions, and result in
even faster resolution times.

F. Performance comparison

In [11], Problem (59) was solved with the state-of-the-art
solver IPOPT [31], which is written in Fortran and C. We
compare its performances with our tailored SQP approach,
implemented in C++.9 Taking µ = 106, the solutions returned
by both methods are numerically equivalent (within 10−7 of
one another, and |b(ϕ)| ≈ 10−8 in both cases). Computation
times over representative problems produced during walking
pattern generation are reported in Table I, where our approach
is denoted SQP + cLS (custom least squares), and the abbre-
viation pre. denotes the use of QR pre-computations for JW .
In practice, we work with n = 10, for which our solver is
300–400 times faster than the generic solver IPOPT.

Computation times for QR pre-computations range from
2 ms for n = 10, 100 ms for n = 15, to 4.9 s for n = 20. This
is not limiting in practice, as these computations are performed
only once at startup. The limit rather lies with memory
consumption, which follows an exponential law ranging from
2 MB for n = 10 to 5 GB for n = 20.

To break down how much of the speed-up is due to the
problem reformulation and how much is due to our custom
least squares implementation, we also test our SQP method
using the state-of-the-art least squares solver LSSOL [32]. This
variant is denoted by SQP + LSSOL. For n ≥ 25, SQP +
LSSOL starts to fail on some problems, with a failure rate
of roughly 25% for n = 50. This suggests that the least
squares component of our solver is more robust. There are
two plausible explanations for this. First, LSSOL assumes all
matrices are dense, while we leverage sparsity patterns of J
and C. Second, LSSOL treats all coefficients as floating-point
numbers, while knowing that the elements of C are exactly 1
or −1 allows us to carry out exact computations (most notably
for the nullspace and pseudoinverse of CW ).

V. WALKING PATTERN GENERATION

While zero-step capturability enables push recovery, one-
step capturability is the minimum price to pay for walking.

8 We only report averages for IPOPT computation times as they lie on a
different scale. These averages are higher than those reported in [11] because
we evaluate both feasible and unfeasible problems (for reasons made clear
in the next section), while all random initial conditions in [11] were zero-
step capturable. For n = 10 and projecting performance statistics on feasible
problems only, IPOPT’s computation times decrease to 1600± 790 µs.

9 https://github.com/jrl-umi3218/CaptureProblemSolver

We will now see how this next level of capturability can be
solved with a pipeline similar to the balance control one:
• Change variable from time t to a new variable s
• Define the CoP r(s) as piecewise-constant function of s
• Parameterize its contact-switch time by a new variable α
• Reduce capturability to an optimization over ϕ(s, α)
• Compute the optimal solution ϕ∗(s, α) of this problem
• Change variable from s to time t

From ϕ∗(t), it is then straightforward to compute the full
capture input t 7→ λ∗(t), r∗(t) as well as the capture trajectory
c∗(t). Let us now detail each step of this pipeline.

A. Time-varying CoP strategy

In a one-step capture setting, the contact area switches
instantaneously at a given instant sc ∈ (0, 1):

C(s) =

{
Ci for sc < s ≤ 1

Cf for 0 < s ≤ sc
(70)

Due to this discontinuity, we cannot adopt the same line-
segment CoP strategy that we used in Section III for balance
control. Let us then adopt a piecewise-constant CoP trajectory:

r(s) =

{
ri for sc < s ≤ 1

rf for 0 < s ≤ sc
(71)

This choice yields the following boundedness condition (31):

− g
∫ 1

0

ds

ω(s)
= ωi(ci − ri) + (ri − rf)scω(sc) + ċi (72)

In terms of our optimization variable ϕ, the right-hand side
of this equation is:

(ci − ri)
√
ϕn + (ri − rf)

√
ϕ(sc) + ċi (73)

where ϕ(sc) is a linear combination of ϕj and ϕj+1 when
sc ∈ [sj , sj+1] from Equation (50).

Let us define an external parameter α ∈ (0, 1). This time,
we parameterize the contact switch sc of the CoP trajectory
by α as follows:

sc is the scalar s.t.
√
ϕ(sc) = α

√
ϕn (74)

Under this assumption, the right-hand side of the boundedness
condition then simplifies to:

(ci − rα)
√
ϕn + ċi (75)

where rα := αrf + (1 − α)ri is the equivalent constant
CoP [2] of the time-varying CoP trajectory. In the LIP with
constant ωLIP, Equation (74) rewrites to α = e−ωLIPtc ,10 which
shows how α parameterizes the time of contact switch. This
observation still holds for the VHIP, where we will use α as
an external variable to optimize over contact switch times.

Taking the dot product of this equation with the normal ni

of the initial contact Ci yields:∫ 1

0

ds

ω(s)
=
hα
√
ϕn + ḣi

g
hα :=

(ci − rα) · ni

(ez · ni)
(76)

10 This expression corresponds to the limit of the scalar w′ when ∆t′1 →
∞ in Equation (25) of [2]. It also plays an important role in the step timing
adjustment method from [33].

https://github.com/jrl-umi3218/CaptureProblemSolver
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This constraint is exactly of the form (59b) of the capture
problem (59), where the parameter hi has simply been replaced
by hα.

The horizontal components of Equation (75) give:

rxyi = rxyf +
1

1− α

[
cxyi +

ċxyi

ωi
− rxyf

]
(77)

This expression is identical to Equation (37). Following the
same steps (38)–(46) as in the zero-step setting, we therefore
conclude that capture inputs under the CoP strategy (71)–
(74) are characterized by the 1D capturability condition (Prop-
erty 4). In particular, we can compute them using our capture
problem solver.

B. External optimization over contact switching time

The contact switching time tc(α) plays a crucial role in one-
step capture trajectories. Given the solution ϕα to the capture
problem parameterized by α, we can compute it as follows.
First, compute sc using Equation (51):

sc =

√
s2
j +

α2ϕα,n − ϕα,j
λα,j

(78)

where ϕα(sc) = α2ϕα,n ∈ [ϕα,j , ϕα,j+1]. Then, apply the
mapping tc = t(sc) provided by Equation (61).

While this mapping is straightforward to compute numer-
ically, its high nonlinearity suggests that introducing time
constraints into capture problems would radically affect the
design of the dedicated solver from Section IV. Fortunately,
computation times achieved by this solver allow us to solve
hundreds of capture problems per control cycle. We therefore
choose to optimize jointly over ϕ and α using a two-level
decomposition: an external optimization over α ∈ (0, 1),
wrapping an internal optimization where α is fixed and the
existing capture problem solver is called to compute ϕα.

