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A methodology has been proposed for statistical characterization of transport behavior of a typical ran-dom fibrous medium, i.e. the Chopped Strand Mat

 

(CSM). For any given digital images of fabric sample, statistical description of the random microstructure is employed to evaluate the permeability field, in

 

the framework of the statistical continuum approach. By choosing suitable sampling strategy, the evaluated permeability field can be used to predict

 

the
realistic fluctuation in the flow pattern in the RTM mold-filling process with a high accuracy, as validated by the radial injection experiments. The method
can be generalized to other random fibrous media. Using a database of CSM samples, statistical characteriza-tion of fiber volume fraction and permeability
fields is performed respectively. Important statistical prop-erties, e.g. the RVE size, marginal PDF and correlation length have been provided for the
transport

 

properties

 

of

 

the

 

CSM,

 

as

 

the

 

basis

 

for

 

the

 

input

 

data

 

for

 

stochastic

 

simulation of composite processing.

1. Introduction

The Chopped Strand Mat (CSM), manufactured by stitching a
random distribution of chopped strands of glass fiber into a uni-
form mat, is a common reinforcement of composite parts with sup-
posed in-plane isotropic mechanical properties. Compared to
traditional woven textiles, no unit periodic pattern can be observed
for a random medium due to the disorderly oriented fibers forming
a network of pores with arbitrary size, form and distribution. The
manufacturing of composites using CSM reinforcement requires
the use of resin injection techniques such as any of the Liquid Com-
posite Molding (LCM) for instance. During such process, the resin
flows within the fibrous medium. This stage is widely modeled
and simulated using Darcy’s law:

q ¼ �K
l
rp ð1Þ

where q is the Darcy’s velocity, l is the viscosity, K is the Darcian
permeability and p the fluid pressure.

Modeling such injection-based manufacturing requires a good
knowledge of the permeability K. It is a fundamental property of
the fibrous reinforcement whose accurate prediction is necessary
for design and simulation of processing. The permeability can

either be measured experimentally or calculated using numerical
simulations. On the one hand, measurements have been shown
to be a tedious task which still shows high discrepancies [1]. Also
the question of sample size remains opened. On the other hand,
a simulation method requires to solve a Stokes (or Brinkman) flow
solution using a finite element model approximating the realistic
fibrous microstructure to evaluate the permeability [2,3]. In this
case, the numerical domain is smaller than the experimental sam-
ple size and should be representative of the fibrous microstructure.
As a result, the numerical calculation of permeability of reinforce-
ments displaying periodic or quasi periodic structures appears eas-
ier than for random media. Therefore an appropriate technique
should be used to define or estimate the microstructure of the do-
main in which the calculation should be performed.

Empirical formula for effective permeability of pore networks
has been proposed for random porous media composed of distinc-
tive pore and solid phases (e.g. rock) based on the statistical infor-
mation obtained from digital images [4]. However, the validity of
such empirical formula often depends on the length scale of the
pore structure. Since the porous medium of CSM is multi-scale
(e.g. 20 lm for glass fibers and few millimeters for chopped yarns)
more generic homogenization techniques with statistical features
could be employed.

More generally, the permeability is not spatially constant in a
sample or in a preform. There is an inherent variability contained
within the sample and its microstructure because of the fibrous
reinforcement manufacturing or handling. This microstructural
variability will lead to fluctuations in transport properties,
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manufacturing and mechanical properties. A previous study
focused on the propagation of the variability during the injection
stage of composites manufacturing [9]. This present study is
devoted to characterizing the variability of CSM (non-woven mate-
rials) which is required input for stochastic simulation tools.

The approach followed in this study will address the variability
of both microstructure and permeability of CSM. The methodology
is based on fibrous reinforcement digital imaging coupled with two
techniques to estimate permeability from images. In Section 2, the
materials and experimental procedures are detailed. Next in Sec-
tion 3, the treatment of digital images, including the sampling
method and statistical characterization of the random microstruc-
ture, are explained. The obtained statistical properties are em-
ployed in two different modeling approaches of effective
permeability field prediction. In parallel the validation by means
of the mold-filling simulation and the discussion on the effect of
the representative volume element (RVE) on the results is given.
Based on the validated evaluation method, the statistical proper-
ties of the permeability field are quantified in Section 4.

2. Materials and experimental procedure

The material used in this study is a CSM (M705450, Owens
Corning) composed of E-glass fibers with an areal weight of
457 g/m2 (coefficient of variation CV = 5%). A total number of 37
samples of size 0.265 m � 0.265 m are randomly selected in a roll
as realizations of the random fabric.

