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1. Motivation

Model and predict the abundance of tree species in the tropical
moist forest of the Congo-Basin
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Motivation

On each plot :

@ g = 94 common tree species (abundance : count data)

In order to model and explain it :
@ p = 56 explanatory variables
e r = 2 additional covariates
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On each plot :

@ g = 94 common tree species (abundance : count data)

In order to model and explain it :
@ p = 56 explanatory variables
e r = 2 additional covariates

Difficulties

@ High level of correlation among the explanatory variables
< Regularisation is needeed

@ Spatial observations
> Necessity to take account of the dependence structure
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Motivation

Previous version of SCGLR

The 2615 plots WERE ASSUMED INDEPENDENT,
although they are partitioned in 22 natural groups (forest
concessions)
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Motivation

Our new version of SCGLR

@ Takes into account the dependence stucture

< Within-group dependence modelled by a random effect
<> Multivariate GLMM

@ High correlations among the explanatory variables
< Supervised component-based regularisation
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General principle
Construction of the component
Algorithm

The Mixed-SCGLR method

2. The Mixed-SCGLR method

@ General principle
@ Construction of the component
@ Algorithm

We focus on the single component model estimation

Jocelyn CHAUVET Mixed-SCGLR — JDS 2016



General principle
Construction of the component
Algorithm

Responses

o Yy, xq : matrix of ¢ responses y',...,y4

Design matrices

@ X,,xp : explanatory variables (many and redundant)

The Mixed-SCGLR method

o T, : additionnal covariates (few, no redundancy)

@ U,xnN : design matrix of the random effects
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General principle
Construction of the component
Algorithm

The Mixed-SCGLR method

Responses

o Yy, xq : matrix of ¢ responses y',...,y4

Design matrices

@ X,,xp : explanatory variables (many and redundant)
o T, : additionnal covariates (few, no redundancy)

@ U,xnN : design matrix of the random effects

Our linear predictors in the GLMM framework
For each k € {1,...,q},

nE = (Xu)yk + Tor + Uk
& ok N (0, Dy = o7, IdN) , with IV the number of groups
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General principle
Construction of the component
Algorithm

The Mixed-SCGLR method

Link function g

=g (u’g) with pf = E (Y*] &)

Working variables - classic local order 1 linearisation

9 (y*) = 2§ =ng + ex

with :
E (e | &) =

V(ex| &) 'S

e o

. Wk_l
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General principle
Construction of the component

The Mixed-SCGLR method

Algorithm

Link function g

=g (u’g) with puf = E (Y*| &)

Working variables - classic local order 1 linearisation

9(y*) =~ 2§ =nf + e
with :

not.

{E(5k| &) =0
Vel &) = W'

" inearised" model

zé“ = (Xu)vk + Tk + U&k + €k, withep ~ N (0, Wk_l)
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General principle
Construction of the component

The Mixed-SCGLR method

Algorithm

" inearised" model

Zf = (Xu)ye + Tér + Uk + €k

Alternated procedure

o Given 7y, 0k, & and o2, we calculate the component f = Xu

o Given u, we estimate v, oz, & and 013
Several possibilities :
i Direct maximum likelihood estimation
ii Expectation-Maximisation algorithm
T I
iv. Henderson system (more efficient)

Jocelyn CHAUVET Mixed-SCGLR — JDS 2016



General principle
Construction of the component
Algorithm

The Mixed-SCGLR method

Henderson systems

Given f = Xu, foreach k € {1,...,q} :

FWif fWT  fWU o Wi 2
T'Wif T'W,T T'W,,U o | = | T'Wy 2§
UWif UWRT UWiU+ D) \ék U'Wy, 2§
and ,
Ul% « §k gk

N — UigtT (Ck)
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General principle

The Mixed-SCGLR method Construction of the component

Algorithm

Goodness-Of-Fit

:

min RSS <= max P(u) = Z HH Xu,T) zg
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General principle
Construction of the component