A straightforward way to carry out the external optimization
is to test for a large number of values α ∈ (0, 1). This approach
is however inefficient in practice as it sends a significant
amount of unfeasible problems to the internal optimization.
The main cause for such unfeasibility is that whole intervals
of values for α result in ωi,min(α) > ωi,max(α), for which the
CoP constraint (59c) is obviously unfeasible. To avoid this, we
propose in Appendix C-A an algorithm to pre-compute the set
of intervals [αmin, αmax] ⊂ (0, 1) on which it is guaranteed that
ωi,min ≤ ωi,max.

During bipedal walking, contact switches can only be re-
alized after the free foot has completed its swing trajectory
from a previous to a new contact. We therefore need to make
sure that tc(α) is greater than the remaining duration tswing of
the swing foot motion. This gives us an additional constraint
to be enforced by the external optimization:

tc(α) ≥ tswing (79)

where each evaluation of tc(α) costs the resolution of a full
capture problem. We find such solutions by sampling nα
values of α per feasible interval [αmin, αmax]. This approach
provides automatic step timings, and tends to output pretty
dynamic gaits.

Alternatively, when step timings are provided one may want
to enforce an equality constraint:

tc(α) = tswing (80)

In this case, the external optimization implements an approx-
imate gradient descent, calling the capture problem solver
multiple times to evaluate ∇αtc and converge to a local
optimum on each feasible interval [αmin, αmax]. Although we
don’t prove it formally, we observed in practice that the
mapping tc(α) seems to be always monotonic (as in the LIP)
and the optimum thus found global on its interval.

C. Pattern generation from capture trajectories
We can generate walking from capture trajectories via a

two-state strategy [19], [34] combining zero-step and one-step
capture problems. The robot starts in a double-support posture,
and computes a one-step capture trajectory to transfer its CoM
to its first support foot.
• Single support phase: swing foot tracks its pre-defined

trajectory while the CoM follows a one-step capture
trajectory updated in a model predictive control fashion.
The phase ends at swing foot touchdown.

• Double support phase: the CoM follows a zero-step
capture trajectory towards the target contact. Meanwhile,
the capture problem solver is called to compute a one-step
capture trajectory towards the next contact. The phase
ends as soon as such a trajectory is found.

The behavior realized by this state machine is conservative:
after touchdown, the robot uses its double support phase to
slow down until a next one-step capture trajectory is found.
If the next contact is not one-step capturable, the robot stops
walking and balances in place. Otherwise, walking continues
toward the next pair of footsteps.

A limitation of this walking pattern generator is that double-
support phases do not include a continuous CoP transfer from
one contact to the next. The one exception to this is when both
contacts are coplanar, in which case we can use their convex
hull as halfspace representation (H,p) in Equation (43) and
thus apply the line-segment CoP strategy from Section III-B.
In practice, we let CoP discontinuities occur in the walking
pattern during double support and rely on the underlying robot
stabilizer to handle them (see Section VI-B).

VI. SIMULATIONS

We validated this walking pattern generator in two suc-
cessive implementations. First, we evaluate the kinematics of
whole-body tracking of the VHIP reference in a prototyping
environment. Then, we implement our method as a full-fledged
C++ controller and evaluate its performance compared to the
state of the art in two dynamic simulators.

A. Kinematics
We implemented our walking pattern generation method

in the pymanoid11 prototyping environment. Whole-body in-
verse kinematics is carried out using a standard quadratic-
programming formulation (see e.g. [35, Section 1] for a

11 https://github.com/stephane-caron/pymanoid

https://github.com/stephane-caron/pymanoid
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(a) Elliptic staircase (b) Regular staircase (c) Aircraft factory

Fig. 5. Walking pattern generation: whole-body tracking in three scenarios. The elliptic staircase with randomly-tilted footsteps (a) tests the ability to
walk over rough terrains, i.e. to adapt to both 3D translation and 3D orientation variations between contacts. The regular staircase (b) has 15-cm high steps;
it assesses the behavior of the solution when contacts are close to each other and collision avoidance becomes more stringent. Finally, the aircraft scenario
(c) provides a real-life use case where the environment combines flat floors, staircases with 18.5-cm high steps and uneven-ground areas (inside the fuselage).
In all three figures, blue and green trajectories respectively correspond to center-of-mass and swing-foot trajectories.

survey). Tracking of the inverted pendulum and swing foot
trajectories is realized by the following set of tasks:

Task group Task Weight
Foot tracking Support foot 1
Foot tracking Swing foot 10−3

VHIP tracking Center of mass 1× 10−2

VHIP tracking Min. ang. mom. variations 1× 10−4

Regularization Keep upright chest 1× 10−4

Regularization Min. shoulder extension 1× 10−5

Regularization Min. upper-body velocity 5× 10−6

Regularization Reference upright posture 1× 10−6

We considered the three scenarios depicted in Figure 5.
The first one, an elliptic staircase with randomly-tilted foot-
steps (Figure 5a), tests the ability to adapt to general uneven
terrains. It illustrates the main advantage of the capture prob-
lem formulation: it provides real-time model predictive control
with (CoP and unilaterality) constraint saturation over rough
terrains. Existing methods either enforce constraints on regular
terrains such as floors or stairs [36], [37], or do not take
constraint saturation into account [17], [6], or compute costly
nonconvex optimizations offline [38], [39] (see Section VII for
a complete discussion).

We also consider a regular staircase with 15-cm high steps
(Figure 5b), and the real-life scenario provided by Airbus
Group depicted in Figure 5c. It consists of a 1:1 scale model of
an A350 aircraft under construction in a factory environment.
To reach its desired workspace configuration, the humanoid
has to walk up an industrial-grade staircase (step height
18.5 cm, except the last one which is 14.5 cm), then across a
flat floor area and finally inside the fuselage where the ground
consists of temporary wooden slabs. All three walking patterns
are depicted in Figure 5 and in the accompanying video.

We use the same set of parameters on all scenarios. For
capture problems, we choose n = 10 discretization steps
with a partition si = i/n and set hf = 0.8 m, which is
a suitable CoM height for HRP-4 at rest with an extended
leg. The external optimization for one-step problems samples
nα = 5 values of α per feasibility interval, which is sufficient

to find solutions that satisfy the inequality constraint (79) on
contact switching time. For the VHIP stiffness feasibility, we
set λmin = 0.1g and λmax = 2g.

At each control cycle, the capture problem solver is called
on both zero-step and one-step capture problems. On a con-
sumer laptop computer, zero-step problems were solved in
0.38±0.13 ms while one-step ones were solved in 2.4±1.1 ms
(average and standard deviations over 10,000 control cycles).
Note that these computation times reflect both calls to the
C++ solver (Section IV) and the external optimization over α
implemented in the prototyping environment in Python.

