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Abstract

The time delay estimation problem associated with an ensemble of misaligned,

repetitive signals is revisited. Each observed signal is assumed to be composed of an

unknown, deterministic signal corrupted by Gaussian, white noise. This paper shows

that maximum likelihood (ML) time delay estimation can be viewed as the maximiza-

tion of an eigenvalue ratio, where the eigenvalues are obtained from the ensemble corre-

lation matrix. A suboptimal, one-step time delay estimate is proposed for initialization

of the ML estimator, based on one of the eigenvectors of the inter-signal correlation

matrix. With this approach, the ML estimates can be determined without the need for

an intermediate estimate of the underlying, unknown signal. Based on respiratory flow

signals, simulations show that the variance of the time delay estimation error for the

eigenvalue-based method is almost the same as that of the ML estimator. Initializing

the maximization with the one-step estimates, rather than using the ML estimator alone,
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the computation time is reduced by a factor of5M when using brute force maximization

(M denoting the number of signals in the ensemble), and a factor of about 1.5 when

using particle swarm maximization. It is concluded that eigenanalysis of the ensemble

correlation matrix not only provides valuable insight on how signal energy, jitter, and

noise influence the estimation process, but it also leads to a one-step estimator which

can make the way for a substantial reduction in computation time.

Keywords: biomedical signals, time delay estimation, eigenanalysis, ensemble

analysis.

1. Introduction

Time delay estimation represents a classical problem in biomedical signal process-

ing, relevant for many applications such as high-resolution ECG, event-related brain

potentials, conduction estimation in electromyography, and respiratory flow signals. In

these applications, ensemble averaging, or some of its many variants [2], is applied to5

achieve noise reduction. To avoid distortion in the averaging process, prior alignment

of the ensemble with similar-shaped signals is required. Another application is to sort

spikes originating from the extracellular activity of different neurons; time alignment

is then an important preprocessing step which ensures that spikes with similar shape

are assigned to the same cluster [3, 4]. Applications of high-resolution time alignment10

include the estimation of muscle fiber conduction velocity [5], the analysis of PR inter-

val variability in the ECG observed during exercise and recovery [6], and the analysis

of QT interval adaptation associated with changes in heart rate [7].

Despite the long-standing interest in time alignment, very few methods have been

proposed which are inherently designed to jointly align the delayed signals of an en-15

semble. Rather, methods for pairwise time alignment of signals are employed as the

basic operation, performed either in the time [8, 3, 9, 10], frequency [11, 12, 13, 14],

or scale domain [15]. The classical method for joint alignment of an ensemble is the

Woody method [16], where the time delays are estimated by computing the cross-

correlation between each delayed signal and a reference signal (“the matched filter”),20

and finding the location of the maximum. The initial reference signal is taken as the
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ensemble average of the unaligned signals, then updated iteratively as new time delay

estimates become available; this iterative procedure is terminated when the estimates

no longer change. Although often used, the Woody method is empirical in nature as it

does not ensure optimality in any sense.25

Several papers have addressed the limitations of the Woody method by expanding

it to handle colored noise [17], multicomponent signals [18, 9, 19], and nonlinear time

scales [20, 21], whereas the problem of joint optimal time delay estimation remains

largely unaddressed. However, Cabasson and Meste [22] derived the joint maximum

likelihood (ML) estimator of the time delays, assuming that each observed signal is30

composed of an unknown, deterministic signal with unknown time delay and additive,

Gaussian, white noise. Based on the structure of the log-likelihood function, the au-

thors proposed an iterative procedure being identical to the Woody method, except that

the intermediate ensemble average does not involve the signal subject to time delay

estimation. Simulation results showed that, for small ensemble sizes (< 25 signals),35

the resulting time delay estimates exhibited lower error variance than did those of the

Woody method, whereas the error variances were virtually the same for larger sizes.

However, the method in [22] does not guarantee optimality for the given model as-

sumptions as the log-likelihood function is not subject to global maximization with

respect to the time delays. Later, in [23], it was considered the joint time delay ML40

estimation for cases with coloured time delay distribution, deriving expressions that

reduce to those in [22] when no correlation exits.

This paper introduces a novel approach to time alignment in which the eigenvalues

of the intra-signal sample correlation matrix of an ensemble with delayed signals are

explored. The method is based on the observation that a misaligned ensemble is asso-45

ciated with eigenvalues which depend on the misalignment variance. The ratio of the

largest eigenvalue and the sum of the remaining eigenvalues is maximized when the

ensemble is optimally aligned, and therefore the maximization of this ratio is proposed

as a time delay estimator. In contrast to the iterative solution of the ML estimator [22],

the eigenvalue-based estimator operates without the need for an intermediate estimate50

of the deterministic signal. It is shown that the ML estimator can be implemented

by maximizing the first eigenvalue of this matrix, yielding results identical to those
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of the eigenvalue ratio estimator. The eigenvalue-based approach paves the way for

a fast one-step estimator based on the second eigenvector of the inter-signal correla-

tion matrix, well-suited for initializing the maximization required in the ML or the55

eigenvalue-based estimators. By pursuing eigenanalysis of the ensemble, new insight

is provided on how signal energy, jitter, and noise influence the estimation process.

The present paper is organized as follows. Section 2 presents the basic idea of

time alignment, provides an interpretation of the alignment criterion, and describes

the maximization procedure. Section 3 details the simulation setup considered for60

performance evaluation. Section 4 presents the data used to test the method on a real

scenario, followed by sections with results and discussion.

