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Abstract

The time delay estimation problem associated with an ensemble of misaligned,
repetitive signals is revisited. Each observed signal is assumed to be composed of an
unknown, deterministic signal corrupted by Gaussian, white noise. This paper shows
that maximum likelihood (ML) time delay estimation can be viewed as the maximiza-
tion of an eigenvalue ratio, where the eigenvalues are obtained from the ensemble corre-
lation matrix. A suboptimal, one-step time delay estimate is proposed for initialization
of the ML estimator, based on one of the eigenvectors of the inter-signal correlation
matrix. With this approach, the ML estimates can be determined without the need for
an intermediate estimate of the underlying, unknown signal. Based on respiratory flow
signals, simulations show that the variance of the time delay estimation error for the
eigenvalue-based method is almost the same as that of the ML estimator. Initializing

the maximization with the one-step estimates, rather than using the ML estimator alone,
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the computation time is reduced by a factos&f when using brute force maximization

(M denoting the number of signals in the ensemble), and a factor of about 1.5 when
using particle swarm maximization. It is concluded that eigenanalysis of the ensemble
correlation matrix not only provides valuable insight on how signal energy, jitter, and
noise influence the estimation process, but it also leads to a one-step estimator which
can make the way for a substantial reduction in computation time.

Keywords: biomedical signals, time delay estimation, eigenanalysis, ensemble

analysis.

1. Introduction

Time delay estimation represents a classical problem in biomedical signal process-
ing, relevant for many applications such as high-resolution ECG, event-related brain
potentials, conduction estimation in electromyography, and respiratory flow signals. In
these applications, ensemble averaging, or some of its many variants [2], is applied to
achieve noise reduction. To avoid distortion in the averaging process, prior alignment
of the ensemble with similar-shaped signals is required. Another application is to sort
spikes originating from the extracellular activity of different neurons; time alignment
is then an important preprocessing step which ensures that spikes with similar shape
are assigned to the same cluster [3, 4]. Applications of high-resolution time alignment
include the estimation of muscle fiber conduction velocity [5], the analysis of PR inter-
val variability in the ECG observed during exercise and recovery [6], and the analysis
of QT interval adaptation associated with changes in heart rate [7].

Despite the long-standing interest in time alignment, very few methods have been
proposed which are inherently designed to jointly align the delayed signals of an en-
semble. Rather, methods for pairwise time alignment of signals are employed as the
basic operation, performed either in the time [8, 3, 9, 10], frequency [11, 12, 13, 14],
or scale domain [15]. The classical method for joint alignment of an ensemble is the
Woody method [16], where the time delays are estimated by computing the cross-
correlation between each delayed signal and a reference signal (“the matched filter”),

and finding the location of the maximum. The initial reference signal is taken as the
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ensemble average of the unaligned signals, then updated iteratively as new time delay
estimates become available; this iterative procedure is terminated when the estimates
no longer change. Although often used, the Woody method is empirical in nature as it
does not ensure optimality in any sense.

Several papers have addressed the limitations of the Woody method by expanding
it to handle colored noise [17], multicomponent signals [18, 9, 19], and nonlinear time
scales [20, 21], whereas the problem of joint optimal time delay estimation remains
largely unaddressed. However, Cabasson and Meste [22] derived the joint maximum
likelihood (ML) estimator of the time delays, assuming that each observed signal is
composed of an unknown, deterministic signal with unknown time delay and additive,
Gaussian, white noise. Based on the structure of the log-likelihood function, the au-
thors proposed an iterative procedure being identical to the Woody method, except that
the intermediate ensemble average does not involve the signal subject to time delay
estimation. Simulation results showed that, for small ensemble siz&$ Gignals),
the resulting time delay estimates exhibited lower error variance than did those of the
Woody method, whereas the error variances were virtually the same for larger sizes.
However, the method in [22] does not guarantee optimality for the given model as-
sumptions as the log-likelihood function is not subject to global maximization with
respect to the time delays. Later, in [23], it was considered the joint time delay ML
estimation for cases with coloured time delay distribution, deriving expressions that
reduce to those in [22] when no correlation exits.

This paper introduces a novel approach to time alignment in which the eigenvalues
of the intra-signal sample correlation matrix of an ensemble with delayed signals are
explored. The method is based on the observation that a misaligned ensemble is asso-
ciated with eigenvalues which depend on the misalignment variance. The ratio of the
largest eigenvalue and the sum of the remaining eigenvalues is maximized when the
ensemble is optimally aligned, and therefore the maximization of this ratio is proposed
as a time delay estimator. In contrast to the iterative solution of the ML estimator [22],
the eigenvalue-based estimator operates without the need for an intermediate estimate
of the deterministic signal. It is shown that the ML estimator can be implemented

by maximizing the first eigenvalue of this matrix, yielding results identical to those
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of the eigenvalue ratio estimator. The eigenvalue-based approach paves the way for
a fast one-step estimator based on the second eigenvector of the inter-signal correla-
tion matrix, well-suited for initializing the maximization required in the ML or the
eigenvalue-based estimators. By pursuing eigenanalysis of the ensemble, new insight
is provided on how signal energy, jitter, and noise influence the estimation process.

The present paper is organized as follows. Section 2 presents the basic idea of
time alignment, provides an interpretation of the alignment criterion, and describes
the maximization procedure. Section 3 details the simulation setup considered for
performance evaluation. Section 4 presents the data used to test the method on a real

scenario, followed by sections with results and discussion.