We release the code of this prototype as open source
software.12

B. Dynamics

To test our method in dynamic simulations and compare it
to the existing, we extend the C++ LIP-based stair climbing
controller from [40]. This controller consists of two main com-
ponents: a LIP-based pattern generator by model predictive
control (i.e. the pattern is produced online in receding horizon)
and a stabilizer based on whole-body admittance control.
We implement our solution as a second pattern generator in
this controller, using the same stabilizer in both cases for
comparison.

The planar CoM constraint of the LIP is applicable to
small step heights (e.g. Kajita et al. applied it to 10-cm high
steps in [41]) but can become problematic for higher steps.
Another option is to constrain the CoM to a non-horizontal
inclined plane parallel to the staircase, yet in this case either
the CoP is kept constant [42] or the CoP constraint becomes
nonlinear and harder to enforce [13]. From experiments on the
HRP-4 robot, [40] chose to decompose the CoM constraint
in two horizontal plane segments (thus keeping linear CoP
inequalities), introducing the vertical height variation at toe
liftoff. These segments could be further decomposed for better
adaption to terrain, but as of today there is no known algorithm

12 https://github.com/stephane-caron/capture-walkgen

https://github.com/stephane-caron/capture-walkgen
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Fig. 6. Dynamic simulations in Choreonoid: snapshots at the maximum
knee flexion time instant. Left: LIP-based pattern generation. Right: VHIP-
based pattern generation. The former causes HRP-4 to bend its knees more,
increasing the risk of shank collision with the staircase. We can also observe
the more abrupt CoP transfer of the latter, which is specific to our method.

for this. Using a VHIP-based pattern generator addresses the
question by removing the specification of plane segments
altogether.

Thanks to the mc rtc control framework,13 we validated the
feasibility of our method in two different dynamic simulators:

• Choreonoid14, the most reliable one at our dis-
posal, which implements the projected Gauss-Seidel
method [43] and runs in real time.

• V-REP15 with the Newton dynamics engine. For a realis-
tic behavior, we set simulations to a relatively small time
step of 5 ms, in which case they did not run in real time.

The same set of controller parameters, and thus the same
walking patterns, were applied in both simulators. Testing
in two simulators allowed us to validate the robustness of
our walking controller to varying environment responses:
ground contacts in V-REP with Newton are more flexible,
with smoothed and oscillatory contact forces, while those of
Choreonoid are more rigid and closer to what is observed on
the real robot.

Figures 6 and 7 compare LIP-based and VHIP-based con-
troller simulations at different time instants (full simulation
recordings are shown in the accompanying video). The main
difference between the two lies in knee flexion-extension
(Figure 9): thanks to its reference height going up after the first
step, the VHIP pattern brings the robot to knee extension while
the LIP one bends down then raises again (Figure 8) owing
to its choice of a horizontal rather than inclined LIP plane. In
the horizontal plane, DCM-ZMP tracking looks similar to a
regular capture-point walking controller (Figure 10) since the
variations of ω(t) required to lift the CoM up are very small:
in this stair climbing scenario, ω ranges from 3.536 Hz to
3.550 Hz (Figure 11), as opposed e.g. to the elliptic staircase
scenario (Figure 5a) where ω ranges from 3.4 Hz to 3.8 Hz.

13 Developed in the course of the COMANOID and JRP projects, this
control framework is available at https://gite.lirmm.fr/multi-contact/mc rtc
upon request and will be released soon.

14 http://choreonoid.org/en/
15 http://coppeliarobotics.com/

Fig. 7. Dynamic simulations in V-REP: snapshots at the toe liftoff time
instant. Simulations use the Newton dynamics engine with a time step of 5 ms
and one pass per frame. Left: LIP-based pattern generation. Right: VHIP-based
pattern generation. The former causes HRP-4 to bend its knees more, raising
the risk of shank collision with the staircase.

We release the code of this controller as open source
software.16

VII. DISCUSSION AND FUTURE WORK

While the present study is coming to an end, our understand-
ing of the variable-height inverted pendulum (VHIP) model is,
hopefully, only beginning to unfold. What did we understand
so far? First, that capturability of the VHIP is characterized by
three properties of its two inputs: their feasibility, asymptotic
convergence, and the boundedness condition. These properties
can be cast into an optimization problem, the capture problem,
that we can solve in tens of microseconds. These fast solver
times allow us to add an external optimization solving for
other nonlinearities such as step timings.

Our overall discussion draws numerous connections with
the existing literature. To start with, the exponential dichotomy
of the time-varying inverted pendulum was proposed in 2004
by J. Hauser et al. [20] to address a question of motorcycle
balance. Its application to the linear inverted pendulum can
be found in the motion generation framework of the Honda
ASIMO humanoid [4]. The LIP itself has been the focus of a
large part of the recent literature, in the wake of major works
such as [41], [36], [4], [2]. Solutions allowing CoM height
variations have therefore been the exception more than the
rule. They can be grouped into two categories: pre-planning
of CoM height functions, and 2D sagittal capturability.

When CoM height variations cz(t) are pre-planned [44],
[45], [17], [18], the remainder of the system can be controlled
in the 2D horizontal plane similarly to the LIP, yet with a
time-variant rather than time-invariant equation of motion.
Two successful LIP solutions have been generalized following
this idea: linear model predictive control [36] was extended
into [45], and the time-invariant divergent component of
motion [6] was extended into a time-variant counterpart [17].17

16 https://github.com/stephane-caron/capture walking controller
17 Both [45] and [17] use polynomial CoM height functions, which makes

it easy to satisfy boundary conditions but yields non-integrable dynamics.
Terada and Kuniyoshi [44] proposed a symmetric alternative where the system
becomes integrable, yet where enforcing boundary conditions is a nonlinear
root finding problem.

https://gite.lirmm.fr/multi-contact/mc_rtc
http://choreonoid.org/en/
http://coppeliarobotics.com/
https://github.com/stephane-caron/capture_walking_controller
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Fig. 8. CoM height variations for LIP-based (red) and VHIP-based (green)
walking patterns on a representative step. Dashed lines: references from
walking patterns. Solid lines: estimates by the controller’s CoM observer.
Tracking cannot be perfect as walking patterns do not take into account swing
foot motions (18.5–20.0 s) and maximum leg extension during double support
(20.0–20.2 s) that limit the CoM height kinematically.
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Fig. 9. Knee angle variations between LIP-based (red) and VHIP-based
(green) whole-body control. Solid lines correspond to the right knee and
dashed ones to the left knee. The right knee stays extended longer in the VHIP
pattern, curtailing a peak in left-knee flexion observed in the LIP pattern.