2. Methods

2.1. Signal model and correlation matrix formulation

In time alignment of repetitive biomedical signals, each one of theM observed65

signalxi(n) of the ensemble is often modeled by [1, 2]

xi(n) = s(n − θi) + vi(n), n = 0, . . . , N − 1; i = 1, . . . ,M, (1)

wheres(n) is an unknown, deterministic signal with energyEs, θi is a random, zero-

mean, symmetrically-distributed, integer-valued time delay with varianceσ2
θ , andvi(n)

is zero-mean, Gaussian, white noise with varianceσ2
v ; θi andvi(n) are assumed to be

uncorrelated. The relevance of these assumptions for biomedical signals is discussed in70

Section 6. The compact support subinterval ofs(n − θi), n = no, . . . , ne, is assumed

to be contained in the interval[0, N − 1]:

s(n − θi) 6= 0, n ∈ [0 + Δmax, N − Δmax], (2)

for θi under consideration. The marginΔmax is introduced to guarantee compact sup-

port in [0, N − 1] also after time alignment. The signal ensemble is represented by the

column matrix75

X =
[
x1 ∙ ∙ ∙ xM

]
, (3)
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where thei-th column contains the samplesxi(n),

xi =








xi(0)
...

xi(N − 1)








. (4)

The time delays of the ensemble are contained in the vectorθ =
[
θ1 ∙ ∙ ∙ θM

]T
.

In the present study, the time delay estimation problem is studied in terms of the

correlation matrixRx. We will first show how the eigenvalues are related to the ML

time delay estimator and the delay statistics. Then, guided by the results, we propose

an efficient implementation of the ML estimator,θ̌ML , and an alternative estimator,θ̂ER,80

based on an eigenvalue ratio (ER), together with a one-step (OS) estimator,θ̂OS, used

for initialization of θ̌ML andθ̂ER.

We start by observing that for perfectly aligned signals, i.e.,xi(n) = s(n)+ vi(n),

theN × N intra-signalcorrelation matrix is given by

Rx , E
[
xix

T
i

]
= ssT + σ2

vI, (5)

wheres =
[
s(0) ∙ ∙ ∙ s(N − 1)

]T
is easily shown to be proportional to the first

eigenvector ofRx. The eigenvalues are given by

λi =






Es + σ2
v , i = 1;

σ2
v , i = 2, . . . , N,

(6)

whereEs = sT s is the signal energy. The eigenvectorψ1 is proportional tos, i.e,85

ψ1 = 1/
√

Ess, whereas the remaining eigenvectors are chosen arbitrarily as long as

they are orthogonal toψ1.

An estimate ofRx is obtained by

R̂x =
1
M

XXT . (7)

When the ensemble is misaligned with small time delaysθi, an approximation of

xi(t) can be obtained by making use of the continuous-time counterpart to the model90

in (1),

xi(t) = s(t − θi) + vi(t). (8)
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For smallθi, the observed signal can be approximated by

xi(t) ≈ s(t) − θis
′(t) +

1
2
θ2

i s′′(t) + vi(t), (9)

wheres′(t) ands′′(t) denote the first and second derivative ofs(t), respectively. A

second-order approximation ofxi(t) is considered since the first-order terms will can-

cel when computing the expectations inRx, leaving only the second-order terms in the95

approximation ofRx. For the second-order approximation ofRx to be complete, the

terms resulting from the product ofs(t) with the second-order terms inxi(t) in (9) are

also required, see below.

The intra-signal correlation matrix of the sampled counterpart ofxi(t) in (9) can

be expressed as

Rx ≈

(

ssT +
σ2

θ

2
(ss′′T + s′′sT )

)

+ σ2
θs

′s′T + σ2
vI, (10)

wheres′ ands′′ are defined froms′(n) ands′′(n), respectively, in the same way ass is

defined froms(n). It can be shown that the eigenvalues ofRx are (see Appendix A)100

λi ≈






Es − σ2
θEs′ + σ2

v , i = 1;

σ2
θEs′ + σ2

v , i = 2;

σ2
v , i = 3, . . . , N,

(11)

whereEs′ = s′T s′. Then, recalling thatσθ is the variance of the time delay, it is evident

from (11) that maximization ofλ1 with respect toθ is equivalent to minimization of

σ2
θ , thus reducing misalignment.

The eigenvectorsψ1 andψ2 are approximately proportional to (see Appendix A)

ψ1 ∝ s +
σ2

θ

2
s′′,

ψ2 ∝ s′. (12)

For smallθi, and thus a smallσ2
θ , ψ1 is approximately proportional tos. The remaining

eigenvectors can be chosen arbitrarily as long as they are orthogonal toψ1 andψ2.105

With this formulation,Rx is characterized in terms ofσθ. Moreover, sinces(n−θi)

is always contained in[0, N − 1], Es =
∑N−1

n=0 s2
i (n − θi) is independent ofθi and

tr{Rx} =
N−1∑

n=0

E[x2
i (n)] =

N−1∑

n=0

(E[s2
i (n − θi)] + E[v2

i (n)]) = Es + Nσ2
v (13)
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is invariant toθi, emphasizing thatλi in (11) are approximate as their sum does not

match the trace. Note also thatλi in (6) are exact, since no approximation was used to

derive them.