2. Methods
2.1. Signal model and correlation matrix formulation

In time alignment of repetitive biomedical signals, each one ofthe@bserved

signalz;(n) of the ensemble is often modeled by [1, 2]
zi(n)=s(n—=0;)+v(n), n=0,...,.N—-1;i=1,..., M, 1)

wheres(n) is an unknown, deterministic signal with energy, 0; is a random, zero-
mean, symmetrically-distributed, integer-valued time delay with variagicandv; (n)

is zero-mean, Gaussian, white noise with varianget; andv;(n) are assumed to be
uncorrelated. The relevance of these assumptions for biomedical signals is discussed in
Section 6. The compact support subintervak@f — 6;), n = n,, ..., n., is assumed

to be contained in the intervi), N — 1]:
s(n—10;) #0,n €[04+ Amax, N — Amay, (2)

for 6; under consideration. The margiXy,a« is introduced to guarantee compact sup-
portin [0, N — 1] also after time alignment. The signal ensemble is represented by the

column matrix

X: X1 X oo (3)



where thei-th column contains the samplegn),

i(0)
l‘z(N — 1)
T
The time delays of the ensemble are contained in the véctorg;, ... eM} .

In the present study, the time delay estimation problem is studied in terms of the
correlation matrixR,.. We will first show how the eigenvalues are related to the ML
time delay estimator and the delay statistics. Then, guided by the results, we propose

s an efficient implementation of the ML estimatéx,, , and an alternative estimat&ER,
based on an eigenvalue ratio (ER), together with a one-step (OS) estifhatarsed
for initialization of 8,, ande.

We start by observing that for perfectly aligned signals, kgxn) = s(n) 4+ v;(n),

the N x N intra-signalcorrelation matrix is given by

R, £ E [x;x] ]| =ss” + 01, (5)

%

T
wheres = {3(0) o 8(N — 1)] is easily shown to be proportional to the first
eigenvector oR,. The eigenvalues are given by
Es+o2, i=1;

A = (6)
o2 1 =2,...,N,

v

ss WhereE, = s”'s is the signal energy. The eigenvectpy is proportional tos, i.e,
1, = 1/+/E,s, whereas the remaining eigenvectors are chosen arbitrarily as long as
they are orthogonal t¢ .

When the ensemble is misaligned with small time delgysn approximation of
w0 x;(t) can be obtained by making use of the continuous-time counterpart to the model
in (1),
z;i(t) = s(t — 0;) +vi(?). 8
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For smalld;, the observed signal can be approximated by
ri(t) = (1) — 005’ (1) + 5025 () + i), (©)

wheres’(t) and s (t) denote the first and second derivatives¢f), respectively. A
second-order approximation of(¢) is considered since the first-order terms will can-
cel when computing the expectationdr,, leaving only the second-order terms in the
approximation ofR,.. For the second-order approximationRf, to be complete, the
terms resulting from the product eft) with the second-order terms in(¢) in (9) are
also required, see below.

The intra-signal correlation matrix of the sampled counterpazt; ¢f) in (9) can

be expressed as
2

R, ~ (SST + 02 (ss"T + s”sT)> + 02s's'" 4 021, (10)
wheres’ ands” are defined froms’(n) ands” (n), respectively, in the same way a1
defined froms(n). It can be shown that the eigenvalueshof are (see Appendix A)

Es— 03By +02%, i=1;

v i = 27 (ll)
o2 1=3,...,N,

v

i &~ ES/+0'

whereE,, = s'T's’. Then, recalling that, is the variance of the time delay, it is evident
from (11) that maximization of\; with respect toaf is equivalent to minimization of
o3, thus reducing misalignment.

The eigenvectorg, andi, are approximately proportional to (see Appendix A)

2
¢1O<S+ 29 //

Py ox s, (12)

For smalld;, and thus a sma#t2, v, is approximately proportional to The remaining
eigenvectors can be chosen arbitrarily as long as they are orthogapaktad),.

With this formulation R is characterized in terms ef,. Moreover, since(n—06;)

is always contained ifo, N — 1], E, = Zg 01 s2(n — 6,) is independent of; and
N-1 N-1
tr{R.} = >  Elz}(n )]+ E[v(n)]) = Es+ Noa  (13)
= n:O
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is invariant tod;, emphasizing thak; in (11) are approximate as their sum does not
match the trace. Note also thgtin (6) are exact, since no approximation was used to

derive them.

2.2. Maximum likelihood estimation

This subsection shows that maximization of the most significant eigenvalue of the
inter-signal sample correlation matrix is approximately the same as the well-known ML
estimator off [22]. This insight is essential for the development of a related estimator
in Section 2.3. The ML estimator [22] is defined by

OuL = arg max An(6), (14)

where the log-likelihood functiod A (8) equals (see Appendix B)

M M

An(0) =D D> wr(n+ Op)ai(n + 0;). (15)

n =1 k>i
Note thatf in (14)—(15) denotes an optimization variable, not the delay parameter
itself. Detailed analysis of this expression, together with the expression which defines
the inter-signal sample correlation estimator [25], shows shat@) is proportional to
the sum of all elements of the upper triangular part ofMhex M inter-signalsample
correlation matrix.

R 1
R = NXTX. (16)

Departing from this observation and from the second-order approximaties{tf
in (9) we will show that maximization of the most significant eigenvalueﬁgf is
approximately the same &,_. When sampling; (t) and compiling all the observed

samples at time in a vector, the M observations are compactly modeled by

x(n) ~ s(n)1 —s'(n)6 + %s”(n)e2 +v(n), (17)
where
z1(n)
x(n) = : ) (18)
XM (n)
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T
v(n) defined analogousiy? = 6© 0 = [9% 9]2\4} , andl is the all-oneM x 1
vector. The related correlation matrix, determined by noting that the expectations are

evaluated overri” rather than over?”, is given by

Ey

s Ee’
~ <£&117‘—ié(102T—%021T)>~+ :

7vmﬂ+aﬁ, (19)
where use is made of the fact th&af16”] = 0,,,, and £[6°6”] = 0,,,,; 0, denotes
the M x M all-zero matrix. Use is also made éf[s*(n)] = Y.0_ ' s*(n)/N =
E,/N, and similarly B[(s'(n))?] = Ey /N, Els(n)s"(n)] = Esy /N = —Ey /N
andE[s(n)s'(n)] = E[s"(n)s'(n)] = 0. Fourth order terms are discarded as already

done before. The eigenvaluesRf are given by (see Appendix A)

EM ojEgsM

N N JFUEv =1
° 2 ’
A7 R~ Qﬁ%ﬂf+aa i=2; (20)
o? i=3,...,M.