Interestingly, in [17] Hopkins et al. use the Riccati equa-
tion (18) to compute ω(t) from cz(t), while in the present
study we compute c(t) from ω(t). More generally, our strategy
can be seen as mapping the whole problem onto the damping
ω and solving for ω(t), while the underlying strategy behind
those other approaches is to fix ω and map the remainder of the
problem onto cxy . Another noteworthy example of the latter
can be found in the linearized MPC proposed by Brasseur
et al. [37], where ω variations are this time abstracted using
polyhedral bounds rather than a pre-planned height trajectory.

In this regard, our present study is more akin to works on
capturability proposed for the 2D nonlinear inverted pendu-
lum [8], [9], [10]. All of them share a design choice dating
back to the seminal work of Pratt and Drakunov [8]: they
interpolate CoM trajectories in a 2D vertical plane with a
fixed center of pressure (CoP). The key result of [8] is
the conservation of the “orbital energy” of a CoM path, a
variational principle that we can now interpret as a two-
dimensional formulation of the boundedness condition. This
principle was later translated into a predictive controller in an
equally inspirational study by Koolen et al. [10]. Ramos and
Hauser [9] also noticed that the capture point, interpreted as
point where to step, was a function of the CoM path. They
proposed a single-shooting method to compute what we would
now call 2D capture trajectories.

All of these works hinted at key features of 3D capture
trajectories, but applied only to two-dimensional CoM motions
in vertical planes. The key to lift this restriction is the 3D
boundedness condition, which was first formulated in the
case of the LIP by Lanari et al. [22] and applied to model
predictive control of the LIP in [46]. This condition can
be more generally applied to different asymptotic behaviors,
including but not restricted to stopping. For instance, infinite
stepping is another option [47]. The exploration of these more
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Fig. 10. Lateral DCM-ZMP tracking for the VHIP over the complete stair
climbing motion. Green: DCM, red: ZMP, dashed: reference, solid: observed.
The DCM here is the position c(t)+ċ(t)/ω(t). References look like a regular
capture-point pattern generator as the variations of ω(t) required to lift the
robot up by 18.5 cm are too small to affect the robot’s lateral dynamics. The
same behavior is observed on sagittal dynamics.
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Fig. 11. Time-varying frequency ω(t) of the VHIP (blue) compared to its
LIP counterpart (red). The VHIP pattern CoM height (Figure 8) is shown for
reference in green. The frequency raises when the DCM accelerates upward
and falls when the DCM accelerates downward.

general asymptotic behaviors is an open question.
Another important choice of the present study is to focus

on zero- and one-step capture trajectories. Walking controllers
based on one-step capturability have been proposed for both
even [48], [33], [34] and uneven terrains [49], [19]. The latter
follow a single line of work leading to the present study: [49]
finds rough-terrain (even multi-contact) solutions but tends to
produce conservatively slow trajectories; [19] discovers dy-
namic walking patterns, but suffers from numerical instabilities
when used in a closed control loop. In our understanding, these
instabilities are due to the direct transcription of centroidal
dynamics, which has proved successful for planning [38],
[39] but where closed-loop controllers suffer from frequent
switches between local optima [19]. The optimization of cap-
ture problems provides an alternative transcription for which
we do not observe this numerical sensitivity.

Finally, the last key choice of the present study is the
change of variable from t to s. This choice is one possible
generalization of the seminal idea by Pratt and Drakunov [8]
to make the CoM height a function cz(cx) of the 2D CoM
abscissa: as it turns out, cx(t) and s(t) are proportional in
their 2D setting [11], although that is not the case any more
in 3D. An alternative 3D generalization is to solve for the
remaining lateral motion cy(t) after the sagittal motion has
been computed by the 2D method [50]. Both cases, as noted
in [50] and in the present study, bear a close connection with
time-optimal path parameterization (see e.g. [27] for a survey).
Future works may explore this connection, and perhaps bring
to light computational complexity results regarding the best
case performance one can hope for this kind of problems.

The ability to solve capture problems in tens of microsec-
onds opens new perspectives for motion planning and control.
For instance, planners can use this tool for fast evaluation
of contact reachability, while stepping stabilizers can evaluate
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several contact candidates in parallel in reaction to e.g. external
pushes. These extensions are open to future works.
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APPENDIX A
MATHEMATICAL COMPLEMENT

In this Appendix, we provide formal proofs for claims made
in Section II and verify that all quantities are soundly defined.

A. Restriction to convergent input functions

Property 5. For every pair of states xi and xf = (cf ,0),
Ixi,xf

is non-empty if and only if Icxi,xf
is non-empty.

In other words, if there exists a capture input λ(t), r(t)
steering an initial state xi to a static equilibrium xf , then there
exists another input λc(t), rc(t) accomplishing the same while
also converging.

Proof. As Icxi,xf
⊂ Ixi,xf

, it is enough to prove that Icxi,xf

is non-empty as soon as Ixi,xf
is non-empty, i.e. that given a

input function λ(t), r(t) ∈ Ixi,xf
we can find another input

λc(t), rc(t) steering to the same state while converging. To
this end, consider the following state-dependent inputs:

√
λ̄(x) = 2

√
g(5h− hf) + ḣ2 − ḣi

5hi − hf
(81)

r̄(x) = c+
c− cf

4
+

ċ√
λ̄(x)

+
g

λ̄(x)
(82)

This definition is chosen so that λ̄(x) is the solution of:[
c− o+

c− cf

4

]
· n+

(ċ · n)√
X

+
(g · n)

X
= 0 (83)

As a consequence, (r̄(xi)−o) ·n = 0 and the state-dependent
CoP belongs to the contact area. Moreover, λ̄ and r̄ are
continuous functions of xi in a neighbourhood of xf , and
λ̄(xf) = λf(cf) and r̄(xf) = rf(cf). Hence, as long as x(t)
is close enough to xf , both λ̄(x(t)) and r̄(x(t)) are feasible.

Injecting those inputs into (5) yields the nonlinear differen-
tial equation:

c̈(t) = − λ̄(x(t))

4
(c(t)− cf)−

√
λ̄ċ(t) (84)

It is immediate that xf is an equilibrium for this dynamics.
The linearized system around this equilibrium is:

c̈`(t) = −λf

4
(c`(t)− cf)−

√
λf ċ

`(t) (85)

for which the equilibrium is stable. Therefore the equilibrium
xf of (84) is locally stable: if x(0) is close enough to xf , then
x(t) remains close to xf and converges toward this limit.

We now consider a generic input function λ(t), r(t) ∈
Ixi,xf

. By definition, the solution of (5) converges to xf as
t → ∞. Then, there exists some time T such that x(T ) is
close enough to xf so that, starting from this position, the
state-dependent control remains feasible and converges to xf .
We conclude by noting that the input function that switches
at time T from λ, r to λ̄, r̄ belongs to Icxi,xf

.