2.2. Maximum likelihood estimation

This subsection shows that maximization of the most significant eigenvalue of the110

inter-signal sample correlation matrix is approximately the same as the well-known ML

estimator ofθ [22]. This insight is essential for the development of a related estimator

in Section 2.3. The ML estimator [22] is defined by

θ̂ML = arg max
θ

Λ4(θ), (14)

where the log-likelihood functionΛ4(θ) equals (see Appendix B)

Λ4(θ) =
∑

n

M∑

i=1

M∑

k>i

xk(n + θk)xi(n + θi). (15)

Note thatθ in (14)–(15) denotes an optimization variable, not the delay parameter115

itself. Detailed analysis of this expression, together with the expression which defines

the inter-signal sample correlation estimator [25], shows thatΛ4(θ) is proportional to

the sum of all elements of the upper triangular part of theM × M inter-signalsample

correlation matrix.

R̂•
x =

1
N

XT X. (16)

Departing from this observation and from the second-order approximation ofxi(t)120

in (9) we will show that maximization of the most significant eigenvalue ofR̂•
x is

approximately the same aŝθML . When samplingxi(t) and compiling all the observed

samples at timen in a vector, the M observations are compactly modeled by

x(n) ≈ s(n)1 − s′(n)θ +
1
2
s′′(n)θ2 + v(n), (17)

where

x(n) =








x1(n)
...

xM (n)








, (18)

7



v(n) defined analogously,θ2 = θ�θ =
[
θ2
1 ∙ ∙ ∙ θ2

M

]T
, and1 is the all-oneM ×1

vector. The related correlation matrix, determined by noting that the expectations are

evaluated over ”n” rather than over ”i”, is given by

R•
x = E

[
x(n)xT (n)

]

≈
1
N

(

Es11T −
Es′

2
(1θ2T

+ θ21T )

)

+
Es′

N
θθT + σ2

vI, (19)

where use is made of the fact thatE[1θT ] = 0M,M andE[θ2θT ] = 0M,M; 0M,M denotes125

the M × M all-zero matrix. Use is also made ofE[s2(n)] =
∑N−1

n=0 s2(n)/N =

Es/N , and similarlyE[(s′(n))2] = Es′/N , E[s(n)s′′(n)] = Ess′′/N = −Es′/N

andE[s(n)s′(n)] = E[s′′(n)s′(n)] = 0. Fourth order terms are discarded as already

done before. The eigenvalues ofR•
x are given by (see Appendix A)

λ•
i ≈






EsM
N − σ2

θEs′M
N + σ2

v , i = 1;

σ2
θEs′M

N + σ2
v , i = 2;

σ2
v , i = 3, . . . ,M.

(20)

The eigenvectorsψ•
1 andψ•

2 are approximately proportional to (see Appendix A)

ψ•
1 ∝ 1 −

Es′

2Es
θ2,

ψ•
2 ∝ θ. (21)

Since the approximations in (9) imply thatθi << 1, and, consequently,θ2
i << 1, the130

eigenvector approximations in (21) can be further approximated byψ•
1 ≈ 1/

√
M and

ψ•
2 ≈ βθ, whereβ is a proportionality factor.

Making use of the eigenvector equation,R•
xψ•

i = λ•
i ψ

•
i , particularized fori = 1,

pre-multiplying both sides byψ•T
1 and using the eigenvector approximation, we can

write135

1T R•
x1 ≈ λ•

1M, (22)

which leads to thatλ•
1M is approximately equal to the sum of all elements inR•

x.

Making use of the symmetry of̂R•
x, (22) becomes

1T R̂•
x1 =

2Λ4(0)
N

+ tr{R̂•
x} ≈ λ•

1M, (23)
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where0 is the all-zeroM × 1 vector. Analogous to earlier reasoning, tr{R̂•
x} =

EsM/N + Mσ2
v is invariant toθ. Therefore, correcting the misaligned ensemble by

a variable delayθ, as in (14), and maximizingΛ4(θ) with respect toθ, to obtainθ̂ML ,140

is approximately equal to the maximization of theλ•
1(θ), obtained from the aligned-

corrected ensemble, so that the suboptimal ML estimator can be implemented by

θ̌ML , arg max
θ

λ•
1(θ), (24)

where ’̌ ’ denotes that the estimator is suboptimal, andλ•
1(0) = λ•

1 in (20). Note that

the approximations to deriveλ•
1(θ), i.e. (20) and (22), are now evaluated, not around

the delays in the ensemble as in (9), but around the residual delays after alignment145

by the variableθ, and become more accurate the smaller these residual delays are,

making the estimates in (14) and (24) equal at the position of the objective functions

maximum. Analogously,σθ in (20), when associated withλ•
1(θ), is the variance of

the residual delays. Since the maximum ofλ•
1(θ) will always occur atθ around the

original delay, implying small residuals, the approximate expressions in (9), (21), and150

(22) remain largely accurate even for large delays, reinforcing the validity ofθ̌ML as

surrogate of̂θML .