Digital grayscale images of each sample were acquired using a
lightbox device [5]. The CSM sample is placed on top of a transpar-
ent PMMA platen. White light comes from below the platen and
illuminates the sample. Above the sample, a digital camera records
the transmitted light as grayscale images. Local higher areal
weights hinder light transmission creating dark regions, smaller
areal weights do not block the light leading to brighter areas. Then
image processing is performed to correct the barrel distortion and
to remove any uneven lighting (Fig. 1a). Also a calibration relation-
ship is used to related pixel intensity to the CSM areal weight [5].

Once the microstructure of each CSM sample has been recorded,
the samples are then subjected to a central injection experiment.

The injection is realized with a mineral oil whose viscosity is
0.2 Pa s. The injection pressure is kept constant at Pinj = 0.05 MPa.
The thickness of the mold cavity is adjusted to maintain an average
fiber volume fraction Vf at 38% (±0.6%). The bottom mold platen is
made of glass and allows image recording. During the injection of
each sample, several images are recorded. After appropriate image
processing, the transient flow front evolution is extracted. To ease
the reading of fluctuations, the flow fronts (close to circles in the
Cartesian coordinates Fig. 1a) are plotted in cylindrical coordinates
(h,r) (Fig. 1b). The flow front profiles will be used in Section 3 of
this article to perform validation.

3. Effective Darcian permeability evaluation

The main objective of this section is to calculate the permeabil-
ity field of each sample from the images. Two routes are investi-
gated. First, for the so-called route A, the permeability is
calculated from local fiber volume fraction combined with the Koz-
eny–Carman model. Second, for the route B, the 1- and 2-point
probability density functions (PDFs) are used with the continuum
statistics. In parallel, permeability fields obtained from the two
techniques are used as inputs in injection simulations and com-
pared with experimental injections.

3.1. Kozeny–Carman model

The fiber volume fraction Vf is known to be the dominant factor
for the overall flow resistance of fibrous media. The Kozeny–
Carman (K–C) model of the isotropic permeability K as a function
of Vf is given as:

K ¼ ð1� Vf Þ3

5S2
0V2

f

ð2Þ

where S0 is a shape factor.
For the sake of simplicity, NI = 1 in this section. In this section,

the digital grayscale images obtained from the lightbox are used. In
order to obtain a permeability field, a sampling strategy (Fig. 2) is
defined on the original grayscale image (of size N2 in pixels) where
N = U � NI � NA, where (UNI)2 in pixels is the size of a sampling re-
gion S and N2

A is the number of sampling regions in the image. In
the end, the permeability field will be of size N2

A. The grayscale lev-
els are average in each sampling region and the calibration formula
given by [5] is used to calculated fiber volume fraction.

Fig. 1a. Superposition of fabric (background) and experimental flow front positions
(black solid lines) detected with the CCD camera. Fig. 1b. Experimental flow front positions in radial coordinates.
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As the K–C model is derived by modeling the pore structure as a
bundle of ducts through which the flow is described by a general-
ized Poiseuille equation, the sampling region must be large enough
to be a porous medium. Also considering the calibration range of
the lightbox, the smallest length of a sampling region is estimated
as 14 pixels (i.e. 3.2 mm) [5], resulting in a field containing 83 � 83
permeability values.

If the shape factor of Eq. (2) is assumed identical for close Vf, the
ratio between two permeabilities Ke and K0 can be expressed as:

Ke

K0
¼ ð1� Vf Þ3

ð1� Vf 0Þ3
ðVf 0Þ2

ðVf Þ2
ð3Þ

The average value of K0 at the fiber volume fraction of Vf0 has been
obtained from the injection tests performed on the 37 samples.
Therefore, the permeability Ke of a region of Vf can be easily deduced
using Eq. (3).

The permeability field is used as one of the input to solve
Darcy’s equation to simulate the experimental injection test that
has been performed on each CSM sample.

To assess the effect of the permeability field, the radial injection
test (at constant injection pressure) is simulated using a MATLAB
code combining the FEM and the Level Set technique for modeling
the moving flow front [9]. The simulated flow pattern is compared
with the corresponding experimental results, in terms of the flow
front radii R(hi) as function of direction hi e [0, 2p] at different time
instants (when the flow front is recorded in experiments). In
Fig. 3a, the permeability field (normalized by the overall equivalent
value) and corresponding flow pattern are displayed for the small-
est sampling size of 14 pixels (3.2 mm). Although overall trend can
be captured, some of the major fluctuations in the final flow front
are missed by simulation. The same results are given for a larger
sampling size of 20 pixels (4.6 mm) in Fig. 3b. As expected, increas-
ing the sampling region size (i.e. smoothing spatial variability) in-
creases the absolute error on the flow front positions (3.35% and
5.16% for 14 and 20 pixels respectively). One could argue that
the sampling region size should be reduced, but the validity of Koz-
eny–Carman formula and Darcy’s law requires region which con-
tain enough fibers. Also, since the K–C model cannot account for

the local anisotropy due to the clustering effect, statistical contin-
uum approach is investigated.