B. Solutions to the Riccati equations

Let us verify the existence of damping solutions and exhibit
some of their properties that will prove useful to characterize
those that don’t diverge.

Property 6. Assume that we are given λ such that λ(t) ∈
[λmin, λmax] at all times t. Then, there exists a unique ωi > 0
such that the solution ω of (18) with ω(0) = ωi is positive
and finite at all times. Moreover, this solution is such that:

∀t > 0, ω(t) ∈ [
√
λmin,

√
λmax] (86)

In other words, there is a one-to-one mapping between the
stiffness function λ(t) and its non-diverging filtered damping
ω(t).

Proof. Consider first the case of a constant input λ. One
can note that the differential equation ẏ = y2 − λ has two
equilibrium points: one stable −

√
λ and one unstable

√
λ.

More precisely, given y0 ∈ R, the only solution of this
equation satisfying y(0) = y0 is given by

y(t) =


√
λ

tanh(
√
λ(T−t)) if |y0| >

√
λ

√
λ tanh(

√
λ(T − t)) if |y0| <

√
λ

y0 if |y0| =
√
λ

(87)

The initial condition y0 settles the behavior of the solution at
all times. Define the time T = 1

2
√
λ

log
∣∣∣y0−√λ
y0+
√
λ

∣∣∣, then:

• If 0 ≤ y0 <
√
λ, then limt→∞ y(t) = −

√
λ and the

solution y becomes negative after time T .
• If y0 =

√
λ, then y(t) =

√
λ for all t > 0.

• If y0 >
√
λ, then limt→T y(t) = +∞: the solution

explodes in finite time.
Let us move now to the general case where λ(t) is time-

varying, and denote by ω a non-negative, non-explosive so-
lution to (18). If ω(t0) >

√
λmax at some time t0 > 0, then

choosing the solution y to ẏ = y2− λmax with y(t0) = ω(t0),
we observe that, as long as 0 ≤ y(t) ≤ ω(t),

ω̇(t)− ẏ(t) = ω2(t)− y2(t) + λmax − λ(t) ≥ 0 (88)

https://github.com/jrl-umi3218/CaptureProblemSolver/
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Therefore, ω − y is nondecreasing, and y(t) ≤ ω(t) holds
until the explosion time T of y. This shows that ω explodes
in finite time, in contradiction with the hypothesis. Similarly, if
ω(t0) <

√
λmin for some t0 > 0, we can upper-bound ω(t) by

the solution to ẏ = y2 − λmin such that y(t0) = ω(t0), which
becomes negative in finite time, once again contradicting the
hypothesis. The bounds (86) must therefore hold.

We now prove the uniqueness of the non-negative non-
exploding solution of (18). Suppose that one could find two
such solutions, ω1 and ω2. As observed above, these functions
remain in the interval [

√
λmin,

√
λmax]. Consider without loss of

generality that ω1(0) > ω2(0). Then, as long as ω1(t) > ω2(t),

ω̇1 − ω̇2 = (ω1 − ω2)(ω1 + ω2) ≥ 2
√
λmin(ω1 − ω2) (89)

As a consequence, ω1(t)−ω2(t) ≥ (ω1(0)−ω2(0))e2
√
λmint at

all times, showing that the two functions cannot be bounded
at the same time.

To finally prove the existence of the solution, we observe
there exists a unique ω(0) ∈ [

√
λmin,

√
λmax] such that for

all t > 0, we have yt(0) > ω(0) > y
t
(0) where yt and y

t
are the solutions of (18) with conditions yt(t) =

√
λmax and

y
t
(t) =

√
λmin. The solution ω starting from this value ω(0)

remains within bounds by construction (the time it crosses√
λmin or

√
λmax is greater than any finite time t).

Let us now turn to the other damping γ. While there is a
unique solution ω corresponding to a given λ, there are many
different non-negative finite functions γ that satisfy (17). As
a matter of fact, each choice of γ(0) > 0 yields an admissible
solution:

Property 7. Assume that we are given λ such that λ(t) ∈
[λmin, λmax] at all times t. For all γ(0) > 0, the solution γ of
(17) is non-negative and finite at all times. Moreover:√

λmin ≤ lim inf
t→∞

γ(t) ≤ lim sup
t→∞

γ(t) ≤
√
λmax (90)

Proof. The existence and the uniqueness of the solution on
a maximal interval are consequences of the Cauchy-Lipschitz
theorem. As in the previous proof, we can compare γ with the
functions y and y, respectively solutions to ẏ = λmin− y2 and
ẏ = λmax−y2 with y(0) = y(0) = γ(0). Then, y(t) ≤ γ(t) ≤
y(t) at all times t, and the rest of the proof is a consequence
of limt→∞ y(t) =

√
λmin and limt→∞ y(t) =

√
λmax.

An interesting consequence of these two properties is the
following asymptotic behavior:

Corollary 8. If limt→∞ λ(t) = λf , then

lim
t→∞

ω(t) = lim
t→∞

γ(t) =
√
λf . (91)

Proof. We only consider the case of ω, the proof for γ
following the same derivation. By definition of the limit,
for any ε > 0, there exists t0 > 0 large enough so that
∀t > t0, |λ(t) − λf | < ε. Next, remark that the time-shifted
function ω̃(t) := ω(t+t0) is a solution of the equation ˙̃ω(t) =
ω̃(t)2 − λ̃, where ∀t > 0, λ̃(t) = λ(t+ t0) ∈ [λf − ε, λf + ε].
Property 6 then shows that ω(t+ t0) ∈ [

√
λf − ε,

√
λf + ε] for

all t > 0. As a consequence, for any ε > 0:√
λf − ε ≤ lim inf

t→∞
ω(t) ≤ lim sup

t→∞
ω(t) ≤

√
λf + ε (92)

Taking the limit as ε→ 0, we conclude that the limit of ω as
t→∞ exists and is equal to

√
λf .

We conclude from the above properties that the solutions ζ
and ξ to Equation (19) are well-defined.

C. Convergent component of motion
The component ζ corresponding to the damping γ is subject

to the differential equation:

ζ̇ = −γζ + (λr − g) (93)

The general solution to this equation is given by:

ζ(t) =

(
ζ(0) +

∫ t

0

eΓ(τ)(λ(τ)r(τ)− g)dτ

)
e−Γ(t) (94)

where Γ is the antiderivative of γ such that Γ(0) = 0,
i.e. Γ(t) =

∫ t
0
γ(t)dt. It satisfies the following two identities:

deΓ

dt
= γeΓ d2eΓ

dt2
= (γ̇ + γ2)eΓ = λeΓ (95)

The asymptotic behavior of ζ is tied to that of the two inputs
λ and r of the inverted pendulum:

Property 9. Consider an input function λ(t), r(t) such that
limt→∞ λ(t) = λf and limt→∞ r(t) = rf , and let γ denote
any solution to (17). Then, the solution ζ of (93) satisfies:

lim
t→∞

ζ(t) =
√
λf

(
rf −

g

λf

)
=
√
λfcf (96)

Proof. By Corollary 8, limt→∞ γ(t) =
√
λf , therefore its

antiderivative Γ(t) satisfies limt→∞ Γ(t)/t =
√
λf as well.

