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1. Motivation

Problem
Model and predict the abundance of tree species in the tropical

moist forest of the Congo-Basin
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On each plot :

q = 94 common tree species (abundance : count data)

In order to model and explain it :
p = 56 explanatory variables
r = 2 additional covariates

Difficulties
High level of correlation among the explanatory variables
↪→ Regularisation is needeed
Spatial observations
↪→ Necessity to take account of the dependence structure
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Previous version of SCGLR
The 2615 plots WERE ASSUMED INDEPENDENT,
although they are partitioned in 22 natural groups (forest

concessions)
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Our new version of SCGLR
Takes into account the dependence stucture
↪→ Within-group dependence modelled by a random effect
↪→ Multivariate GLMM
High correlations among the explanatory variables
↪→ Supervised component-based regularisation
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2. The Mixed-SCGLR method

General principle
Construction of the component
Algorithm

We focus on the single component model estimation
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Responses

Yn×q : matrix of q responses y1, . . . , yq

Design matrices

Xn×p : explanatory variables (many and redundant)
Tn×r : additionnal covariates (few, no redundancy)
Un×N : design matrix of the random effects

Our linear predictors in the GLMM framework

For each k ∈ {1, . . . , q},

ηkξ = (Xu)γk + Tδk + Uξk

ξk
ind.∼ NN

(
0, Dk = σ2k IdN

)
, withN the number of groups
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Link function g

ηkξ = g
(
µkξ

)
with µkξ = E

(
Y k | ξk

)
Working variables - classic local order 1 linearisation

g
(
yk
)
' zkξ = ηkξ + εk

with : {
E (εk | ξk) = 0

V (εk | ξk)
not.
= W−1k

"Linearised" model

zkξ = (Xu)γk + Tδk + Uξk + εk, with εk ∼ N
(
0,W−1

k

)
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"Linearised" model

zkξ = (Xu)γk + Tδk + Uξk + εk

Alternated procedure

Given γk, δk, ξk and σ2k, we calculate the component f = Xu

Given u, we estimate γk, δk, ξk and σ2k
Several possibilities :

i Direct maximum likelihood estimation
ii Expectation-Maximisation algorithm
iii . . .
iv Henderson system (more efficient)
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Henderson systems

Given f = Xu, for each k ∈ {1, . . . , q} :f
′Wkf f ′WkT f ′WkU

T ′Wkf T ′WkT T ′WkU

U ′Wkf U ′WkT U ′WkU +D−1k


γkδk
ξk

 =

f
′Wk z

k
ξ

T ′Wk z
k
ξ

U ′Wk z
k
ξ


and

σ2k ←
ξ′k ξk

N − 1
σ2
k
tr (Ck)
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Goodness-Of-Fit

minRSS ⇐⇒ max
u′u=1

{
ψ(u) =

q∑
k=1

∥∥∥Π〈Xu,T 〉 z
k
ξ

∥∥∥2
Wk

}

Structural Relevance

Classic dual PCA : max
u′u=1

p∑
j=1
ρ2(Xu, xj)

Generalisation : max
u′u=1

φ(u) =

(
p∑
j=1

[
ρ2(Xu, xj)

]l)1
l


Compromise between both criterions

max
u′u=1

[ψ(u)]1−s [φ(u)]s with s ∈ [0, 1]
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Geometry of the Structural Relevance criterion
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Mixed-SCGLR algorithm (single component)

Data : X, T , Y
Result : Single component model estimation

Initialise the working variables zkξ , the weighting matrices Wk,
and the variances σ2k
while 〈 convergence not achieved 〉 do

u← arg max
u′u=1

[ψ(u)]1−s [φ(u)]s

f ← Xu
for k = 1 to q do

Estimate parameters γk, δk, ξk (Henderson system) and σ2k
Update zkξ and Wk

end
end
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3. Simulation study

Data simulation
Comparison with Ridge- and Lasso- based regularisations

The simulation and comparison are limited to the Gaussian case

Jocelyn CHAUVET Mixed-SCGLR – JDS 2016



Motivation
The Mixed-SCGLR method

Simulation study
Application to real data

Data simulation
Comparison with Ridge- and Lasso- based regularisations

Random responses

Multivariate framework with only two responses : Y =
[
y1|y2

]