3.2. Statistical continuum approach

3.2.1. Image sampling
For numerical efficiency, the image is divided in single-phase

units of U � U pixels (an example value U = 3 is used as illustra-
tion). Therefore, details on the scale less than U pixels are ne-
glected. The pixel grayscale values are averaged within each unit.
Details of the sampling and procedure are detailed in Fig. 4. Due
to the nature of the statistical continuum approach, the large
CSM images have to be represented as a random two-phase med-
ium (U0 and U1). A threshold transformation is applied to the gray-
scale image to become a binary (two-phase) image (IU) whose size
is (NINA)2. The images have been divided into phase units and sam-
pling regions in order to be able to check the influence of the sam-
pling on the final results. The random microstructure in IU is
described by a phase function h:

hðxÞ ¼
0 x 2 U0

1 x 2 U1

�
ð4Þ

where x denotes a unit, U0 and U1 denote the two phases. Since the
fiber diameter (20 lm for glass) is much smaller than the scale of a
unit (0.7–0.9 mm for U = 3), the two phases are both porous with
lower V0 (for U0) or higher V1 (for U1) fiber volume fractions. As
IU is not unique, the threshold is chosen such that the two phases
have equal (or very close) numbers of units.

The fiber volume fractions Vi of phases Ui (i = 0,1) are not un-
ique. However, if the criteria:

� the overall Vf satisfies the measured areal weight,
� Vi and the average intensity of pixels covered by phase Ui satis-

fies the calibration formula of the lightbox apparatus [5],
� Vi should not be far from the average Vf of CSM, so as that both

phases are porous media,

are followed, a unique set of V0 and V1 can be found.

Fig. 2. Schematic of image sampling (U = 4, NI = 1, NA = 5) and procedure of route A.
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(a) Sampling length 14 pixels (3.2 mm) –

NA=83 - Error=3.35%

(b) Sampling length 20 pixels (4.6 mm) –

NA=58 - Error=5.16%

Fig. 3. Normalized permeability field (top) and flow pattern (bottom) (legend in flow pattern: line: experimental values; stars: simulated values) at normalized times:
[0.0360, 0.1440, 0.2519, 0.3599, 0.4679, 0.5758, 0.6838, 0.7892, 0.8920] following route A.

Fig. 4. Schematic of image sampling (U = 3, NI = 4, NA = 5) and procedure of route B.
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3.2.2. One-point probability density function
According to [6], for a given sampling region S, the 1-point PDF

Pi is the ratio between the number of units of the phase Ui divided
by the total number of units in S. Pi represents the probability of
any point occurring in the phase Ui. Obviously, a constraint exists
as P0 + P1 = 1. Since the fiber volume fraction is a dominant factor
on the permeability of a fibrous medium, it has to be calculated
from the 1-point PDF. Therefore, the effective fiber volume fraction
Vf in a sampling region (S) is estimated as:

Vf ðSÞ ¼ V0P0 þ V1P1 ð5Þ

with V0 and V1 calculated as mentioned in Section 3.2.2.

3.2.3. Two-point probability density function
A heterogeneous microstructure can be completely character-

ized by the n-point PDFs [6] defined as the probability of n
(n = 1,2, . . .) points existing in a certain combination of phases.
The two-point PDF is most significant for capturing the major clus-
ters. For two points x and x0 in the sampling regions S, the two-
point PDF Pij(x, x0) is defined as the probability of the vector x � x0

to be located with the head x e Ui and the tail x e Uj (i, j = 0,1).
For the sake of convenience, the one-dimensional Pij(x, x0) de-

fined for a certain direction h (0 6 h < p) can be used instead, which
is a function of the distance r = |x � x0| (called the lag vector). From
the two-phase image, in each sampling region S, Pij(x, x0) can be
evaluated by accumulating the number of different states of
(x, x0) and finally normalized according to the definition of proba-
bility, i.e.

P
i;j¼0;1PijðrÞ ¼ 1. For convenience, the discrete Pij(r) data

can be fitted into appropriate analytical models, e.g. for isotropic
media [7]:

PijðrÞ ¼ PiPj þ ð�1ÞiþjP0P1 expð�cijrnij Þ ð6Þ

where the parameters cij, nij are characteristic for a certain medium,
and a correlation length can be defined as lij = 1/cij.