The resulting estimates are determined up to a constant offsetθb, for all θi. This

results from the fact that an ensemble with signal cycles offset byθb while still pre-

serving the compact support condition in[0, N − 1], will lead to the same eigenvectors155

λi(θ) andλ•
i (θ). The maximization ofλ•

i (θ) yields estimates which are determined

up to a constant since the maximum is not a point at theM dimension delay space, but

a hyperdiagonal line. This is easily proven by replacingθi in (8) byθi + θb, yielding

xi(t) ≈ s(t − θb) − θis
′(t − θb) +

1
2
θ2

i s′′(t − θb) + vi(t), (25)

which results in exactly the same eigenvalues, provided that the compact support con-

dition is fulfilled. In practice, the delay offset is irrelevant since the interest is in the160

overall signal morphology irrespective of an offset. When the offset is relevant it can

be easily corrected for by subtracting its mean.
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2.3. Eigenvalue-based estimation

By inspecting the eigenvalue structure in (20), it is evident that not onlyλ•
1(θ)

reaches its maximum when the variance of the residual delay estimate,σ2
θ is minimum165

(recall thatEss′′ is always negative), but alsoλ•
2(θ) reaches its minimum whenσ2

θ is

minimum. Based on this observation, we propose a ratio of the eigenvalues ofR̂•
x as an

objective function which, when maximized with respect toθ, defines a new estimator,

reinforcing theσ2
θ minimization of the ML estimator,

Λ•(θ) =
λ•

1(θ)
M∑

i=2

λ•
i (θ)

=
Es − σ2

θEs′ + σ2
vN/M

σ2
θEs′ + σ2

vN(M − 1)/M
≈

Es − σ2
θEs′

σ2
θEs′ + Nσ2

v

. (26)

By maximizingΛ•(θ), we hypothesize that a reinforced combined effect is obtained170

by jointly maximizing the numerator and minimizing the denominator, i.e., two joint

operations reducing misalignment. Note thatΛ•(θ) depends onθ throughσθ, whose

maximization results in time delays with minimumσθ. With this estimator, the objec-

tive function in (26) can be interpreted in terms of signal energy, jitter, and noise.

Alternatively, the ratio of eigenvalues of̂Rx175

Λ(θ) =
λ1(θ)

N∑

i=2

λi(θ)

=
Es − σ2

θEs′ + σ2
v

σ2
θEs′ + (N − 1)σ2

v

≈
Es − σ2

θEs′

σ2
θEs′ + Nσ2

v

, (27)

results in an expression which, after approximation, is identical to the ratio in (26) and

can therefore be used interchangeably for smallθ. Maximization, with respect toθ, of

the eigenvalue ratio (ER) defines the time delay estimator:

θ̂ER , arg max
θ

Λ(θ). (28)

The observations made above, forθ̌ML , of time delay estimates offset, and approxima-

tions accuracy for large delays, also applies toθ̂ER.180

Although bothΛ•(θ) andΛ(θ) result in the same estimator, they are related to

different correlation matrices with dimensionsM ×M andN ×N , respectively. From

an implementation viewpoint, the matrix with lower dimension is preferred.
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2.4. One-step estimator

The estimatoršθML in (24) andθ̂ER in (28) both require computationally demand-

ing maximization. Within the proposed eigenanalysis framework, a new one-step (OS)

estimator is proposed. This estimator is suboptimal, but since it does not require max-

imization, it can be used for smart initialization of the maximization required inθ̌ML

andθ̂ER. The OS estimator avoids maximization and can be derived by exploring the

result thatψ•
2 in (21) is approximately proportional toθ, i.e., ψ•

2 ≈ βθ. The factor

β can be determined by making use of‖ψ•
2‖ = 1 andθT θ = Mσ2

θ , leading to that

β = 1/
√

Mσ2
θ . The OS estimator is defined by

θ̂OS ,
1
β

ψ•
2 =

√
Mσ2

θψ•
2

=

√
(λ•

2 − σ2
v)N

Es′
ψ•

2, (29)

where the last equality comes from the introduction ofλ•
2 in (20).185

Beforeθ̂OS can be used,σ2
v andEs′ have to be determined—a problem whose solu-

tion depends on the application of interest. Since the noise is assumed to be stationary,

making it possible to estimateσ2
v by the ensemble variance, it is computed in intervals

where the signal energy is negligible [26].

An estimate forEs′ is obtained by first computing the ensemble average, then fil-190

tering to extract the main components ofs(n), and finally computing the energyEs′

from the differenced plus filtered signal. The sign uncertainty associated withψ•
2 can

be solved by taking the sign that maximizesλ•
1(±θ̂OS).

The OS estimator̂θOS can either be used separately, or to initialize the maximization

of the ML and ER estimators, leading to a considerably reduced grid search.195

2.5. Maximization of objective functions

Maximization of the two objective functions is performed using bound constrained

particle swarm optimization [27, 28], implemented in the MATLAB functionparti-

cleswarm(version 2015b), using a Toshiba laptop with an Intel Core i7-2640M pro-

cessor. Figure 1 illustratesΛ(θ) for a small ensemble (M = 3) displayed forθ2 andθ3200

at an SNR of 25 dB, whenθ1 is held fixed.
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Figure 1: The objective functionΛ(θ) displayed forθ2 andθ3 at an SNR of 25 dB, whenθ1 is held fixed.
Its maximum occurs for(θ2, θ3) = (0, 0) which are identical to the true time delays of the simulation. The
simulation model and the SNR are defined in Section 3.

2.6. Amplitude and shape variability

The signal model pursued in the present paper assumes thats(n) has fixed ampli-

tude and shape. However, this assumption may not be fulfilled, since, for example, the

amplitude of heartbeats can vary considerably over time due to respiration. While the205

analysis of varying amplitude and shape on time delay estimation is outside the scope

of the present paper, the implications of varying amplitude are briefly discussed in the

following extended signal model:

xi(n) = ais(n − θi) + vi(n), n = 0, . . . , N − 1, (30)

whereai is a random amplitude with meanma = 1 and varianceσ2
a(� m2

a). The

variablesai andθi are assumed to be uncorrelated.210

The eigenvalues of the correlation matrix for the model in (30) are given by

λi ≈






(σ2
a + 1)(Es − σ2

θEs′) + σ2
v , i = 1;

(σ2
a + 1)σ2

θEs′ + σ2
v , i = 2;

σ2
v , i = 3, . . . , N,

(31)
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and the corresponding eigenvalue ratio is

Λa(θ) =
λ1(θ)

N∑

i=2

λi(θ)

≈
Es − σ2

θEs′

σ2
θEs′ + Nσ2

v

σ2
a + 1

. (32)

Analogously to (27),Λa(θ) is maximized when the signals with varying amplitudes

are aligned.