In particular, Γ(t) diverges to ∞, so that:

ζ(t) ∼
t→∞

e−Γ(t)

∫ t

0

eΓ(τ)(λ(τ)r(τ)− g)dτ (97)

where the notation f ∼ g means that the ratio f/g goes to 1
as t→∞. Applying l’Hôpital’s rule, we conclude that:

lim
t→∞

ζ(t) = lim
t→∞

∫ t
0
eΓ(τ)(λ(τ)r(τ)− g)dτ

eΓ(t)
(98)

= lim
t→∞

eΓ(t)(λ(t)r(t)− g)

γ(t)eΓ(t)
=

(λfrf − g)√
λf

D. Divergent component of motion
The general solution (21) of the divergent component of

motion is based on the antiderivative Ω(t) =
∫ t

0
ω(t)dt.

Recalling from Property 6 that ω ∈ [
√
λmin,

√
λmax], we see

that Ω grows at least linearly. Therefore, as long as λ and r
remain bounded, the integral

∫∞
0
e−Ω(τ)(g − λ(τ)r(τ))dτ is

well-defined and finite. Let us now prove Property 1.

Proof. The proof is very similar to that of Property 9. The
solution (21) with ξ(0) = ξi from Equation (22) becomes:

ξ(t) = eΩ(t)

∫ ∞
t

e−Ω(τ)(λ(τ)r(τ)− g)dτ (99)

Applying l’Hôpital’s rule, we conclude by Corollary 8 that:

lim
t→∞

ξ(t) = lim
t→∞

e−Ω(t)(λ(t)r(t)− g)

ω(t)e−Ω(t)
=
λfrf − g√

λf

(100)

That is to say, similarly to the convergent component of
motion, the solution ξ of (20) converges to

√
λfcf .
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E. Proof of Property 2

Proof of the ⇒ implication. Let λ(t), r(t) denote a capture
input from Icxi,xf

, with x(t) the smooth trajectory resulting
from this input via the equation of motion (5). Its boundary
values x(0) = xi and x(∞) = xf being bounded, this
trajectory must be bounded as well. As ζ(t) is always bounded
by Property 9, this in turns implies that its the divergent
component ξ(t) is bounded, and must therefore satisfy Equa-
tion (25) by Property 1. Next, let us denote by λf , rf the limits
of λ(t), r(t) as time goes to infinity. Using Properties 9 and
1, the two components converge to:

lim
t→∞

ζ(t) = lim
t→∞

ξ(t) =
√
λf

(
rf −

g

λf

)
(101)

Recalling from Corollary 8 that γ and ω converge to
√
λf , we

can take the limit in the mapping (10)–(12):

lim
t→∞

c(t) = lim
t→∞

ζ(t) + ξ(t)

γ(t) + ω(t)
= rf −

g

λf
= cf (102)

Therefore, λf = λf(cf) and rf = rf(cf).

Proof of the ⇐ implication. Reciprocally, assuming (i)–(iii),
Equation (101) holds again by Properties 9–1 and Corollary 8.
Furthermore,

lim
t→∞

ċ(t) = lim
t→∞

−ω(t)ζ(t) + γ(t)ξ(t)

γ(t) + ω(t)
= 0 (103)

Thus, the pendulum driven by λ(t), r(t) converges to the static
equilibrium xf .

F. Note on fixed-CoP strategies

When the CoP input is stationary, i.e. in a point-foot model,
the Gram determinant G = ((c−r)× ċ) ·g becomes invariant.

Short proof. Take the cross-product of Equation (5) with c̈.
Then, the scalar product of the resulting expression with g
yields ((c − r) × c̈) · g = 0. Conclude by noting that this
formula is the time derivative of ((c− r)× ċ) · g.

There are two possible outcomes: either G = 0, which
means the three vectors are coplanar and the robot may
stabilize using a 2D strategy [8], [9], [10]; or G 6= 0 and it is
impossible to bring the system to an equilibrium where ċ = 0.
This shows simultaneously two properties: first, that sagittal
2D balance control is the most general solution for point-foot
models, and second, that these models have a very limited
ability to balance, as they need to re-step at the slightest lateral
change in linear momentum. The ability of flat-footed bipeds
to absorb these perturbations (to some extent) without stepping
comes from continuous CoP variations.

APPENDIX B
NUMERICAL OPTIMIZATION COMPLEMENT

In this Appendix, we first recall terminology and state-of-
the-art algorithms for numerical optimization. We essentially
rewrite treatment from [28] for double-sided inequality con-
straints. We then detail all tailored operations mentioned in
Section IV.

A. Definitions and notations
Consider the optimization problem:

minimize
x∈Rn

f(x) (104a)

subject to l ≤ h(x) ≤ u (104b)

where f and h are smooth functions, f being 1-dimensional
and h m-dimensional. Lower and upper bound constraints are
represented by vectors l,u ∈ Rm, with equality constraints
specified by taking lj = uj . A point x is feasible if it satisfies
all constraints. For a given x, we say the jth constraint is
active at its lower (resp. upper) bound when hj(x) = lj (resp.
hj(x) = uj). We denote by:

E := {j ∈ [1,m] , lj = uj} (105)
A(x)− := {j /∈ E , hj(x) = lj} (106)
A(x)+ := {j /∈ E , hj(x) = uj} (107)

These three sets are disjoint. For a set of indexes S and a
matrix M, we define MS the matrix made of the rows of M
whose indexes are in S (this notation also applies to vectors).

The Lagrangian of the problem is defined as
L(x,λ−,λ+) := f(x) + λ−T (h(x) − l) + λ+T (h(x) − u)
where λ−,λ+ ∈ Rm are the Lagrange multipliers, ∇xg and
∇2

xxg are respectively the gradient and Hessian of a function
g with respect to x. We note λ := λ− + λ+. We can work
with it instead of λ− and λ+ (see [51, §4.3.5]).

The Karush–Kuhn–Tucker (KKT) conditions give neces-
sary conditions on x and λ for x to be a minimizer of
Problem (104) (see [28, chap. 12]). They are often used as
termination conditions in solvers.