The eigenvectorg] andt3 are approximately proportional to (see Appendix A)

o
2F,

3 o 6. (21)

P o1 — 62,

Since the approximations in (9) imply thét << 1, and, consequently? << 1, the
eigenvector approximations in (21) can be further approximategifoy: 1/v/M and
3 ~ (30, whereg is a proportionality factor.

Making use of the eigenvector equatidd} ;! = A\v;, particularized for = 1,
pre-multiplying both sides byb;T and using the eigenvector approximation, we can
write

1TR21 =~ A1 M, (22)

which leads to that} A/ is approximately equal to the sum of all elementsRf).

Making use of the symmetry di;, (22) becomes

. 2AA(0 .
1TR;1::4—§%—2+—U{R;}:zA;AL (23)
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where0 is the all-zeroM x 1 vector. Analogous to earlier reasoning{R®} =
E;M/N + Mo? is invariant tof. Therefore, correcting the misaligned ensemble by
a variable delay, as in (14), and maximizing A () with respect t@, to obtainé,, ,

is approximately equal to the maximization of th§(8), obtained from the aligned-

corrected ensemble, so that the suboptimal ML estimator can be implemented by

0, = arg max AL(0), (24)

where " denotes that the estimator is suboptimal, ad0) = A} in (20). Note that

the approximations to derive(0), i.e. (20) and (22), are now evaluated, not around
the delays in the ensemble as in (9), but around the residual delays after alignment
by the variablef, and become more accurate the smaller these residual delays are,
making the estimates in (14) and (24) equal at the position of the objective functions
maximum. Analogouslyg, in (20), when associated with}(8), is the variance of

the residual delays. Since the maximum)§{@) will always occur at? around the
original delay, implying small residuals, the approximate expressions in (9), (21), and
(22) remain largely accurate even for large delays, reinforcing the validiéy,ofis
surrogate of,, .

The resulting estimates are determined up to a constant éffsédr all 9;. This
results from the fact that an ensemble with signal cycles offset, while still pre-
serving the compact support condition[in N — 1], will lead to the same eigenvectors
Ai(0) and \?(0). The maximization of\?(0) yields estimates which are determined
up to a constant since the maximum is not a point at\thdimension delay space, but

a hyperdiagonal line. This is easily proven by repladnm (8) by 6; + 6, yielding
x;(t) = s(t — 0p) — 0;8' (t — 0p) + %Gfs”(t —0p) + v;(2), (25)

which results in exactly the same eigenvalues, provided that the compact support con-
dition is fulfilled. In practice, the delay offset is irrelevant since the interest is in the
overall signal morphology irrespective of an offset. When the offset is relevant it can

be easily corrected for by subtracting its mean.
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2.3. Eigenvalue-based estimation

By inspecting the eigenvalue structure in (20), it is evident that not af(y)
reaches its maximum when the variance of the residual delay estimgateminimum
(recall thatE,,~ is always negative), but alsi () reaches its minimum whes is
minimum. Based on this observation, we propose a ratio of the eigenvalﬁgsan‘ an
objective function which, when maximized with respecttalefines a new estimator,

reinforcing thes? minimization of the ML estimator,

(o) = 21O B ojPy £ oiN/M B Py o
M 03By +02N(M —1)/M ~ 03Ey + No2’

Y A6)
i=2

By maximizingA* (@), we hypothesize that a reinforced combined effect is obtained

by jointly maximizing the numerator and minimizing the denominator, i.e., two joint
operations reducing misalignment. Note tAa{#) depends o throughoy, whose
maximization results in time delays with minimuwg. With this estimator, the objec-
tive function in (26) can be interpreted in terms of signal energy, jitter, and noise.

Alternatively, the ratio of eigenvalues B¢,

A(a) _ )\1(0) _ ES - JgEs’ + 0—12) - ES — O'gES/ (27)
"X T Bs+(N-1o?  o3Es +NoZ'
Z)\i(a)
=2

results in an expression which, after approximation, is identical to the ratio in (26) and
can therefore be used interchangeably for salMaximization, with respect té, of

the eigenvalue ratio (ER) defines the time delay estimator:

O 2 arg max A(6). (28)
The observations made above, &, of time delay estimates offset, and approxima-
tions accuracy for large delays, also applieég,g

Although bothA*(6) and A(€) result in the same estimator, they are related to
different correlation matrices with dimensiofs x M andN x N, respectively. From

an implementation viewpoint, the matrix with lower dimension is preferred.

10
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2.4. One-step estimator

The estimator®,, in (24) andé.. in (28) both require computationally demand-
ing maximization. Within the proposed eigenanalysis framework, a new one-step (OS)
estimator is proposed. This estimator is suboptimal, but since it does not require max-
imization, it can be used for smart initialization of the maximization requireﬂM[n
and6... The OS estimator avoids maximization and can be derived by exploring the
result thaty3 in (21) is approximately proportional #, i.e.,¥5 ~ 36. The factor
/3 can be determined by making use|ap3|| = 1 and8”@ = M3, leading to that
B =1/y/Mao2. The OS estimator is defined by

s 1 . .

Oosé sz = MU%"#Q

AS —02)N |,
=R TN ye (29)

where the last equality comes from the introductiorAbin (20).

Beforef, can be useds? and £, have to be determined—a problem whose solu-
tion depends on the application of interest. Since the noise is assumed to be stationary,
making it possible to estimate? by the ensemble variance, it is computed in intervals
where the signal energy is negligible [26].

An estimate forE, is obtained by first computing the ensemble average, then fil-
tering to extract the main componentssdf,), and finally computing the energy,
from the differenced plus filtered signal. The sign uncertainty associatedfittan
be solved by taking the sign that maximiz\{s{i?)os).

The OS estimatdd,s can either be used separately, or to initialize the maximization

of the ML and ER estimators, leading to a considerably reduced grid search.