Shape variability may also be present in the ensemble, showing up inλ2, λ3 and

higher-order eigenvalues of (31) (all being in the denominator ofΛa(θ) in (32)). There-215

fore, such variability does not influence the underlying design principle of the eigenvalue-

based estimators. This observation assumes that the shape variability has lower energy

thans(n), being the case in most biomedical applications. Thus, the eigenvalue ratio in

(27) should be well-suited for time delay estimation in the presence of shape variability.

3. Simulation220

The present simulation results are based on a real respiratory flow signal from a pa-

tient with chronic heart failure (CHF) and periodic breathing, extracted from a database

acquired with a pneumotachograph at a sampling rate of 250 Hz [29]. A representative

respiratory flow cycle of about 2.5 s is extracted. Zero-valued samples are inserted

symmetrically before and after the extracted cycle to produce a transient signals(n)225

extending over 6 s, thereby allowing misalignments of up to 200 samples. Using this

respiratory cycle, definings(n), we simulate ensembles of misaligned signals by repet-

itively delayings(n) to s(n − θi) and adding noisevi(n) to form the observed sig-

nal xi(n). The integer-valued time delayθi is uniformly distributed over the interval

[−δ, δ] implying a delay PDF with varianceσ2
θ = δ2/3. The signal-to-noise ratio230

(SNR) is defined as10 ∙ log(Es/σ2
v). An ensemble of 20 misaligned signals is shown

in Fig. 2(b). Note that the selected respiratory flow cycle in Fig. 2(a) has similar peak

flow and duration for inspiration and expiration, common in patients with chronic heart

failure and periodic breathing [24]. This characteristic stands in contrast to normal sub-

jects where peak flow and duration differ between inspiration and expiration.235

The eigenvalue-based method involves only one parameter, namely, the maximum

time shift Δmax defining the search interval[−Δmax, Δmax] for finding the maximum
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Figure 2: (a) A respiratory flow cycle and (b) a simulated misaligned ensemble, usingM = 20 and SNR
= 25 dB.

of the objective function. Here,Δmax = δ guarantees that any introduced delay in the

simulation can be optimally estimated in the grid search.δ is set to 80 samples, unless

otherwise stated.240

The performance of the ER estimator is compared to that of the ML and OS es-

timators as well as to that of the Woody estimator [16], denotedθ̂W. Performance is

quantified by the root mean square (RMS) of the error in the offset-corrected time de-

lay estimates, denotedσe. This measure is determined from simulated ensembles of

the model in (1) withM signals, and repeated usingR different Monte Carlo runs,245

R = 100 unless otherwise stated

xj
i (n) = s(n−θj

i )+vj
i (n), n = 0, . . . , N −1; i = 1, . . . ,M ; j = 1, . . . , R. (33)

To compute this error, the mean ofθ̂j
i in the ensemble is first subtracted to avoid the un-

determined offset mentioned in Secs. 2.2 and 2.3 otherwise affecting the performance

measureσe defined as

σe =

√√
√
√
√

1
MR

R∑

j=1

M∑

i=1

(

θj
i −

(

θ̂j
i −

1
M

M∑

i=1

θ̂j
i

))2

. (34)

4. Real data250

The proposed estimator is also tested on a real data ensemble using a respiratory

flow signal, recorded from a chronic heart failure patient with periodic breathing [24],

14



sampled at 250 Hz. The respiratory flow cycles are extracted from this signal, being

different from the one used in the simulation. In these patients, abnormal evolution of

the respiratory pattern (amplitude, morphology, etc) can trigger alarms on exacerbation255

of the underlying pathological process. For this purpose, respiratory cycle features

such as amplitudes and slopes have been proposed for monitoring [24]. The features

are computed from an ensemble average,ŝ, to reduce the influence of noise. Also, time

alignment prior to ensemble averaging is required to ensure that the low-pass filtering

effect is minimized [2] when computing the average.260

A signal ensemble from a patient composed ofM = 20 cycles is subject to aver-

aging, before and after alignment. The segmentation of the cycles is determined by the

zero-crossing at the onset of each respiratory flow cycle [24] up to the next onset of the

subsequent cycle. The zero-crossings are determined from a low-pass filtered signal

to reduce the influence of noise on the segmentation, minimizing instabilities around265

the zero-crossing location. To ensure that all cycles have the same length, they have

been restricted to the shortest cycle length of the ensemble, here 3 s. Assuming that the

cycle-to-cycle variability in duration is relatively modest, it is reasonable to consider

that the most part of the cycle is completely contained in the segmentation interval.

The alignment is made bŷθER estimator, usingδ = 0.2 s.270

5. Results

The results presented in this section are computed using the algorithmic steps de-

scribed below and in the pseudo code at Table 1. The performance is evaluated as

described in point 3.

1. Creation of the signal ensemble: from real or simulated signals.275

2. Time delay estimation usinǧθML in (24), θ̂ER in (28), orθ̂OS in (29).

3. Computation of performance results which for simulated data is expressed in

terms of the error metricσe and for real data by presenting the ensemble average

before and after alignment.
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Table 1: The pseudo code algorithm for obtaining the estimated delaysθ̂.