The Mixed-SCGLR method
Algorithm

Goodness-Of-Fit

min RSS <— max {'w(u) = Z HH Xu,T) zg )2 }

Structural Relevance

o Classic dual PCA : max Zp (Xu,x)

uw'u=1

&=

p )
o Generalisation : max d(u) = X [pP(Xu, wﬂ)]l
u/u= =1
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General principle

The Mixed-SCGLR method Construction of the component

Algorithm

Goodness-Of-Fit

min RSS <— max {'w(u) = Z HH Xu,T) zg

o)
k
Structural Relevance

o Classic dual PCA : max Zp (Xu,x)

uw'u=1

p )
o Generalisation : max d(u) = X [pP(Xu, wﬂ)]l
u/u= =1

Compromise between both criterions

max [(w)] " [$(w)]*  with s € [0,1]
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General principle

The Mixed-SCGLR method Construction of the component

Algorithm

Geometry of the Structural Relevance criterion

<u> =8 =l

Jocelyn CHAUVET Mixed-SCGLR — JDS 2016



General principle
Construction of the component
Algorithm

The Mixed-SCGLR method

Mixed-SCGLR algorithm (single component)

Data: X, T,Y
Result : Single component model estimation

Initialise the working variables zg, the weighting matrices W,

and the variances al%

while ( convergence not achieved ) do
u  argmax [$(u)]' " [$(w)]°

uw'u=1
f+ Xu
for k=1 to g do
Estimate parameters 7y, 0k, & (Henderson system) and o}
Update zf and Wy
end
end
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Data simulation
Simulation study Comparison with Ridge- and Lasso- based regularisations

3. Simulation study

@ Data simulation
@ Comparison with Ridge- and Lasso- based regularisations

The simulation and comparison are limited to the Gaussian case
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Data simulation

Simulation study Comparison with Ridge- and Lasso- based regularisations

Random responses

Multivariate framework with only two responses : Y = [y!|y?]
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Data simulation
Simulation study Comparison with Ridge- and Lasso- based regularisations

Random responses

Multivariate framework with only two responses : Y = [y!|y?]

Fixed effects

o No additional covariates : T' = 0
@ 30 explanatory variables A/(0,1) :

X =z ........ P 210 x2® %6 230

bundle x bundle x,  bundle x5
s predicty® < predicty? < noise

@ Within each bundle :

. 1 17=%k
cor(@d, aFy = ¢ Y with = € {0.1,0.3,0.5,0.7,0.9}
T sij#£k
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Data simulation

Simulation study Comparison with Ridge- and Lasso- based regularisations

Random effects

N = 10 groups, R = 10 units per group (n = 100 individuals)
<>  Design matrix U = Idny Q 1r
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Data simulation

Simulation study Comparison with Ridge- and Lasso- based regularisations

Random effects

N = 10 groups, R = 10 units per group (n = 100 individuals)
<>  Design matrix U = Idny Q 1r

y! = XB1+Ué + &1
y2 = XB2+ U + e
with, Vk € {1,2},Vi e {1,...,n}:
° fk,ZNN(Ov 1)
o Ek,iNN(O, 1)

Number of simulations

M = 100 samples for each value of 7.
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Data simulation
Simulation study Comparison with Ridge- and Lasso- based regularisations

LMM-Ridge (Univariate framework)

[d Eliot, M., Ferguson, J., Reilly, M.P. and Foulkes, A.S. (2011)
Ridge Regression for Longitudinal Biomarker Data.

<  Estimation : EM algorithm

<>  GCV at each step to find the best shrinkage parameter A
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Data simulation
Simulation study Comparison with Ridge- and Lasso- based regularisations

LMM-Ridge (Univariate framework)

[d Eliot, M., Ferguson, J., Reilly, M.P. and Foulkes, A.S. (2011)
Ridge Regression for Longitudinal Biomarker Data.