B. Active-set method for Quadratic Programming
When the objective f is quadratic, f(x) = 1

2x
TQx +

qTx, with Q symmetric positive semidefinite and h linear,
h(x) = Cx for some matrix C, Problem (104) is a (convex)
Quadratic Program with Inequality constraints (QPI). One of
the main approaches to solve it is the active-set method. This
method iteratively discovers the set of constraints active at
the solution18 by solving at each iteration k the following
Quadratic Program with only Equality constraints (QPE):

minimize
p∈Rn

1

2
pTQp+ (Qxk + q)Tp (108a)

subject to CWk
p = 0 (108b)

where Wk is a set of indexes. The solution p∗ to this QPE is
used to determine the next iterate xk+1.

Unlike QPIs, QPEs admit analytical solutions as their KKT
conditions reduce to a linear system. For a given xk, we can
retrieve λ with:

λAk = −C†TAk∇
T
xf(xk), λi = 0,∀i /∈ Ak (109)

where �† denotes the Moore-Penrose pseudo-inverse and
Ak = A(xk)− ∪ A(xk)+ ∪ E is the active set at xk, i.e.
the set of constraints that are active at this point.

The active-set method for convex QPIs is given in Algo-
rithm 1. See [28, chap. 16] for more details on this method.

18 We ignore here for the sake of simplicity a subtlety arising when active
constraints are linearly dependent.
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Algorithm 1 Active-set algorithm for convex QPI
Given a feasible point x0

Let W−0 = A(x0)−, W+
0 = A(x0)+

for k = 0, 1, 2, . . . do
Compute p from (108) with Wk =W−k ∪W

+
k ∪ E

if p = 0 then
Compute λ using Equation (109)
if x and λ verify the KKT conditions then

return the solution xf = xk
else

Choose j such that λj violates the KKT conditions
xk+1 = xk, W−k+1 =W−k \ {j}, W

+
k+1 =W+

k \ {j}
end if

else
Find the largest α ≤ 1 such that xk + αp is feasible.
xk+1 = xk + αp
if some constraints have been activated doing so then

Let j be the index of one of them
Obtain W−k+1 and W+

k+1 from W−k and W+
k by

adding j to the appropriate set
else
W−k+1 =W−k , W+

k+1 =W+
k .

end if
end if

end for

C. Sequential Quadratic Programming

Sequential quadratic programming (SQP) is an iterative op-
timization technique for solving general constrained problems
such as (104). At each iteration k, a QP approximation of (104)
is formed and solved:

minimize
p∈Rn

f(xk) + ∇xf(xk)Tp+
1

2
pTBkp (110a)

subject to l− h(xk) ≤∇xh(xk)Tp ≤ u− h(xk) (110b)

where Bk can be ∇2
xxL(xk,λk) or, for faster computations,

some positive-definite approximation of it.

Algorithm 2 Line search SQP
Given a stepping parameter τ ∈ (0, 1)
Choose (x0,λ0)
while the KKT conditions are not satisfied do

Compute p from (110)
Let λ be the corresponding multiplier and pλ = λ−λk
α = 1
while αp does not yield an acceptable step do
α = τα

end while
xk+1 = xk + αp, λk+1 = λk + αpλ

end while

The outline of the SQP method is given in Algorithm 2.
There are several criteria for assessing whether a step is
acceptable, see [28, chap. 18] for details.

D. Cost matrix of the unconstrained least squares problem

Consider the active set W for a given SQP iteration.
Starting at the first constraint, count the number a0 of con-
secutive active constraints (possibly 0 if the first constraint
is not active), then j1 the number of following consecutive
inactive constraints, a1 the number of following active con-
straints, etc. The setW is then fully described by the sequence
(a0, j1, a1, j2, a2, . . . , jp, ap), where only a0 and ap can be
0. Note that

∑
k ak +

∑
k jk = n + 1, and let us define

nW :=
∑
k ak. For example, ifW = {1, 2, 6, 9, 10, 11, 13, 14}

for n = 15 optimization variables, we get the sequence
(2, 3, 1, 2, 3, 1, 2, 2, 0) and nW = 8. The constraint matrix CW
is then the nW × n matrix:

CW =


C0

0a1,j1−1 C1

0a2,j2−1 C2

. . .
0ap,jp−1 Cp


(111)

where 0m,q is the m × q zero matrix, while C0, Ck (k ∈
[1, p− 1]) and Cp are respectively a0× a0, ak× (ak + 1) and
ap × ap matrices (C0 and Cp can be empty) of the form:

C0=


1
−1 1

. . .
. . .
−1 1

, Ck=

−1 1
. . .

. . .
−1 1

, Cp=


−1 1

. . .
. . .
−1 1

1


(112)

Denoting by 1a the vector of size a filled with ones, the
nullspace projection matrix for the active set W is:

NW =



0a0,i1−1

Ii1−1

1a1+1

Ii2−1

1a2+1

. . .
Iip−1

0ap,ip−1


(113)

Noting that Ck1ak+1 = 0ak,1, we can directly verify that
CWNW = 0. The matrix NW is n by n − nW and full
column rank. It is thus a basis of the nullspace of CW .

Computing the product MNW for a given matrix M does
not actually require to perform any multiplication: multiplying
by 1 amounts simply to the summation of columns of M.
Likewise, NWz just requires to copy the elements of z. It
is thus not necessary to form NW , and T can be obtained
by
∑
ak = nW vector additions. Taking into account the

tridiagonal structure of J, this can be done in O(n).

E. Computation of Lagrange multipliers

The computation of the Lagrange multipliers, needed to
check KKT conditions, relies on the pseudoinverse of CW (see
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e.g. Equation (109)). Due to its block structure, expressing the
latter is done by finding the pseudoinverse for each Ck:

C†W =



C−1
0

0i1−1,a1

C†1
0i2−1,a2

C†2
. . .

0ip−1,ap

C−1
p


(114)

where �† denotes the pseudoinverse. It can be verified that

C−1
0 =

1
...

. . .
1 . . . 1

 , C−1
p =


−1 . . . −1 1

. . .
... 1
−1 1

1

 (115)

C†k =
1

ak + 1



−ak −(ak − 1) −(ak − 2) . . . −1
1 −(ak − 1) −(ak − 2) . . . −1
1 2 −(ak − 2) . . . −1

1 2 3
. . .

...
...

. . . −1
1 2 3 . . . ak


(116)

The computation of Lagrange multipliers can thus be done in
O(n2) without forming the pseudoinverse explicitly.

