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Context

I Multi-state models are the most natural tools for pricing and reserving
Long Term Care (LTC) insurance guarantees.

I In literature, a Markov model is generally used→ may be too strong.

I Lack of (detailed) national data. It’s hard to have precise and accurate
insurance data.

I Classical inference methodologies:
I are based on crude intensities,

I use GLM Poisson models that depend on age or duration time (e.g. Haberman
and Pitacco, 1998; Pritchard, 2006; Levantesi and Menzietti, 2012; Fong et al.,
2015).
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Aims

I Helms et al. (2005) use a direct regression model for annual transition
probabilities with a Markov model based on pseudo-values (Andersen
et al., 2003).

I This allows to measure the effect of observed covariates. However, this
framework requires that the Markov assumption to be satisfied.

I We propose dynamic regression methods using directly the transition
probabilities of a non-Markov illness-death model.

I Interests for pricing:
I Flexible and takes into account the effect of covariates over time.

I Offers a way to avoid or reduce the bias induced by the Markov assumption.
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Long-Term Care Insurance Model

I Consider an illness-death model X with only one heavy dependency state.

I Transition probabilities h→ j between s and t with individual covariates Z

phj (s, t; Z (s)) = P (X (t) = j | X (s) = h, Z (s)) .

I A very simple annuity guarantee paid in dependency.

1. Health

3. Death

2. Disability

p13 (s, t)

p12 (s, t)

p23 (s, t)

Time

State

Premium π

S1

1

2

3

Guibert and Planchet 2017 PARTY, 8-13 January 2017 4/20



Introduction LTC Insurance Model Estimation Method Results Conclusion References

Long-Term Care Insurance Model

I Consider an illness-death model X with only one heavy dependency state.

I Transition probabilities h→ j between s and t with individual covariates Z

phj (s, t; Z (s)) = P (X (t) = j | X (s) = h, Z (s)) .

I A very simple annuity guarantee paid in dependency.

1. Health

3. Death

2. Disability

p13 (s, t)

p12 (s, t)

p23 (s, t)

Time

State

Premium π

Annuity B

S1

1

2

3

Guibert and Planchet 2017 PARTY, 8-13 January 2017 4/20



Introduction LTC Insurance Model Estimation Method Results Conclusion References

Long-Term Care Insurance Model

I Consider an illness-death model X with only one heavy dependency state.

I Transition probabilities h→ j between s and t with individual covariates Z

phj (s, t; Z (s)) = P (X (t) = j | X (s) = h, Z (s)) .

I A very simple annuity guarantee paid in dependency.

1. Health

3. Death

2. Disability

p13 (s, t)

p12 (s, t)

p23 (s, t)

Time

State

Premium π

Annuity B

∅

S1 S2

1

2

3

Guibert and Planchet 2017 PARTY, 8-13 January 2017 4/20



Introduction LTC Insurance Model Estimation Method Results Conclusion References

Long-Term Care Insurance Model

I Actuarial calculation in discrete time at the valuation time 0 for a s-year old
insured.

I Actuarial value of premium payments

a1 (s; Z (s)) =
ω−s−1∑
τ=0

vτp11 (s, s + τ ; Z (s))π.

I Actuarial values of annuity payments in state h = 1, 2

Ah (s; Z (s)) =
ω−s−1∑
τ=0

vτph2 (s, s + τ ; Z (s))B.

I Under the Markov assumption, we can estimate phj (t) = phj (t − 1, t), and
then use the Chapman-Kolmogorov equations.

I Calculating these probabilities is not simple without the Markov
assumption. For state 1, we suppose that it’s verified (no previous state).
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Non-Parametric Transition Probabilities
I Based on de Uña-Álvarez and Meira-Machado (2015) and Guibert and

Planchet (2016)

I Introduce S, the lifetime in healthy state, and T, the overall lifetime.

I Let C and L be a right-censoring and a left-truncation variables. Truncation
only occurs in state 1.

I Suppose (C, L) |= (S, T, Z) and C |= L. If L ≤ S, we observe{
S̃ = min (S,C) and γ = 1{S≤C},

T̃ = min (T,C) and δ = 1{T≤C}.

Consistent estimators of transition probabilities

By selecting individuals in L1
s =

{
i : S̃i > s

}
, we have

p̂11 (s, t) = 1− Ĥ1
s (t) , p̂12 (s, t) = Ĥ1

s (t)− F̂1
s (t) ,

with Ĥ1
s (t) and F̂1

s (t) be the Kaplan-Meier c.d.f of S and T on L1
s (Tsai et al.,

1987).
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How Calculate Jackknife Pseudo-Values?

Let n1
s , the number of individuals alive and not truncated at time s.

1 For each individual i ∈
{

1, . . . , n1
s
}

, remove i from the sample

2 Compute probabilities of interest on this subsample of cardinal
(
n1

s − 1
)

p̂(−i)
11 (s, t) and p̂(−i)

12 (s, t)

3 Compute their jackknife pseudo-values

n1
s p̂11 (s, t)−

(
n1

s − 1
)

p̂(−i)
11 (s, t)

and
n1

s p̂12 (s, t)−
(

n1
s − 1

)
p̂(−i)

12 (s, t)
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Dynamic Pseudo-Values

I Define a set of landmark time points S = {s1, . . . , sK} and, for each sk, a
grid of points Tsk .

I Let be a (multivariate) parameter θ = E [f (S, T)] for some function f . For
varying landmark time points s and for several prediction points t, our aim
is to construct a regression GLM model of the form

θi = E [f (Si, Ti) | Zi] = g−1
(
β>Zi

)
,

with g, an invertible link function.