For illustration, consider a 30 mm � 30 mm sampling region
(Fig. 5a) with the corresponding two-phase image (Fig. 5b) gener-
ated by taking single-phase unit of size U = 3 pixels (0.7 mm). The
one-point PDF in this region is calculated as P0 = 0.4 and P1 = 0.6.
The two-point PDF Pij(r) is estimated in the x (Fig. 5c) and y
(Fig. 5d) directions, respectively. For each of the three components
(P00(r), P11(r) and P01(r) = P10(r)), data are fitted into the analytical
models in Eq. (6) (nij = 1). The convergent values Pij(1) = PiPj de-
rived from Eq. (6) are confirmed by Fig. 5c and d (P00(r) = 0.16,
P11(r) = 0.36 and P01(r) = 0.24). Besides, the correlation length de-
fined above (taking as the average value (1/c00 + 1/c01 + 1/c11)/3)
is estimated to be lx = 0.85 mm and ly = 0.7 mm (x, y denote the
horizontal and vertical directions, respectively). When more sam-
ples are analyzed, the mean correlation length is found to be about
1.03 mm in the x direction and 0.86 mm in the y direction, which
indicates a slight anisotropy for the microstructure (at least for
the length scale less than 30 mm). The correlation lengths calcu-
lated here cannot be related to the CSM microstructure because
they are directly linked to the value of U (which is a parameter cho-
sen by the user).

So far, the tools to describe the microstructure (1- and 2-point
probability density functions) have been described. In the follow-
ing, the focus will be on the permeability evaluation from the
microstructural characterization.

3.2.4. Statistical continuum approach
The statistical continuum approach, developed based on works

of Kroner [10], Adams et al. [11], Garmestani et al. [6,8], among
others, has application in predicting macroscopic behavior of het-
erogeneous materials and microstructure sensitive design. As the

current problem requires a permeability field containing distinc-
tive spatial variations from region to region, each sampling region
S is subjected to the statistical continuum approach to obtain the
formulation of effective permeability (Ke). Therefore, the formula-
tion of Ke is described first, followed by the analysis of the suitable
sampling region size.

The effective permeability in a region is commonly evaluated by
imposing a macroscopic pressure gradient rp0 on the region and
solving for the resulted localized pressure gradient field rp(x).
For any point in the region, Darcy’s law is written as:

qðxÞ ¼ �kðxÞ � rpðxÞ ð7Þ

where the constant viscosity is included in the term k = K/l for sim-
plifications of the equations. According to the two-phase definition,
the local permeability

kðxÞ ¼
k0 x 2 U0

k1 x 2 U1

�
ð8Þ

is known as the phase permeability. Assuming the anisotropy is
only induced by the clustering effect and each phase is an isotropic
medium, ki can be estimated by the K–C model using Vi (i.e. fiber
volume fraction of phase Ui).

The heterogeneous field k(x) is equivalent to a local fluctuation
field k̂ðxÞ superposed on a reference homogeneous value km:

kðxÞ ¼ km þ k̂ðxÞ ð9Þ

with the reference value taken as the volume-average of phases:

km ¼ k0P0 þ k1P1 ð10Þ

Since k̂ðxÞ is also a two-state function with values k̂ðxÞ ¼ kðxÞ � km,
its spatial distribution follows the same statistical features as the
microstructure.

Based on the above definition, the expectation of the statistical
formulation of local pressure gradient can be derived based on the
framework of the statistical continuum approach (the details are
given in Appendix A in analogy to [8]):

hrpðxÞi ¼ rp0 þ
Z

Gðx; x0Þ � hk̂ðxÞidx0
� �

rp0 ð11Þ

where h�i denotes the expectation estimated at x, G(x, x0) is the
Green operator (see Appendix A), and hk̂ðxÞi is referred to as the
two-point correlation function of k̂ðxÞ, evaluated as:

hk̂ðx0Þi ¼ fijðx0 2 Uj x 2 Uij Þk̂ðx0Þ ð12Þ

where fijðx0 2 Uj x 2 Uij Þ is the conditional two-point PDF, defined
as:

fijðx0 2 Uj x 2 Uij Þ ¼ Pijðx; x0Þ
Pi

ð13Þ

Based on the current two-phase definition of the image, the
convolution integral in Eq. (11)), accounting for the dependence
of local pressure gradient at x on all the surrounding points
x0 2 S (x0–x), is evaluated by the integration (reduced to summa-
tion as the smallest unit has a single phase) over all the points ex-
cept x:Z