Fixed effects
No additional covariates : T = ∅
30 explanatory variables N (0, 1) :

X = x1 . . . . . . . . . x15︸ ︷︷ ︸
bundleX1

↪→ predict y1

x16 . . . . . . x25︸ ︷︷ ︸
bundleX2

↪→ predict y2

x26 . . . x30︸ ︷︷ ︸
bundleX3

↪→ noise

Within each bundle :

cor(xj , xk) =

{
1 si j = k

τ si j 6= k
with τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
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Random effects
N = 10 groups, R = 10 units per group (n = 100 individuals)
↪→ Design matrix U = IdN ⊗ 1R

Model {
y1 = Xβ1 + Uξ1 + ε1

y2 = Xβ2 + Uξ2 + ε2

with, ∀k ∈ {1, 2} ,∀i ∈ {1, . . . , n} :
ξk,i ∼ N (0, 1)

εk,i ∼ N (0, 1)

Number of simulations
M = 100 samples for each value of τ .
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LMM-Ridge (Univariate framework)

Eliot, M., Ferguson, J., Reilly, M.P. and Foulkes, A.S. (2011)
Ridge Regression for Longitudinal Biomarker Data.

↪→ Estimation : EM algorithm
↪→ GCV at each step to find the best shrinkage parameter λ

GLMM-Lasso (Univariate framework)

Groll, A. and Tutz, G. (2014) Variable Selection for Generalized
Linear Mixed Models by L1-Penalized Estimation.

↪→ Laplace approximation of the likelihood
↪→ Estimation : efficient coordinate gradient descent
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Optimal regularisation parameters (10-folds CV)

(G)LMM-Lasso LMM-Ridge Mixed-SC(G)LR
shrinkage
parameter
λ?

lasso

shrinkage
parameter
λ?

ridge

numpber of
component
K?

tuning
parameter
s?

τ = 0.1 65 24 25 0.50
τ = 0.3 92 54 5 0.58
τ = 0.5 124 73 3 0.70
τ = 0.7 163 78 3 0.73
τ = 0.9 175 85 2 0.80
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Robust comparison criterion : Mean Upper Relative Error (MURE)

MURE =
1

M

M∑
m=1

max


∥∥∥β̂(m)

1 − β1
∥∥∥2

‖β1‖2
,

∥∥∥β̂(m)
2 − β2

∥∥∥2
‖β2‖2



MURE’s associated with the optimal parameter values

LMM (no
regularisation)

(G)LMM-
Lasso

LMM-
Ridge

Mixed-
SC(G)LR

τ = 0.1 0.12 0.05 0.08 0.12
τ = 0.3 0.33 0.12 0.13 0.10
τ = 0.5 0.61 0.20 0.16 0.07
τ = 0.7 1.32 0.25 0.20 0.06
τ = 0.9 4.62 0.26 0.31 0.05
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Example of scatterplots for τ = 0.5 :
Component planes (1,2) & (1,3).
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4. Application to real data

The Genus dataset
n = 2615 developped plots, divided in
N = 22 forest concessions (considered as groups)
q = 94 common tree genera (responses Y )
p = 56 explanatory variables (X)
r = 2 additional covariates (T )
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Modelisation
Abundance of tree species : count data

↪→ Poisson regression with log link

∀k ∈ {1, . . . , q} , yk ∼ P

exp

K?∑
j=1

(
Xuj

)
γk,j + Tδk + Uξk



Optimal number of components K?

K? = arg min
K

AveNRMSE =
1

q

q∑
k=1

√√√√ 1

n

n∑
i=1

(
yki − ŷki
ȳk

)2

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AveNRMSE’s as a function of the number of components
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Improvement in correlations of predictions and responses

Jocelyn CHAUVET Mixed-SCGLR – JDS 2016



Motivation
The Mixed-SCGLR method

Simulation study
Application to real data

Component planes (1,2) & (2,3)
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Mixed-SCGLR
is a powerful trade-off between

i multivariate GLMM
ii component-based methods

reveals the multidimensional explanatory and predictive
structures
facilitates the interpretation of the model

Further development

Mixed-SCGLR for longitudinal data : AR(p) random effect
Spatial autocorrelation random effect
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