2.5. Maximization of objective functions

Maximization of the two objective functions is performed using bound constrained
particle swarm optimization [27, 28], implemented in the MATLAB functiparti-
cleswarm(version 2015b), using a Toshiba laptop with an Intel Core i7-2640M pro-
cessor. Figure 1 illustrates(9) for a small ensemblel( = 3) displayed ford, andds
at an SNR of 25 dB, whe#y is held fixed.

11
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Figure 1: The objective functioN(0) displayed ford; andfs at an SNR of 25 dB, whe# is held fixed.
Its maximum occurs fofé2, 63) = (0, 0) which are identical to the true time delays of the simulation. The
simulation model and the SNR are defined in Section 3.

2.6. Amplitude and shape variability

The signal model pursued in the present paper assumes(thahas fixed ampli-
tude and shape. However, this assumption may not be fulfilled, since, for example, the
amplitude of heartbeats can vary considerably over time due to respiration. While the
analysis of varying amplitude and shape on time delay estimation is outside the scope
of the present paper, the implications of varying amplitude are briefly discussed in the

following extended signal model:
z;(n) =a;s(n—0;) +vi(n), n=0,...,N—1, (30)

wherea; is a random amplitude with mean, = 1 and variancer?(< m?2). The
variablesa; andf; are assumed to be uncorrelated.

The eigenvalues of the correlation matrix for the model in (30) are given by
(08 + )(Es — 03 Ew) + 03, i=1
A~ (024 1)o3Ey + 02, i=2; (31)

o2 1=3,...,N,

v ) )

12
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and the corresponding eigenvalue ratio is

)\1(0) Es - UgEs/
A (6) = ~ . 32
(6) N (32)

M0
2

Soxe) B T

1=2

Analogously to (27)A,(0) is maximized when the signals with varying amplitudes
are aligned.

Shape variability may also be present in the ensemble, showing Ap My and
higher-order eigenvalues of (31) (all being in the denominatdr,@®) in (32)). There-
fore, such variability does not influence the underlying design principle of the eigenvalue-
based estimators. This observation assumes that the shape variability has lower energy
thans(n), being the case in most biomedical applications. Thus, the eigenvalue ratio in

(27) should be well-suited for time delay estimation in the presence of shape variability.

3. Simulation

The present simulation results are based on a real respiratory flow signal from a pa-
tient with chronic heart failure (CHF) and periodic breathing, extracted from a database
acquired with a pneumotachograph at a sampling rate of 250 Hz [29]. A representative
respiratory flow cycle of about 2.5 s is extracted. Zero-valued samples are inserted
symmetrically before and after the extracted cycle to produce a transient s{gnal
extending over 6 s, thereby allowing misalignments of up to 200 samples. Using this
respiratory cycle, defining(n), we simulate ensembles of misaligned signals by repet-
itively delayings(n) to s(n — ;) and adding noise;(n) to form the observed sig-
nal z;(n). The integer-valued time delay is uniformly distributed over the interval
[—4,8] implying a delay PDF with variance = 6%/3. The signal-to-noise ratio
(SNR) is defined as0 - log(E;/02). An ensemble of 20 misaligned signals is shown
in Fig. 2(b). Note that the selected respiratory flow cycle in Fig. 2(a) has similar peak
flow and duration for inspiration and expiration, common in patients with chronic heart
failure and periodic breathing [24]. This characteristic stands in contrast to normal sub-
jects where peak flow and duration differ between inspiration and expiration.

The eigenvalue-based method involves only one parameter, namely, the maximum

time shift Ayax defining the search intervéh Amax, Amad for finding the maximum

13
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Fig2u5r(:,j§: (a) A respiratory flow cycle and (b) a simulated misaligned ensemble, Mifirg 20 and SNR

of the objective function. Heré\max = ¢ guarantees that any introduced delay in the
simulation can be optimally estimated in the grid seatcis.set to 80 samples, unless
otherwise stated.

The performance of the ER estimator is compared to that of the ML and OS es-
timators as well as to that of the Woody estimator [16], denétgd Performance is
quantified by the root mean square (RMS) of the error in the offset-corrected time de-
lay estimates, denoteg.. This measure is determined from simulated ensembles of
the model in (1) withM signals, and repeated usidg) different Monte Carlo runs,

R = 100 unless otherwise stated

w(n) =s(n—6))+vl(n), n=0,....N-1;i=1,...,M;j=1,...,R. (33)

K3

To compute this error, the meandjfin the ensemble is first subtracted to avoid the un-
determined offset mentioned in Secs. 2.2 and 2.3 otherwise affecting the performance

measurer, defined as

1 R M ) N 1 M n ?
e = MZZ@‘(@‘MZ@))' e

4. Real data

The proposed estimator is also tested on a real data ensemble using a respiratory

flow signal, recorded from a chronic heart failure patient with periodic breathing [24],

14
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sampled at 250 Hz. The respiratory flow cycles are extracted from this signal, being
different from the one used in the simulation. In these patients, abnormal evolution of
the respiratory pattern (amplitude, morphology, etc) can trigger alarms on exacerbation
of the underlying pathological process. For this purpose, respiratory cycle features
such as amplitudes and slopes have been proposed for monitoring [24]. The features
are computed from an ensemble averd&ge reduce the influence of noise. Also, time
alignment prior to ensemble averaging is required to ensure that the low-pass filtering
effect is minimized [2] when computing the average.

A signal ensemble from a patient composed\df= 20 cycles is subject to aver-
aging, before and after alignment. The segmentation of the cycles is determined by the
zero-crossing at the onset of each respiratory flow cycle [24] up to the next onset of the
subsequent cycle. The zero-crossings are determined from a low-pass filtered signal
to reduce the influence of noise on the segmentation, minimizing instabilities around
the zero-crossing location. To ensure that all cycles have the same length, they have
been restricted to the shortest cycle length of the ensemble, here 3 s. Assuming that the
cycle-to-cycle variability in duration is relatively modest, it is reasonable to consider
that the most part of the cycle is completely contained in the segmentation interval.