Gðx;x0Þ � hk̂ðxÞidx0 ¼
X

x02S;x0–x

Gijðx; x0Þhk̂ijðx0Þi
n o

ð14Þ

where the subscript ij denotes the component of second-order ten-
sor. Substituting Eqs. (12)–(14) into Eq. (11), the expectation of lo-
cal pressure gradient is evaluated as:

hrpðxÞi ¼ rp0 þ
X

x02S;x0–x

Gijðx; x0Þ
Pijðx;x0Þ

Pi
k̂ijðx0Þ

� �
ð15Þ
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For each principal direction (e.g. x or y) of permeability, Eq. (15)
is evaluated using the one and two-point PDF in the corresponding
direction, and then substituted into Eq. (7) to get the expectation
of local flux hq(x)i. After the loop over all the single-phase units
in the sampling region, the averaged flux hq(x)i can be obtained,
from which the effective permeability (ke) can be obtained accord-
ing to:

hqðxÞi ¼ �kerp0 ð16Þ

Using the above formulation, the permeability field of the same
material sample as in Section 3.1 is evaluated and used to simulate
the radial injection process. First, the sampling parameters are cho-
sen to be U = 3 pixels (0.7 mm), the two-phase image in Fig. 6a and
NI = 12, resulting in sampling regions of size 9 mm � 9 mm. The
permeability field Kx normalized by the value (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hKxihKyi

p
) and

the distribution of anisotropic ratio (Kx/Ky) are displayed in
Fig. 6b and c, respectively. Comparing to the K–C results in Fig. 3,
much stronger fluctuation in local permeability magnitude and sig-
nificant local anisotropy can be noticed in Fig. 6b and c. This effect
is interesting because even though the sampling region size is lar-
ger in Fig. 6b (compared to Fig. 3a or b), it does not smooth the per-
meability out. Quite inversely, the local fluctuations are increased
(Fig. 6b). Comparing the simulated flow pattern (stars) to the
experimental results (lines), Fig. 6d shows that the fluctuation
along different directions can be accurately reproduced by the
numerical simulation (error or 2.32%), which means the predicted

permeability field has variations close to that of the realistic mate-
rial. Therefore the cluster-induced local anisotropy and strong fluc-
tuation are well described by the statistical continuum approach.

Since the microstructural statistics and permeability are evalu-
ated for each sampling region S by integrating over all single-phase
units, the resolution of the two-phase image (U) and size of sam-
pling region control the computational effort. For a fibrous preform
of large dimensions, the suitable sampling size should be a com-
promise between efficiency and accuracy. In order to estimate
the influence of an increase in U on the precision of the response,
two sampling cases with U = 5 or 7 pixels, respectively, are applied
on the same sample. From the corresponding permeability fields
(Fig. 7), the magnitude of fluctuation and anisotropy both de-
creases as U increases, according to the resulted flow pattern.
When the original image is resampled at a resolution of U = 5 pix-
els (1.16 mm), the magnitude of the predicted fluctuation de-
creases, but the trend can be correctly captured (error of 2.22%).
By further increasing U to 7 pixels (1.62 mm), the flow pattern is
too smooth to reproduce the minor fluctuation appeared in exper-
iments (error 3.34%), but is still acceptable if the objective is to pre-
dict the discrepancy between different directions of flow front.
Besides, the parameter NI represents the range of influence of sur-
rounding media on any local permeability value, and dictates the
computational effort. By trial of various cases, NI = 12–20 (i.e. sam-
pling region of size of 8.5–14 mm) should be a suitable choice in
that the valid two-point statistics in the sampling region can be
evaluated with relatively low computational cost.

(a) Original grayscale image
(b) Two-phase image (U=3 pixels)

(c) 2-point PDF in x direction (d) 2-point PDF in y direction

Fig. 5. Two-point PDF (for single-phase unit: 0: black, 1: white. For 2-point PDF: thick lines: experimental data; thin lines: fitted analytical model, with the same line type).
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4. Statistical analysis of fibrous properties

4.1. Representative volume element (RVE)

Comprehensive reviews of the possible definitions of the RVE
for heterogeneous media can be found, e.g. [12–14]. In some stud-
ies, the RVE size has been taken as the characteristic dimension (for
effective properties) of the microstructure which can be estimated
from results (e.g. the power spectral density function) of digital im-
age analysis [3]. More generally, the RVE size is considered as func-
tion of many parameters, e.g. sample size, allowable error, the
property of interest, etc. A generic definition of RVE size proposed
by Kanit et al. [13] is employed here.

Consider a random function Z(x) as a mapping of a phase prop-
erty. The instances of Z(x) include the fiber volume fraction field,
Vf(x) = Vi and the permeability field K(x) = k(x)/l when x e Ui.

Based on the framework of [13], the length of RVE (LRVE) for a
given relative error e (i.e. ratio of the absolute error to the mean va-
lue Z) and number of realizations (N) can be derived as [14]:

LRVE ¼ 4D2
ZAn

e2Z2N
ð17Þ

The point variance of the random process Z(x) is defined as [13]:

D2
Z ¼ P0P1ðZ0 � Z1Þ2 ð18Þ

where Pi and Zi denote the one-point PDF and the phase property (Vi

or k(hi)).
Besides, an integral range (An) is defined for Z(x) as follows [13]:

An ¼
1

CðZ;0Þ � CðZ;0Þ2
Z

Rn
CðZ; rÞ � CðZ;0Þ2
� �

dr ð19Þ

where n denotes the dimension of space, C(Z, r) is the covariance
function with the same meaning as the two-point PDF P00(r) or
P11(r) (depending on the phase in consideration) with r as the lag
distance.