I For each landmark s, define the jackknife pseudo-values for individual i at
each time t ∈ Ts → responses in the regression model.

h→ j f hj
st Pseudo-values Selection

p11 (s, t) 1{S>t} θ̂11
ist = n1

s p̂11 (s, t)−
(
n1

s − 1
)

p̂(−i)
11 (s, t) L1

s

p12 (s, t) 1{S≤t} − 1{T≤t} θ̂12
ist = n1

s p̂12 (s, t)−
(
n1

s − 1
)

p̂(−i)
12 (s, t) L1

s

I Stacked models for each transition h→ j: hj index is suppressed to
simplify.
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Regression Approach

I Idea: If landmark times are close enough, the effect of covariates should
vary smoothly over s. Our approach is inspired by the dynamic regression
model developed by Nicolaie et al. (2013).

I Consider f = (fst, s ∈ S, t ∈ Ts), θi = (θist, s ∈ S, t ∈ Ts) and a link

θist = g−1
(
β (s)> Zit (s)

)
.

I Each component l of the vector β (s) can be written as a polynomial
function βl (s) = βl

>ql (s).

I We consider simultaneously all landmarks, which can now interact with
covariates. Polynomial function can depend on time s and time t.
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Regression Approach

I The vector β, such that β (s) = Q (s)β, is estimated using the GEE
approach (Liang and Zeger, 1986), i.e. by resolving the score equation

U (β (s)) =
∑

i

(
∂

∂β (s)
θis

)
M−1

i

(
θ̂is − θis

)
= 0

I A working covariance matrix Mi should be fixed (e.g. independance, AR1).
To have consistent results, we follow Nicolaie et al. (2013) and choose an
independence working correlation matrix.

I Model selection can be done using the QIC criteria (Pan, 2001).

I Variance of β̂ (s) is obtained by using a sandwich estimator.

I Convergence and asymptotic normality of β̂ (s) is not formally
demonstrated here, but is undoubtedly satisfy (Graw et al., 2009).
However, performances should be investigated.

Guibert and Planchet 2017 PARTY, 8-13 January 2017 10/20



Introduction LTC Insurance Model Estimation Method Results Conclusion References

The approach of Helms et al. (2005)

I Annual transition probabilities p11 (t), p12 (t), and p23 (t) are estimated
based on the Aalen-Johansen estimator (Aalen and Johansen, 1978) for
Markov models.

I Compute the jackknife pseudo-values for these probabilities.

I Define a regression GLM model for their jackknife pseudo-values.

I Parameters are also estimated using the GEE approach.
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Insurance Data

I Individual insurance data with left-truncation (only in healthy state) and
right-censoring.

I ' 15,900 (63% of women) contracts observed on a 13-years period and
almost 47% are censored in healthy state→ only an extract of the
database to have acceptable computation times.

I Age period considered: 65-90.

I Mortality varies a lot with pathologies causing entry into dependency.
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Estimated Transition Probabilities
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Estimated Transition Probabilities
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Premiums Calculation - Markov vs. non-Markov estimation

Principle of equivalence for a s-year old insured

a1 (s; Z (s)) = A1 (s; Z (s))

I Annual payments.

I B = 1 Eur, v = (1 + 0.01)−1, Age limit= 90.
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0.07

65 70 75 80 85
Age

P
ric

e

Approach
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Non−Markov

Figure: Comparison of Premiums.
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Results for p11 (s, t) and p12 (s, t) with non-Markov specification

I S = {65, 67, . . . , 85} and, for each s, Ts = {s + 1, s + 2, . . . , 90}.
I Link tested for the GLM specification: identity, logit, clog-log.

I Set of factors tested: the arrival age t, t2 and t3, the gender, the
generation, and their interactions with age s and s2.

I Model selection: QIC, log-Lik and the number of parameters.

I Validation: Graphical analysis of residuals.

Best model specifications
I p11 (s, t):

clog-log (θist) ∼ s ∗
(
t + t2 + Gender

)
+ s2 ∗ (t + Gender) + s ∗ t3 ∗ 1{t−s>3}.

I p12 (s, t): θist ∼ s ∗ t + t ∗ Gender + s2.

I The gender’ effect is important and increases with age.

I Surprisingly, the generation has no real effect. Possible explanation: the
length of our data.
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Fitted values for p12 (s, t)
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Figure: p̂12 (s, t) - Predicted transition probabilities for men and women with associated
95% prediction intervals.
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Results for p11 (t), p12 (t) and p23 (t) with Markov specification

I t ∈ {65, 66, . . . , 90}.
I Working covariance matrix: independence and autoregressive(AR-I)

I Same analysis and set of factors.

Best model specifications

I p11 (t): clog-log (θit) ∼ t + t2 + t3 + Gender.

I p12 (t): θit ∼ t + t2 + t3.

I p23 (t): clog-log (θit) ∼ t + t2 + t3 + t4 + t5 + Gender.

I The models estimated with independent and autoregression working
covariance matrices give similar results.

I The gender’ effect is significant, but remains very small, whereas it’s
seems to be higher if we consider residuals for p11 (t) and p23 (t).

I The generation has no real effect.

Guibert and Planchet 2017 PARTY, 8-13 January 2017 17/20



Introduction LTC Insurance Model Estimation Method Results Conclusion References

Actuarial Application - Premiums Comparison
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Figure: Comparison of Premiums for men and women. Solid line: Markov. Dotted line:
Non-Markov.
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Conclusion

I New dynamic regression approach based on pseudo-values for the
transition probabilities of a non-Markov illness-death model.

I flexible methodologies,

I the effects of covariates are directly estimated on pseudo-values → more
interpretable.

I Measure the bias induced by the use of a Markov specification.

I New researches are need to check models’ performances and analyze the
asymptotic properties of our estimators.
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