<  Estimation : EM algorithm

<>  GCV at each step to find the best shrinkage parameter A

GLMM-Lasso (Univariate framework)

[4 Groll, A. and Tutz, G. (2014) Variable Selection for Generalized
Linear Mixed Models by L1-Penalized Estimation.

<  Laplace approximation of the likelihood

<  Estimation : efficient coordinate gradient descent
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Data simulation
Simulation study Comparison with Ridge- and Lasso- based regularisations

Optimal regularisation parameters (10-folds CV)

(G)LMM-Lasso LMM-Ridge Mixed-SC(G)LR
shrinkage shrinkage numpber of tuning
parameter parameter component parameter

>‘I*asso A:idge K* s*
7=0.1 65 24 25 0.50
7=0.3 92 54 5 0.58
7=0.5 124 73 3 0.70
T=0.7 163 78 3 0.73
7=09 175 85 2 0.80
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Data simulation

Simulation study Comparison with Ridge- and Lasso- based regularisations

Robust comparison criterion : Mean Upper Relative Error (MURE)

MR = L 3 \(35m)—51\12 HBQW)_ﬂQHQ
_Mmzzlmax E T
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Data simulation

Simulation study Comparison with Ridge- and Lasso- based regularisations

Robust comparison criterion : Mean Upper Relative Error (MURE)

() I
(13— 1822

MURE = Z max

MURE's associated with the optimal parameter values

LMM (o (G)LMM-  LMM- Mixed-
regularisation) Lasso Ridge SC(G)LR
7=0.1 0.12 0.05 0.08 0.12
T=0.3 0.33 0.12 0.13 0.10
T=0.5 0.61 0.20 0.16 0.07
T=0.7 1.32 0.25 0.20 0.06
7=0.9 4.62 0.26 0.31 0.05
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Data simulation

Simulation study Comparison with Ridge- and Lasso- based regularisations

Example of scatterplots for 7 = 0.5 :
Component planes (1,2) & (1,3).

Correlation plot Correlation plot

ser2 (10.46 %)
serd (1015 %)

scr (27.29 %) ' C sor (27.20%)
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Application to real data

4. Application to real data

The Genus dataset

@ n = 2615 developped plots, divided in
NN = 22 forest concessions (considered as groups)

@ g = 94 common tree genera (responses Y')
@ p = 56 explanatory variables (X))
e r = 2 additional covariates (T)
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Application to real data

Modelisation

Abundance of tree species : count data
<> Poisson regression with log link

K*
Vk e {1,...,q}, y* ~P | exp Z(Xuj)’yk’j—i—Ték—i—U{k
j=1
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Application to real data

Modelisation

Abundance of tree species : count data
<> Poisson regression with log link

K*
Vk e {1,...,q}, y* ~P | exp Z(Xuj)’yk’j—i—Ték—i—U{k
j=1

Optimal number of components K*

1 1 1 n yk = @k x
K* = argmin{ AveNRMSE = - Z = Z <>

o
K Tia\"= N Y
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Application to real data

AveNRMSE's as a function of the number of components
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Application to real data

Improvement in correlations of predictions and responses

CORRELATIONS
PREDICTIONS / REAL DATA

08

Correlations

0.8
I

05

04

T T
SCGLR MixedSCGLR
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Application to real data

Component planes (1,2) & (2,3)

Correlation plot Correlation plot
Z =
@
= &
Ko @0
5 :
sl (3822%) . .  scr2(2088%)
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Application to real data

Mixed-SCGLR

@ is a powerful trade-off between

i multivariate GLMM
ii component-based methods

@ reveals the multidimensional explanatory and predictive
structures

o facilitates the interpretation of the model
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Application to real data

Mixed-SCGLR

@ is a powerful trade-off between

i multivariate GLMM
ii component-based methods

@ reveals the multidimensional explanatory and predictive
structures

o facilitates the interpretation of the model

Further development

@ Mixed-SCGLR for longitudinal data : AR(p) random effect

@ Spatial autocorrelation random effect
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Application to real data
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Application to real data
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