F. QR decomposition of the cost matrix T

The decomposition can be performed in two steps: first the
QR decomposition JW = QWRW of JW := JNW , followed
by the QR decomposition

[
µjTNW

RW

]
=
[
qT1
Q2

]
R. Combining

these two yields T by:[
µjTNW
JNW

]
=

[
1 0
0 QW

] [
µjTNW
RW

]
=

[
1 0
0 QW

] [
qT1
Q2

]
R

=

[
qT1

QWQ2

]
R (117)

The matrix
[
µjTNW

RW

]
is upper Hessenberg, so that its QR

decomposition is computed in O(n2) [29, Chapter 5].
The decomposition of JW can be achieved in O(n) by

taking advantage of its structure. To avoid going through
several corner cases, we sketch informally how this is done
with the help of the example in Figure 12 (more details can be
found in [52]). Because the sum of three non-zero elements
on any row (ignoring the first) of J is zero, a careful study
reveals that JW is made of p tridiagonal blocks, one for each
group of consecutive inactive constraints. Blocks j and j + 1
are separated by aj − 1 rows of zeros, and the last column of
the first block is aligned with the first column of the second
block (Figure 12, left). We can perform QR decompositions
for each blocks separately and denote by Q̃W the product of
all orthogonal matrices. All blocks, except possibly the last
one, have a rank equal to their row size minus one, so that



0
×
××
×××
××
××
×××
××

0
0
××
××

0
××


︸ ︷︷ ︸

JW

→



0
×××
0××
0 0×

0 0
×××
0××

0 0
0
0
××
0 0

0
××


︸ ︷︷ ︸

Q̃T
WJW

→



×××
××
×
×××
××
××
××

0
0
0
0
0
0
0


︸ ︷︷ ︸
P̃WQ̃T

WJW

→



×××
××
×××
0××

0××
0××

0×
0
0
0
0
0
0
0


︸ ︷︷ ︸

RW

Fig. 12. QR decomposition for n = 15 and W =
{1, 2, 6, 9, 10, 11, 13, 14}. Cross symbols × stand for non-zero elements.
Left: block structure of JW , with one color per block. Middle-left:
performing QR decomposition for each block. Middle-right: permuting all
zero rows to the bottom. Right: completing the QR decomposition.

the triangular factor of the decomposition has zeros on its last
line (Figure 12, middle left). Multiplying by a permutation
matrix PW , all zero rows can be moved to the bottom, and
we get a quasi-tridiagonal matrix (Figure 12, middle right).
The latter can be made triangular with a last tridiagonal QR
decomposition in O(n) (Figure 12, right).

G. Search for a feasible initial point

Denoting by lZ and uZ the bounds corresponding to CZ ,
the set Z := {ϕ ∈ Rn, lZ ≤ CZϕ ≤ uZ} is a zonotope equal
to

Z = LZlZ + Ldiag(uZ − lZ) [0, 1]
n (118)

where LZ := C−1
Z is the n×n lower triangular matrix with all

coefficients equal to 1. Feasible points for the whole problem
are those in Z such that ω2

i,min ≤ ϕn ≤ ω2
i,max.

Consider the point:

ϕi(a) := LZlZ +
∑

a(ui − li)Li (119)

where Li it the ith column of L. This point is in Z for any
value a ∈ [0, 1]. Its last component ϕi,n(a) is an increasing
linear function ϕi,n(a) = sl + asd with sl =

∑
j lj and sd =∑

j(uj − lj) ≥ 0. Let us denote by a− and a+ the two values
such that ϕi,n(a−) = ω2

i,min and ϕi,n(a+) = ω2
i,max. The linear

constraints of the capture problem are then feasible if and only
if [a−, a+]∩ [0, 1] 6= ∅. In this case, any a in this intersection
yields a feasible point ϕi(a) for the problem, for instance the
middle value am := 1

2 (max(a−, 0) + min(a+, 1)). We can
therefore initialize our SQP with:

ϕ0 = ϕi(am) λ0 = 0 (120)

which is guaranteed to be a feasible point.

APPENDIX C
EXTERNAL OPTIMIZATION DETAILS

A. Feasibility of outer-optimization problems

There are three ways a bad choice of α can yield an
unfeasible capture problem (59):
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(a) The bounds of the inequality (59c) are such that ωi,min >
ωi,max. Recall that these bounds represent feasibility of the
CoP ri, which involves α by Equation (77).

(b) The intersection between the nonlinear equality con-
straint (59b) and the polytope (59c)–(59d) is empty. The
influence of α on this comes from Equation (76).

(c) The right cylinder given by the linear constraint (59c)
does not interesect the zonotope (59d). The role of α
in this comes once again from its influence on ri by
Equation (77).

Case (c) can be caught efficiently before solving the capture
problem (Appendix B-G). While anticipating (b) is still an
open question, case (a) can be avoided altogether thanks to a
more careful treatment of CoP inequality constraints.

Recall from Equation (43) that:

[αHrxyf + (1− α)p−Hcxyi ]ωi ≥ Hċxyi (121)

Let us rewrite this inequality as:

(u− αv)ωi ≥ w (122)

To avoid corner cases, let us extend the three vectors u, v and
w with two additional lines:
• Line 1: u = 1, v = 0 and w = ωi,min
• Line 2: u = −1, v = 0 and w = −ωi,max

Next, note that the two sets Amin(α) := {i, ui−αvi ≥ 0} and
Amax(α) := {i, ui − αvi ≤ 0} are such that:

ωi,min(α) = max

{
wi

ui − αvi
, i ∈ Amin(α)

}
(123)

ωi,max(α) = min

{
wi

ui − αvi
, i ∈ Amax(α)

}
(124)

Using a technique reminiscent of Fourier-Motzkin elimination,
a necessary and sufficient condition for ωi,min ≤ ωi,max is then
that, for all pairs (i, j) ∈ Amin(α)×Amax(α),

uiwj − ujwi ≤ α(viwj − vjwi) (125)

These inequalities are of the form ũα ≥ ṽ and can therefore
be reduced, similarly to Equations (44)–(45), into a single
interval [αmin, αmax]. In this interval, it is guaranteed that
ωi,min ≤ ωi,max and failure case (a) is avoided.

The subtlety to notice here is that the index sets A�(α)
change when α crosses the roots ui/vi. (Note that there are
few such roots in practice, e.g. at most six with rectangular foot
soles.) We take this phenomenon into account in the overall
Algorithm 3.

Algorithm 3 Computation of α feasibility intervals
Input: vectors u,v and w
Output: set I of feasible intervals [αmin, αmax]
I ← ∅
R ← {rj = uj/vj |rj ∈ (0, 1)}
for (rj , rj+1) consecutive roots in SORT(R) do

(αmin, αmax, α)← (r2j , r2j+1,
1
2 (r2j + r2j+1))

Compute index sets Amin(α) and Amax(α)
Reduce [αmin, αmax] using (125) with Amin(α), Amax(α)
I ← I ∪ {[αmin, αmax]}

end for
return I
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