The alignment is made bﬁ}ER estimator, using = 0.2 s.

5. Results

The results presented in this section are computed using the algorithmic steps de-
scribed below and in the pseudo code at Table 1. The performance is evaluated as

described in point 3.

1. Creation of the signal ensemble: from real or simulated signals.

2. Time delay estimation usirfy,. in (24), 8. in (28), 0rf in (29).

3. Computation of performance results which for simulated data is expressed in
terms of the error metrie. and for real data by presenting the ensemble average

before and after alignment.

15



Table 1: The pseudo code algorithm for obtaining the estimated délays

X =[x1 -+ xum], (matrixX creation)
R, = +X”X, (autocorrelation matrix estimation, B, = - XX if this is the preferred)
If one step initializatio®os

f{;d:; = A\3%5, (second eigenvectaps and eigenvalug estimation)

Oos = Ww;, (one step delagos estimation)

zi(n) — xzi(n+0ios), i=1,...,M (signal ensemble delay correction)
X =[x1 - xum), (60s delay corrected initialized ensemble matKxconstruction)
end
If B Or Bcr estimate
for @ € “grid search” (grid required by the maximization rule, in this cgsaticle swarn)
zi(0i,n) — xz;(n+6;), i=1,...,M (signal ensemble delay correction)
X(0) = [x1(0) --- xm(0)], (ensemble matriX reconstruction)
R2(0) = L +LXT(9)X ( ) (autocorrelation matrix estimation)
R (0)y? =\ (O)y! i=1,...,M (eigenvalue\?(8) estimation)
A®(0) = )\}(0)/ ZM A?(8) (objective function estimation)
end
If O, estimate
O = argoergrrll%amh)\ 1(8) (B estimation by maximization witharticle swarm
end
If B estimate
Ocr = arg eer;ﬁéamhA (0)  (Ber estimation by maximization witparticle swarn)
end
end
0 € {Bos, Ocr Or B, } (final delay estimate).
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Figure 3: The time delay estimation errgg, computed, as a function of: (a) SNR fdf = 10 (solid line),

andM = 50 (dashed line), usinger (black line) andy. (red line); (b)M for SNR= 10 dB (solid line),
SNR= 2 dB (dashed line)j = 10, usingBex (black line) anddy, (red line); (c) SNR in dB forM = 10

(solid line), M = 20, (dotted line), andV/ = 50 (dashed line)§ = 80, usingfw (black line) andos (red
line); (d) M for SNR= 10 dB (solid line), SNR= 2 dB (dotted line)§ = 80, usingfw (black line), and
Oos (red line).

5.1. Performance of the ER and ML estimators

Figure 3(a) shows that the two estimators have similar performance in terms of
for different SNRs, both deteriorating as the SNR decreases. Larger ensembles are
associated with better performance, particularly at low SNR. Figure 3(b) presents
as a function of\/ for SNR= 2 and 10 dB, showing that,. is largely independent of
M, except for small size of the ensemble and low SNR.

The objective functions\(6.:) and \$(8,,. ), corresponding to optimally aligned
ensembles, are shown in Fig. 4 as a function of SNR. The log-likelihood (objective)
function of the ML estimator decreases as the SNR increases sfnite)? (8, ) is
additive. On the other hantzi,(éER) behaves in the opposite way since it increases as
the SNR increases. This behavior is explained by the factttat,) involves the term
(N — 1)0? in the denominator, thereby resulting in an inverse relation to the noise that

dominates oves? in the numerator, cf. (20).
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Figure 4: The objective function& (fgg) (black line) and\$ (Ow.) (red line) as a function of SNR for
optimally aligned ensembles add = 10.

5.2. Performance of the OS estimator

The performance ol estimator is presented when used separately. From these
results it can be evaluated the potential of this estimator to work either separately or in
combination with the maximization estimator. The range of the reduction in the grid
search size, when initialized I, can be inferred by evaluating the residual error of
éos, which will become the minimum required grid search of the estimators involving
maximization. The error. of 8. is presented as a function of SNR in Fig. 3(c),
for different M. For comparisong. of the Woody method,, is included [16]. It is
obvious that the performance 61, is almost independent of the SNR, with better per-
formance for smallef/. On the contrary@w performs less well for smaller ensemble
sizes since the required, intermediate ensemble average is then noisier. Another obser-
vation from this figure is that, increases fo,, as the SNR decreases, again explained
by an increasingly noisy intermediate ensemble averagelFer 50, o, of 6., is very
close to that oB,, in Fig. 3(a), demonstrating that the improvement achieved éjth
becomes more pronounced for smallér[22].

For low SNRs and small/, 6, performs better thaé,,, see Fig. 3(c). This result,
combined with the result that the performanceégg is almost independent of the
SNR and the property thék, is a one-step estimator, mak@s a better candidate for

initialization of the maximization required in the ER and ML estimators. By comparing
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the results in Fig. 3(c) with those in Figs. 3(a) and 3(b) for SNR and10 dB, we
note that the performance 6t and@,, as expected, is always lower than that of the
0, or O .

Figure 3(d) shows . as a function ofA/ for SNR= 2 and 10 dB. The result in
Fig. 3(c), showing thal,, performs less well for smalle¥/ whereas the reverse occurs
for O, is again demonstrated since the performamfk)gﬂeteriorates as/ increases,
while the performance o, improves asM increases. From Fig. 3(d) it is observed
that this reverted behaviour, favorin@gS over@,, for low M values, remains valid for
larger M range the lower SNR becomes; upX6 = 10 for SNR= 10 dB and up to
M = 40 for SNR= 2 dB.