Firstly, An and D2
Z are evaluated for the N samples and averaged.

Both Pij(r) and An are estimated in the x and y directions, respec-
tively. By varying the sampling size and observing the evolution,
the parameters are estimated as An = 1.32 mm (in x direction),
An = 1.04 mm (in y direction), D2

Z (V(x)) = 0.0205, D2
Z (Kx(x)) =

8.251 � 10�19 m2 and D2
Z (Ky(x)) = 5.776 � 10�19 m2. LRVE in each

direction is then estimated from Eq. (17) as a function of the rela-
tive error. As shown in Fig. 8, to obtain a relative error below 5%,
the RVE size for Vf should be larger than 10 mm � 10 mm, whereas
that for Kx (or Ky) has to be larger than 475 mm � 375 mm. The
much larger RVE size of the latter should be due to its dependence

(a) Two-phase microstructure (b) yxx KKK /

(c) Anisotropic ratio x yK K
(d) Flow pattern at normalized times [0.0388,

0.1551, 0.2715, 0.3878, 0.5042, 0.6205, 0.7368,

0.8504, 0.9612] – Error=2.32%

Fig. 6. Permeability field and simulated flow pattern following route B (U = 3, NI = 12, NA = 30) – sampling size length 9 mm.
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on the two-point statistics of microstructure. As the typical pore
size (estimated as the square root of the permeability which is ta-
ken as 3 � 10�10 m2) is on the scale of 10�2 mm, the RVE size is 3–4
magnitudes higher in length scale.

According to the physical meaning of RVE, the relationship in
Fig. 8 is expected to be approximately valid for the effective prop-
erty. In parallel, for various RVE sizes, the effective properties are
used to get the relative error between N samples, as displayed in
discrete marks in Fig. 8. Results show that, for either the fiber vol-
ume fraction or the permeability, the RVE estimated by Eq. (17)
and that estimated based on the effective property have acceptable

correspondence. However, due to the expectation operation in the
statistical continuum method (Eq. (11)), the relative error for the
effective permeability field is slightly lower than the value given
by Eq. (17), for given RVE sizes (Fig. 8b).

4.2. Marginal PDF

A reliable knowledge of the probabilistic distribution of mate-
rial properties is necessary for generating the random inputs for
stochastic simulation. By comparison, the marginal PDF is similar

(a) U=5, NI =12, NA=18) – Sampling size

length 15mm – Error=2.22%

(b) U=7, NI =12, NA =12 – Sampling size
length 22mm – Error=3.34%

Fig. 7. Influence of single-phase unit size. (top: Kx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hKxihKyi

p
; middle: anisotropic ratio Kx/Ky; bottom: flow pattern (line: experimental values; stars: simulated values) at

normalized times [0.05, 0.20, 0.35, 0.50, 0.65, 0.80, 0.95]).
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at different locations in the field, which allows the field-averaged
values of samples to be used in the further analysis.

The Maximum Entropy Principle (MEP) is a standard technique
for evaluating the accurate marginal PDF from given moments of
samples, without need of any assumption on the probabilistic
model. The permeability component is chosen for demonstration.
Due to the small magnitude (10�10 m2), the logarithmic value
Y(x) = log (K(x)) (K in m2) is the random variable to analyze, with
the PDF denoted by fY(y). The MEP is based on the theory that the
realistic PDF (fY(y)) is the one that maximizes the information en-
tropy H:

H ¼ �
Z

D
fYðyÞ logðfY ðyÞÞdy ð20Þ

subjected to the constraints of moments of different orders:

li ¼ E½Yi� ¼
Z

D
yifYðyÞdy ði ¼ 0;1; . . . ;mÞ ð21Þ

By means of the Lagrange method, the solution of the optimiza-
tion problem defined by Eqs. (20) and (21) is expressed in the
exponential form

fY ðyÞ ¼ exp �k0 �
Xm

i¼1

kiyi

!
ð22Þ

with (m + 1) Lagrange multipliers ki (i = 0–m) to solve for. For exam-
ple, the solution based on the moments of up to the 3rd order is ex-
pressed as:

fY ðyÞ ¼ expð�k0 � k1y� k2y2 � k3y3Þ ð23Þ

Substituting Eq. (23) into Eq. (20), a nonlinear system of equa-
tions of the unknown multipliers are obtained as