X = [x1 ∙ ∙ ∙ xM ], (matrixX creation)
R̂•

x = 1
N

XT X, (autocorrelation matrix estimation, or̂Rx = 1
M

XXT if this is the preferred)

If one step initialization̂θOS

R̂•
xψ

•
2 = λ•

2ψ
•
2, (second eigenvectorψ•

2 and eigenvalueλ•
2 estimation)

θ̂OS =
√

(λ•
2−σ2

v)N

Es′
ψ•

2, (one step delaŷθOS estimation)

xi(n)← xi(n + θ̂i,OS), i = 1, . . . , M (signal ensemble delay correction)
X = [x1 ∙ ∙ ∙ xM ], (θ̂OS delay corrected initialized ensemble matrixX construction)

end
If θ̌ML or θ̂ER estimate

for θ ∈ “grid search” (grid required by the maximization rule, in this caseparticle swarm)
xi(θi, n)← xi(n + θi), i = 1, . . . , M (signal ensemble delay correction)
X(θ) = [x1(θ) ∙ ∙ ∙ xM (θ)], (ensemble matrixX reconstruction)
R̂•

x(θ) = 1
N

XT (θ)X(θ) (autocorrelation matrix estimation)

R̂•
x(θ)ψ•

i = λ•
i (θ)ψ

•
i i = 1, . . . , M (eigenvalueλ•

i (θ) estimation)
Λ•(θ) = λ•

1(θ)/
∑M

i=2 λ•
i (θ) (objective function estimation)

end
If θ̌ML estimate

θ̌ML = arg max
θ∈grid search

λ•
1(θ) (θ̌ML estimation by maximization withparticle swarm)

end
If θ̂ER estimate

θ̂ER = arg max
θ∈grid search

Λ•(θ) (θ̂ER estimation by maximization withparticle swarm)

end
end
θ̂ ∈ {θ̂OS, θ̂ER or θ̌ML} (final delay estimate).
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Figure 3: The time delay estimation errorσe, computed, as a function of: (a) SNR forM = 10 (solid line),
andM = 50 (dashed line), usinĝθER (black line) anďθML (red line); (b)M for SNR= 10 dB (solid line),
SNR= 2 dB (dashed line),δ = 10, usingθ̂ER (black line) anďθML (red line); (c) SNR in dB forM = 10
(solid line),M = 20, (dotted line), andM = 50 (dashed line),δ = 80, usingθ̂W (black line) and̂θOS (red
line); (d) M for SNR= 10 dB (solid line), SNR= 2 dB (dotted line),δ = 80, usingθ̂W (black line), and
θ̂OS (red line).

5.1. Performance of the ER and ML estimators280

Figure 3(a) shows that the two estimators have similar performance in terms ofσe

for different SNRs, both deteriorating as the SNR decreases. Larger ensembles are

associated with better performance, particularly at low SNR. Figure 3(b) presentsσe

as a function ofM for SNR= 2 and 10 dB, showing thatσe is largely independent of

M, except for small size of the ensemble and low SNR.285

The objective functionsΛ(θ̂ER) andλ•
1(θ̌ML), corresponding to optimally aligned

ensembles, are shown in Fig. 4 as a function of SNR. The log-likelihood (objective)

function of the ML estimator decreases as the SNR increases sinceσ2
v in λ•

1(θ̌ML) is

additive. On the other hand,Λ(θ̂ER) behaves in the opposite way since it increases as

the SNR increases. This behavior is explained by the fact thatΛ(θ̂ER) involves the term290

(N − 1)σ2
v in the denominator, thereby resulting in an inverse relation to the noise that

dominates overσ2
v in the numerator, cf. (20).
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Figure 4: The objective functionsΛ(θ̂ER) (black line) andλ•
1(θ̌ML ) (red line) as a function of SNR for

optimally aligned ensembles andM = 10.

5.2. Performance of the OS estimator

The performance of̂θOS estimator is presented when used separately. From these

results it can be evaluated the potential of this estimator to work either separately or in295

combination with the maximization estimator. The range of the reduction in the grid

search size, when initialized bŷθOS, can be inferred by evaluating the residual error of

θ̂OS, which will become the minimum required grid search of the estimators involving

maximization. The errorσe of θ̂OS is presented as a function of SNR in Fig. 3(c),

for differentM . For comparison,σe of the Woody method̂θW is included [16]. It is300

obvious that the performance ofθ̂OS is almost independent of the SNR, with better per-

formance for smallerM . On the contrary,̂θW performs less well for smaller ensemble

sizes since the required, intermediate ensemble average is then noisier. Another obser-

vation from this figure is thatσe increases for̂θW as the SNR decreases, again explained

by an increasingly noisy intermediate ensemble average. ForM = 50, σe of θ̂W is very305

close to that of̌θML in Fig. 3(a), demonstrating that the improvement achieved withθ̌ML

becomes more pronounced for smallerM [22].

For low SNRs and smallM , θ̂OS performs better than̂θW, see Fig. 3(c). This result,

combined with the result that the performance ofθ̂OS is almost independent of the

SNR and the property that̂θOS is a one-step estimator, makesθ̂OS a better candidate for310

initialization of the maximization required in the ER and ML estimators. By comparing
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the results in Fig. 3(c) with those in Figs. 3(a) and 3(b) for SNR= 2 and10 dB, we

note that the performance ofθ̂OS andθ̂W, as expected, is always lower than that of the

θ̌ML or θ̂ER .