Figure 5(a) presents the performance@@gc as a function of SNR for different.
This result has particular relevance since it quantifies the impatioofthe approxi-
mations associated with (9) and (19). From Fig. 5¢a)reduces, as expected, sinte
becomes increasingly smaller. For a snda(l.e., 10 or 15) and SNRs below 10 dB,
howeverg. increases asdecreases—a result which may be ascribed to the competing
effects between time delays and noisdig, cf. (29). Figure 5(b) shows, for 6. as
well as forfg, andé,, as a function of, demonstrating that the performance of the

latter two estimators are independenpof

5.3. Computational load

Figure 5(a) demonstrates that initialization basedgnfor the maximization re-
quired in 6., and8,, implies that the original grid search can be constrained. For
the most unfavorable case, when inspectindor large time delays, i.ed = 100, it
is obvious that the remaining estimation error is less thasamples. However, the
remaining misalignment is to be handled by the maximization-based estimators. By
using @, for initialization, the grid search can be constrained to a conservative value
larger thar2o., resulting in abou20 samples, which, in turn, translates to a remarkably
smaller grid. Usingd = 100 to estimate the reduced grid size, the brute force search
leads to a reduction factor in computation timef&f/(5/5) = 5. The dependence
of 0. on ¢, obvious from Fig. 5(a), is a consequence of the fact that the larger the delay

is in the model in (9) the less accurate is the approximatioéogn and therefore its
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Figure 5: (a) The time delay estimation erear as a function of SNR foi/ = 20, R = 50, using?)os
for different values ob as indicated on the plob, € {40, 60, 80, 109 (solid lines),d = 15 (dotted line),
ands = 10 (dashed line). (b) The time delay estimation eweras a function of for M = 20 and SNR
= 10 dB, using@gr (dashed blue line¥y. (dotted red line), anéos (black solid line).
performance, evaluated lay, deteriorates.
Using instead particle swarm optimization, the saving factor has to be estimated
experimentally. Figure 6(a) presents the average computation tim@.fand 6,,
as a function ofM for different §, averaged over SNRs ranging from 2 to 24 dB.
Comparing the results in Figure 6(a) for differénit is obvious that the saving factor
is much smaller than that of brute force maximization. The factor may be estimated
by comparing the computation time fér= 100 andd = 10 for M = 50, leading to
a saving factor of approximately 1.5. For smalldr, the saving factor decreases and

becomes increasingly insignificant.
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scales of (a) and (b) differ as a consequence of the maximization required in the ER-based methods.
Figure 6(b) presents the computation time gt as a function of\/, being dras-
tically faster than those (ﬁER and#,, since no maximization is performed. As ex-
pected, the computation time increases with The computation time of thé,, has

been omitted since it is not relevant in the present context.

5.4. Real data results

The patient data ensemble, described in Sec. 4, is presented in Fig. 7(a). In the
ensemble, each respiratory cycle has, in addition to different time delay and noise,
variability in shape, suggesting that the model in (30) involving amplitude variability,

is more adequate. With certain shape variability, the proposed estimators will still work
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as indicated by (32). Also, note that the ensemble signals do not start at zero since the
segment onset is determine by the zero-crossings of the low-pass filtered signal. In
Fig. 7(b), the same ensemble is plotted after alignment usin@ghestimator. Itis
obvious that the transitions from inspiration to expiration are closely grouped together
after alignment and therefore its quantification becomes more accurate. In Fig. 7(c)
the ensemble averagdefore and after aligned ensemble average are plotted, showing
that the amplitude of the estimated respiratory cycle is higher after alignment (both
inspiration and expiration) as is the transition slope between the states, both relevant
features for diagnosis. The oscillations and large variability observed in the ensemble
are due to that the patient suffers from CHF and periodic breathing. If the dynamics of
the shape are of interest, they can be quantified by the ensemble variance, or by using

smaller values of M in the averaging, at the cost of less noise reduction.
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Figure 7: Ensemble with real respiratory flow cycles. (a) Ensemble extracted from signal segmentation, (b)
ensemble after time alignment usifgr, and (c) the respiratory cyclg, estimated by averaging the original
ensemble (black), and the aligned ensemble (red).

6. Discussion
Eigenvalue-based estimator

The present paper proposes two time delay estimators based on eigenanalysis, em-
bracing either maximization of an eigenvalue raﬁgRI or maximization of the first
eigenvalued,, ). The estimators have identical performance. Of these two estimators,

6,. is the simpler one to implement, although no significant difference exist between
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the two with respect to computation time. Inspection of the approximations in (26)—
(27) suggests that maximization of the numerator together with minimization of the
denominator, as ir@ER, would yield better performance than would maximization of
the numerator only, as i, . However, recalling that fR, } and t{ R® } are invariant

to time delays, it is noted that the denominator in (26) equéRIt—\} which implies

that maximization of the numerator and minimization of the denominator are exactly
the same, thus justifying the obtained results on identical performarf}@ ahdé,, .

The objective functiond (6.) and?(8,, ) have a reverted dependence with SNR for
optimally aligned ensembles, see Fig. 4, as justified from inspection of (20) and (26).

For larged, Fig. 5(b) shows that the performance &, and8,, do not deteri-
orate, although the expressions in (26) and (27) become less accufateeasmes
larger. This result was already justified when introdudihyg in (24) and same con-
clusions can be reach analyzing the fact that both estimators reduce to maximization
of A\;. The first eigenvector of the correlation matrix may be regarded as the vector
generating the first principal component of the signal ensemble [25], where the corre-
sponding eigenvalug, is known to increase when the morphological variability of the
ensemble decreases. In the model in (8), the ensemble variability is given by the noise
variance, being invariant to time delays when the noise is stationary, plus the signal
variance, reducing to zero for perfect alignment. Thus, this observation justifies that
the maximization of\; always results in an optimal estimator irrespective of the de-
gree of time delay dispersion. If higher-order approximation terms in (26) and (27) had
been considered to handle lamethe resulting expression would have become much
more complicated and more difficult to interpret. However, the previous observation
shows that the maximization of the resulting expression will still result in an optimal
estimator.