HðkÞ ¼ l ð24Þ

which can be solved using the Newton iterative method, i.e.:

kiþ1 ¼ ki þ ½rkHðkiÞ��1½l�HðkiÞ� ð25Þ

with the 4 � 4 Jacobian matrixrkHðkÞ evaluated by numerical inte-
gration. Using the solved multipliers, the accurate PDF of log Kx and
log Ky (K in m2) are represented as

fYðyÞ ¼
expð�2129:3�620:01y�59:797y2�1:9082y3Þ ðY ¼ logKxÞ
expð�1750:8�501:03y�47:419y2�1:4821y3Þ ðY ¼ log KyÞ

(

ð26Þ

The MEP solution of the PDF can be validated by the empirical
PDF, which can be directly estimated using common statistical
software (e.g. Statistical Toolbox of MATLAB) based on the non-
parametric models without any assumptions on the data-
producing mechanism. Besides, a chosen parametric PDF model
with the parameters calculated from the moments of the raw data
can also be compared to estimate the validity of the model. Various
PDF results are given for Vf and Kx in Fig. 9a and b, respectively. It
can be seen that both Vf and log (Kx) (log (Ky) in analogy) have a
Gaussian PDF, which means that the log-normal PDF is an appro-
priate model for the permeability component.

4.3. Correlation length

Since the marginal PDF is approximately invariant in the ran-
dom field K(x), the stationary assumption is acceptable, i.e. the
mean (lK), variance (r2

K ) and the autocorrelation function are spa-
tially independent. Therefore, a unique spatial correlation length
can be defined for the whole random field (in each direction).

The autocorrelation function, which describes the correlation
between the variations of property at any two locations with a dis-
tance r, is defined as:

RKðrÞ ¼
h½KðxÞ � lK �½Kðxþ rÞ � lK �i

r2
K

ð27Þ

Here a 1-D form is used, which can be evaluated in different
directions to describe the spatial anisotropy. Using the definition,
the autocorrelation of Kx field in the x and y directions are dis-
played for 10 samples in Fig. 10a, showing a decaying tendency
with the distance before reaching a plateau. Similar graphs can
be obtained for autocorrelation of Kx in the y direction. According
to the trend of data, an exponential model:

RKðrÞ ¼ exp � r
l

� �n
� �

ð28Þ

can be fitted, where the power n is close to 1 and the parameter l,
i.e. the correlation length (in the given direction), can be estimated
using a nonlinear regression approach. Using an individual sample
for instance, the fitted analytical model is compared to the raw data
in Fig. 10b.

Due to the scatter in microstructure, the estimated correlation
length has significant discrepancy between samples, especially
for the permeability, as displayed in Fig. 11a–c. Since the

(a) Fiber volume fraction (b) Permeability 

Fig. 8. RVE size with respect to various properties (curves: estimation using Eq. (17); marks: estimation using effective property).
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correlation length is a characteristic dimension of the microstruc-
ture, there might be a link between this dimension and the trans-
port behavior of material. The four samples with the minimum and
maximum correlation lengths are focused on. By post-processing
of the flow fronts, the standard deviation (rR) between the flow
front radii in different directions is a function of time, which is ex-
pected to increase if the flow front becomes more and more dis-
torted when moving forward. As shown in Fig. 11d, the samples
with longer correlation length has a relatively steady level of rR

as time increases, whereas those with shorter correlation length
result in a rapid increase in rR. Further study might be able to find
a definite relationship between the correlation length of random
transport property field and the evolution of fluctuation in the flow
pattern, to guide the selection of material sample to achieve a re-
quired mold-filling result.

The conclusions related to correlation length can be summa-
rized as:

(1) On average, the correlation length in the x direction is
8.9 mm, 10.1 mm and 11.3 mm for Vf, Kx and Ky, respec-
tively; while that in the y direction is 7.1 mm, 9.8 mm and

8.5 mm for Vf, Kx and Ky, respectively. The correlation length
of Kx or Ky is slightly higher than that of Vf, possibly due to
the dependence on the clustering morphology of the former.

(2) Though the currently employed sampling region size (about
12 mm) is larger than the fitted correlation length, it can be
seen (Fig. 10) that the correlation degree is still significant
within a distance of 30 mm for many samples. Therefore,
the current sampling size is acceptable.

(3) The RVE size estimated in Section 4.1 in the x direction is
slightly higher than that in the y direction (Fig. 8), which is
consistent with the correlation length. There is a propor-
tional relation between the RVE size and the correlation
length in different directions, as confirmed by [15].

(4) For any property, a stronger correlation exists in the x direc-
tion, which is the same case as the correlation length defined
from the two-point PDF of the 2-phase microstructure (Sec-
tion 3.2.3). Since all the samples are cut in the same orienta-
tion (i.e. the y direction is along the roll production and the x
direction the transverse one), the anisotropy in the correla-
tion length might be induced by the fabric generation
process.