Figure 3(d) showsσe as a function ofM for SNR = 2 and 10 dB. The result in315

Fig. 3(c), showing that̂θW performs less well for smallerM whereas the reverse occurs

for θ̂OS, is again demonstrated since the performance ofθ̂OS deteriorates asM increases,

while the performance of̂θW improves asM increases. From Fig. 3(d) it is observed

that this reverted behaviour, favorinĝθOS over θ̂W for low M values, remains valid for

largerM range the lower SNR becomes; up toM = 10 for SNR= 10 dB and up to320

M = 40 for SNR= 2 dB.

Figure 5(a) presents the performance ofθ̂OS as a function of SNR for differentδ.

This result has particular relevance since it quantifies the impact ofδ on the approxi-

mations associated with (9) and (19). From Fig. 5(a),σe reduces, as expected, sinceδ

becomes increasingly smaller. For a smallδ (i.e., 10 or 15) and SNRs below 10 dB,325

however,σe increases asδ decreases—a result which may be ascribed to the competing

effects between time delays and noise inθ̂OS, cf. (29). Figure 5(b) showsσe for θ̂OS as

well as forθ̂ER andθ̌ML as a function ofδ, demonstrating that the performance of the

latter two estimators are independent ofδ.

5.3. Computational load330

Figure 5(a) demonstrates that initialization based onθ̂OS for the maximization re-

quired in θ̂ER and θ̌ML implies that the original grid search can be constrained. For

the most unfavorable case, when inspectingσe for large time delays, i.e.,δ = 100, it

is obvious that the remaining estimation error is less than10 samples. However, the

remaining misalignment is to be handled by the maximization-based estimators. By335

usingθ̂OS for initialization, the grid search can be constrained to a conservative value

larger than2σe, resulting in about20 samples, which, in turn, translates to a remarkably

smaller grid. Usingδ = 100 to estimate the reduced grid size, the brute force search

leads to a reduction factor in computation time ofδM/(δ/5)M = 5M . The dependence

of σe onδ, obvious from Fig. 5(a), is a consequence of the fact that the larger the delay340

is in the model in (9) the less accurate is the approximation inθ̂OS, and therefore its
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Figure 5: (a) The time delay estimation errorσe as a function of SNR forM = 20, R = 50, usingθ̂OS

for different values ofδ as indicated on the plot,δ ∈ {40, 60, 80, 100} (solid lines),δ = 15 (dotted line),
andδ = 10 (dashed line). (b) The time delay estimation errorσe as a function ofδ for M = 20 and SNR
= 10 dB, usingθ̂ER (dashed blue line),̌θML (dotted red line), and̂θOS (black solid line).

performance, evaluated byσe, deteriorates.

Using instead particle swarm optimization, the saving factor has to be estimated

experimentally. Figure 6(a) presents the average computation time forθ̂ER and θ̌ML

as a function ofM for different δ, averaged over SNRs ranging from 2 to 24 dB.345

Comparing the results in Figure 6(a) for differentδ, it is obvious that the saving factor

is much smaller than that of brute force maximization. The factor may be estimated

by comparing the computation time forδ = 100 andδ = 10 for M = 50, leading to

a saving factor of approximately 1.5. For smallerM , the saving factor decreases and

becomes increasingly insignificant.350
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Figure 6: The computation time as a function ofM , with δ set to 10 (dashed line), 20 (dotted line), and 100
(solid line),R = 50, using (a)θ̂ER (black line) anďθML (red line), and (b)̂θOS (black line). The vertical
scales of (a) and (b) differ as a consequence of the maximization required in the ER-based methods.

Figure 6(b) presents the computation time forθ̂OS as a function ofM , being dras-

tically faster than those of̂θER and θ̌ML since no maximization is performed. As ex-

pected, the computation time increases withM . The computation time of thêθW has

been omitted since it is not relevant in the present context.

5.4. Real data results355

The patient data ensemble, described in Sec. 4, is presented in Fig. 7(a). In the

ensemble, each respiratory cycle has, in addition to different time delay and noise,

variability in shape, suggesting that the model in (30) involving amplitude variability,

is more adequate. With certain shape variability, the proposed estimators will still work
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as indicated by (32). Also, note that the ensemble signals do not start at zero since the360

segment onset is determine by the zero-crossings of the low-pass filtered signal. In

Fig. 7(b), the same ensemble is plotted after alignment using theθ̂ER estimator. It is

obvious that the transitions from inspiration to expiration are closely grouped together

after alignment and therefore its quantification becomes more accurate. In Fig. 7(c)

the ensemble averageŝ before and after aligned ensemble average are plotted, showing365

that the amplitude of the estimated respiratory cycle is higher after alignment (both

inspiration and expiration) as is the transition slope between the states, both relevant

features for diagnosis. The oscillations and large variability observed in the ensemble

are due to that the patient suffers from CHF and periodic breathing. If the dynamics of

the shape are of interest, they can be quantified by the ensemble variance, or by using370

smaller values of M in the averaging, at the cost of less noise reduction.
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Figure 7: Ensemble with real respiratory flow cycles. (a) Ensemble extracted from signal segmentation, (b)
ensemble after time alignment usingθ̂ER, and (c) the respiratory cycle,ŝ, estimated by averaging the original
ensemble (black), and the aligned ensemble (red).