Eigenvalue-based estimation, based on eitheor 0, , represents an alternative
way of implementing the ML estimator, cf. (23) and Fig. 3. These two estimators
may benefit from efficient implementations of algorithms for eigenvalue decomposi-
tion, avoiding the triple summation in (15) and the need for an intermediate estimate
of s(n) [22]. Fig. 3(b) shows that performance gets bettefAincreases for low of

about 0 dB SNR as a result of better "learning” of the underlaying signal sk{ape
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whereas this learning is negligible at an SNR of about 10 dB or higher.

Model assumptions

The signal-plus-noise model in (1) stems originally from the radar application
where it is known as range estimation [1], but it has been found relevant in many
biomedical applications where repetitive signals are of interest to analyze [2]. The
present paper was inspired by the work we did in a recently published, clinically ori-
ented study on respiratory flow cycle morphology in patients with chronic heart fail-
ure [24], where ensemble averaging of respiratory flow signals, preceded by eigenvalue-
based time alignment, was used to improve the signal-to-noise ratio.

The assumptions related to the model in (1) are 1) a signal with fixed ampli-
tude and shape, 2) a random time defawith zero-mean and fixed variance, and 3)
additive, stationary, Gaussian, white noigén). Concerning respiratory flow signals,
as well as most biomedical signals, assumption #1 on fixed amplitude may be ques-
tioned since the amplitude can vary considerably over time, illustrated by Fig.7, see
also [24]. Nevertheless, the eigenvalue ratig0) in (32), derived for the varying-
amplitude model in (30), is still maximized when signals with varying amplitude are
aligned. Alignment of signals with considerable variation in shape represents a more
complicated situation, possibly calling for nonlinear time delay estimation techniques
such as dynamic time warping [20, 21]. However, the eigenvalue fati@) is still
maximized provided that the variability in shape has lower energy stvan For res-
piratory flow signals, as well as most biomedical signals, the variability in shape has
usually lower energy thas(n).

Assumption #2 on a random time delay is justified since the segmentation of suc-
cessive respiratory cycles is based on zero-crossing times with poor accuracy with re-
spect to the underlying trigger of the physiological event; similar considerations apply
to other biomedical signals where instead extrema detection or other landmark fea-
tures are used for segmentation. Consequently, time alignment is necessary to improve
this accuracy. The zero-mean assumption for the délay justified since any delay
distribution including a offset will result in a delayed estimates6it), typically ir-

relevant in biomedical signal analysis where the information is on the overall shape,
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as already discussed when introducing the maximization estimators. In situations like
evoked potential where the latency of the peaks in the averaged signal with respect to
the evoked trigger is relevant, this offset can be easily corrected by subtracting the es-
timates mean. Concerning the stationarity assumption (#3), it is reasonable to assume
that signals recorded during resting conditions have fixed noise variance. Signals with
large artifacts and intermittent disturbances are typically excluded before time align-

ment, making an assumption of a time-varying noise variance unnecessary.

One-step estimator

By analyzing the eigenvector structure of the approximate inter-signal correlation
matrix R? in (19) for small time delays, the proposed one-step estimggrbeing
proportional toy3, outperforms the Woody method for low SNRs and snidll but
not for high SNRs and larg#&/, see Fig. 3. This\/ value can reach up to 40 cycles,
see Fig. 3(d), when the SNR approaches 0 dB. The one-step estimator is of particular
interest for initialization of the maximization-based estimators, leading to a reduction
in computation time. This type of initialization is suitable to use in devices with con-
straints on power consumption, e.g., implantable devices, but less so in off-line appli-
cations. The use d. is attractive since it draws on the framework of the inter-signal
correlation matrix and eigenanalysis.

Since the computational saving factor is likely to depend(or), a “learning step”
will be required to determine the extent with which the grid search should be con-
strained. The learning step should take its starting point from results analogous to
those in Fig. 5(a). Also, an estimate gfn) is required, e.g., obtained by ensemble
averaging.

The computation 065 requires estimations of?> and E, as described in Section
2.4. Alternative methods to estimatimg is to use the higher-order eigenvalues, i.e,
62 = Zi\;o Ai/(N — 49 + 1), whereig is chosen such that signal shape variability
is avoided. ForE,/, an alternatively strategy can be obtained by observingsthst
essentially proportional to the first eigenvectolRf in (12) so that an estimate &f,,
is obtained from&y ~ (A1 — 02)Ey; .

From inspection of Fig. 5(a) a iterative estimation process can be suggested by
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recurrent application o, particularly for large SNR,leading to better estimates.

Implications of misalignment

It is well-known that increased time delay jitter attenuates higher frequencies of
the ensemble average [2]. Assuming an ensembl&/of= 10 signals, an SNR of
15 dB, and a sampling rate of 1000 Hz, the 3 dB cut-off frequency causexd. by
is approximately 150 Hz for eigenvalue-based alignment. For the OS estimator, the
cut-off frequency drops to approximately below 90 Hz. Such a substantial drop in
cut-off frequency has repercussions in applications such as high-frequency ECG anal-
ysis, where an ensemble of QRS complexes is averaged and bandpass filtered (150—
250 Hz) [30, 31]; thus, an SNR higher than 15 dB should be employed. Better perfor-
mance off, not only has implications on ensemble averaging, but even more so on
the estimation of ensemble variance where better accuracy is required of the time delay
estimates [26].

The real data example presented in Fig. 7(c) illustrates the effects on the amplitude
and the slope of a respiratory cycle, both more pronounced after alignment. These
changes are the result of the increase in the cut-off frequency introduced by averaging
after alignment [2]. This example is descriptive in nature, and does not pretend to be a

clinical validation which is outside the scope of this study.