(a) fV (b) ( )log xK /m2

Fig. 9. Marginal PDF of fiber volume fraction and permeability.

(a) Raw data for 10 samples (x direction) (b) Fitted model for one sample (x direction)

Fig. 10. Autocorrelation of permeability field Kx.
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5. Conclusions

The highly disordered microstructure of the CSM leads to diffi-
culty in the prediction of the permeability field and subsequently
of the mold-filling pattern in the LCM processes. A methodology
is developed, consisting in processing the gray-scale image of fab-
ric samples to extract the statistical characteristics of the random
microstructure, which is then incorporated in the formulation of
the effective permeability based on the statistical continuum ap-
proach adapted for Darcy’s law. The effectiveness of the prediction
method for the permeability field for the CSM has been validated
by comparing the numerical simulation of mold-filling process
with the radial injection experiments. When comparing to the tra-
ditional Kozeny–Carman model, the latter is found to be much less
accurate in filling pattern prediction, due to the lack of two-point
statistics containing clustering and anisotropic information. The ef-
fect of the sampling size on the prediction results has been
analyzed.

Using the realizations of permeability field evaluated from real-
istic CSM samples, statistical properties are estimated with the
main conclusions:

(1) To obtain a relative error below 5%, the RVE size for Vf should
be larger than 10 mm � 10 mm; whereas for Kx (or Ky), it has
to be larger than 475 mm � 375 mm.

(2) The accurate marginal PDF for Vf, Kx, Ky can be obtained in an
exponential form using the MEP. It has been shown that Vf

follows a Gaussian distribution, whereas Kx and Ky follow a
log-normal PDF.

(3) The spatial correlation of property fields indicates a slightly
dominant correlation in the x direction, possibly due to the
anisotropy in the distribution of the fiber strands generated
by the non-woven production technology.

The proposed methodology can also be applied to similar heter-
ogeneous fabric, which will be useful for optimizing the fibrous
microstructure or the production technology to generate it.

Another technique consists in the moving-window technique
combined with the generalized method of cells (GMCs) [16]. It is
based on the realistic microstructure (one realization); but the
statistical continuum approach gets effective property based on
statistical information in the sampling region.

In this paper, the task was just to obtain property field for each
sample, so both methods could have been effective. However, with

(a) Correlation length of fV  field (b) Correlation length of xK  field

(c) Correlation length of yK  field (d) Standard deviation of flow front
position evolving with time

Fig. 11. Comparison between different samples.
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statistical continuum approach, a smallest sampling region can be
taken to be more efficient.
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Appendix A

A.1. Derivation of Eq. (11) [8]

By substituting Eq. (9) into (7), the local flow rate is similarly
decomposed into a homogenized part and a fluctuating part:

qðxÞ ¼ �km � rpðxÞ þ q̂ðxÞ ðA-1Þ

with

q̂ðxÞ ¼ �k̂ðxÞ � rpðxÞ ðA-2Þ

According to the continuity equation (without internal source):

r � qðxÞ ¼ �km � r � rpðxÞ þ r � q̂ðxÞ ¼ 0 ðA-3Þ

the governing equation for local pressure is derived as

kmr2pðxÞ ¼ r � q̂ðxÞ ðA-4Þ

By means of the Green function, local pressure solution takes
the form

pðxÞ ¼ p0 �
Z
rgðx;x0Þq̂ðx0Þdx0 ðA-5Þ

or equivalently (by substituting Eq. (A-2)):

pðxÞ ¼ p0 þ
Z
rgðx;x0Þk̂ðx0Þ � rpðx0Þdx0 ðA-6Þ

with Green function

gðx;x0Þ ¼ 1
4pkmðx� x0Þ ðA-7Þ

To get the local pressure gradient, Eq. (A-6) is differentiated as:

rpðxÞ ¼ rp0 þ
Z

Gðx;x0Þ � k̂ðx0Þrpðx0Þdx0 ðA-8Þ

with the Green operator can be written in deviatoric and spherical
parts:

Gðx;x0Þ ¼ � 1
2km

Idðx� x0Þ þ 1
2pkmr2 ð2n̂n̂� IÞ ðA-9Þ

where n̂ ¼ ðx� x0Þ=r and r ¼ jx� x0j. Replacing rpðx0Þ with the first
order Taylor term, Eq. (A-8) is approximated by:

rpðxÞ ¼ rp0 þ ½
Z

Gðx;x0Þ � k̂ðx0Þdx0�rp0 ðA-10Þ

where k̂ðx0Þ is the random permeability at any x0 e V for a given
x e h. Taking the expectation of Eq. (A-10), Eq. (11) is obtained.
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