Maximization

In the present paper, particle swarm optimization [32] has been used, while other
techniques were not investigated. Therefore, it may be possible that other techniques
may offer faster convergence or come with less computational cost. The computation
time has been analyzed in relative terms since the computation time in absolute terms
are platform-dependent. While the maximization here presented is restricted to integer
values, if required, a finer temporal resolution than that provided by the sampling rate
can be obtained by interpolation. Once the optimal value is reached, a grid can be

easily computed around this value.
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7. Conclusions

The present study introduces and evaluates novel methods for time delay estimation
based on the eigenvalues of the sample correlation matrix of the signal ensemble. It
is shown that the ML estimator can be implemented by maximizing either the first

s0 eigenvalue of this matrix, or, equivalently, a ratio defined by its eigenvalues. A one-step
estimator is proposed based on the second eigenvector of the inter-signal correlation
matrix. When using the one-step estimator for initialization, a reduction in computation

time of the estimators involving maximization can be achieved.

8. Appendix A

This appendix derives; for a second-order approximation Bf,, see (10). First,

we observe thai(¢) ands’(t) are orthogonal, i.e.,

/_O:o s(t)s’ / S(Q)(—2)S*(Q)d

= _%/ 10Q/S(Q)|%dQ = 0. (35)

With the same argumen/(t) ands” (¢) are also orthogonal. The cross-energy between
the signals(¢) and its second derivativ€’(¢) is always negative, and equal to minus

the energy of the derivative, since

/ﬁ s(t)s" (1)t = 2W/ S(Q)(—02)S*(Q)d0

_ = 2
= Q|s< )20

S /oo s'(t)s'(t)dt < 0, (36)

—o0
ss  WhereS(€2) denotes the Fourier transform &ft); Nyquist sampling is assumed.
Assuming that:; (¢) in (9) is sampled at the Nyquist rate, orthogonality applies also
to the sampled counterpagtss’, ands”, andE,,» = s’s"” = —E,.
Using these observations, we can see that the first eigenvector of the correlation
matrix in (10) should be a linear combination betwaamnds” of the form & + as”’),

s Wherea is a scale factor to be determined. When multiplyingnds” with the term
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being a combination of ands” in R, we obtain

o2 o2 o2
<SST + 79 (SS//T +S/IST)> s = (ES — ;ES/) s+ (;E5> s’
—_— ~——

Css

ss!’

and

0_2 02 0_2
(ssT + 79 (ss"" + s"sT)) s = (Es’ + ;Es”> s+ <29Es’) s

CVS//S CS//‘S//

Thus, the eigenvalue equation for, for convenience expressed as
A= As + 02,
is given byR.,.(s + as”) = (A1 s + 02)(s + as”), yielding

Csss + Css//SH + O[(CS//SS —+ CS//S//S”) = Al,s(s —+ as”)_

(37)

(38)

(39)

(40)

To estimate the eigenvalue, the following equation system should be solved:

Css + acs”s = )\l,sa

Css” + aCs”s” - a)\l,s~
Solving for \; , the following quadratic equation results:
)\is - )\l,s(Cs”s” + Css) + (Osscs”s” - Css“cs”s) =0,

whose solutions are given by

CS//S// —+ CSS + \/(CS//S// —+ 035)2 — 4(CSSCS”S” — OSS//CS//S)

)\1,s = 9

_ Cs”s” + Css + \/(Cs”s” - 055)2 + 4055”05”5

Substituting the”' coefficients defined in (37) and (38), we obtain

B, —02Ey + \/E2 +4 (—E n %E) %E,
Ay = .

2
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Approximating the square root, realizing that higher-order terms are always smaller
than the lower-order terms for smalf, and retaining the positive sign of the square
root solution, we obtain

2 2 2
Al,s ~ Es — %Es’ + (—Es/ + O;ESH) % (45)

Itis noted that the solution with negative sign is ignored since it corresponds to a much

smaller eigenvalue. Neglecting the fourth-order term, we obtain
As & By — 03By, (46)
which, when substituted in (39), becomes the desired eigenvalue in (11), i.e.,
M~ By — 03By + 0. (47)

The « factor in the linear combination betweerands”, using the above approx-
imations, results il = 032/2. Hence, the first eigenvectap, is proportional to
(s + (02/2)s") as expressed in (12).

Repeating the same derivation fB; in (19), v} should be proportional to the

form (1 4+ a*6?), and the equations corresponding to (37) and (38) become:

1 Ey T M o2 M
—(E117— = (162 21T) 1= (. -2, 1+ (-2E., )6
N( > (10740 N 2 T "an k)l

Css Cyon
(48)
and
1 T ES/ 2T 2.7 2 ]\/_[ 2 30—21 M(Tg 2
N (Esll 7 (10 +0 1 ) 0° = ﬁ UQES TES/ 1+ IN ES/ o y
C'S//g CSIIQH
(49)
yielding
EM  02E M
A~ —“9N + 02 (50)

which is the desired eigenvalue in (20). Deriving using the above approximations,

we obtain thatv® = —E, /(2E;), leading to the eigenvectors in (21).

29



535

540

9. Appendix B

This appendix derives the expression 6qr. First, we observe that for the model
in (1) the probability density function (PDF) af (n), given a sample, a deterministic

signals(n), and a delay); is given by

pli(n): s(n). ;) = —— 1<mi<n>—s<n—ei>>2]. (51)

ex —
\/2mo? P [ 202
Since the noise at different time instants are independent, the joint PDF of asjgnal

is just the individual products, and similarly for the complete signal enseXlite(3)

p(X;s,0) = W exp [%; Z Z (zi(n) — s(n — 92-))2] . (52)

The ML estimation o comes from thaf,, which maximizes the PDF, or equivalently
its logarithm transformation. Operating this maximization, it results in minimization

of the objective functior/

1 M N-1
J(X;8,0) = = > > (zi(n) — s(n - 6;))?, (53)
n=0

2
202 pt

and the estimated results will be those which satisfy

(8w, Ou) = arg mi9n J(X;s,0) (54)
Since this function contains, in a interleaved W&y, and@ML we solve the minimiza-

tion first for s, at a particula@ resulting in
1 M
SuLe = M§xi<n+9i)7 (55)

and later, substituting this expression in (53), and minimizingf)mr results in [22]

M M

Ol = arg max Z Z Z zp(n+ 0k)x;(n+ 0;). (56)

n =1 k>i
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