6. Discussion

Eigenvalue-based estimator

The present paper proposes two time delay estimators based on eigenanalysis, em-

bracing either maximization of an eigenvalue ratio (θ̂ER) or maximization of the first375

eigenvalue (̌θML ). The estimators have identical performance. Of these two estimators,

θ̌ML is the simpler one to implement, although no significant difference exist between
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the two with respect to computation time. Inspection of the approximations in (26)–

(27) suggests that maximization of the numerator together with minimization of the

denominator, as in̂θER, would yield better performance than would maximization of380

the numerator only, as iňθML . However, recalling that tr{Rx} and tr{R•
x} are invariant

to time delays, it is noted that the denominator in (26) equals tr{R•
x}−λ•

1 which implies

that maximization of the numerator and minimization of the denominator are exactly

the same, thus justifying the obtained results on identical performance ofθ̂ER andθ̌ML .

The objective functionsΛ(θ̂ER) andλ•
1(θ̌ML) have a reverted dependence with SNR for385

optimally aligned ensembles, see Fig. 4, as justified from inspection of (20) and (26).

For largeδ, Fig. 5(b) shows that the performance ofθ̂ER and θ̌ML do not deteri-

orate, although the expressions in (26) and (27) become less accurate asθ becomes

larger. This result was already justified when introducingθ̌ML in (24) and same con-

clusions can be reach analyzing the fact that both estimators reduce to maximization390

of λ1. The first eigenvector of the correlation matrix may be regarded as the vector

generating the first principal component of the signal ensemble [25], where the corre-

sponding eigenvalueλ1 is known to increase when the morphological variability of the

ensemble decreases. In the model in (8), the ensemble variability is given by the noise

variance, being invariant to time delays when the noise is stationary, plus the signal395

variance, reducing to zero for perfect alignment. Thus, this observation justifies that

the maximization ofλ1 always results in an optimal estimator irrespective of the de-

gree of time delay dispersion. If higher-order approximation terms in (26) and (27) had

been considered to handle largeθi, the resulting expression would have become much

more complicated and more difficult to interpret. However, the previous observation400

shows that the maximization of the resulting expression will still result in an optimal

estimator.

Eigenvalue-based estimation, based on eitherθ̂ER or θ̌ML , represents an alternative

way of implementing the ML estimator, cf. (23) and Fig. 3. These two estimators

may benefit from efficient implementations of algorithms for eigenvalue decomposi-405

tion, avoiding the triple summation in (15) and the need for an intermediate estimate

of s(n) [22]. Fig. 3(b) shows that performance gets better asM increases for low of

about 0 dB SNR as a result of better ”learning” of the underlaying signal shapes(n),
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whereas this learning is negligible at an SNR of about 10 dB or higher.

Model assumptions410

The signal-plus-noise model in (1) stems originally from the radar application

where it is known as range estimation [1], but it has been found relevant in many

biomedical applications where repetitive signals are of interest to analyze [2]. The

present paper was inspired by the work we did in a recently published, clinically ori-

ented study on respiratory flow cycle morphology in patients with chronic heart fail-415

ure [24], where ensemble averaging of respiratory flow signals, preceded by eigenvalue-

based time alignment, was used to improve the signal-to-noise ratio.

The assumptions related to the model in (1) are 1) a signals(n) with fixed ampli-

tude and shape, 2) a random time delayθi with zero-mean and fixed variance, and 3)

additive, stationary, Gaussian, white noisevi(n). Concerning respiratory flow signals,420

as well as most biomedical signals, assumption #1 on fixed amplitude may be ques-

tioned since the amplitude can vary considerably over time, illustrated by Fig.7, see

also [24]. Nevertheless, the eigenvalue ratioΛa(θ) in (32), derived for the varying-

amplitude model in (30), is still maximized when signals with varying amplitude are

aligned. Alignment of signals with considerable variation in shape represents a more425

complicated situation, possibly calling for nonlinear time delay estimation techniques

such as dynamic time warping [20, 21]. However, the eigenvalue ratioΛa(θ) is still

maximized provided that the variability in shape has lower energy thans(n). For res-

piratory flow signals, as well as most biomedical signals, the variability in shape has

usually lower energy thans(n).430

Assumption #2 on a random time delay is justified since the segmentation of suc-

cessive respiratory cycles is based on zero-crossing times with poor accuracy with re-

spect to the underlying trigger of the physiological event; similar considerations apply

to other biomedical signals where instead extrema detection or other landmark fea-

tures are used for segmentation. Consequently, time alignment is necessary to improve435

this accuracy. The zero-mean assumption for the delayθi is justified since any delay

distribution including a offset will result in a delayed estimate ofs(n), typically ir-

relevant in biomedical signal analysis where the information is on the overall shape,
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as already discussed when introducing the maximization estimators. In situations like

evoked potential where the latency of the peaks in the averaged signal with respect to440

the evoked trigger is relevant, this offset can be easily corrected by subtracting the es-

timates mean. Concerning the stationarity assumption (#3), it is reasonable to assume

that signals recorded during resting conditions have fixed noise variance. Signals with

large artifacts and intermittent disturbances are typically excluded before time align-

ment, making an assumption of a time-varying noise variance unnecessary.445

One-step estimator

By analyzing the eigenvector structure of the approximate inter-signal correlation

matrix R•
x in (19) for small time delays, the proposed one-step estimatorθ̂OS, being

proportional toψ•
2, outperforms the Woody method for low SNRs and smallM , but

not for high SNRs and largeM , see Fig. 3. ThisM value can reach up to 40 cycles,450

see Fig. 3(d), when the SNR approaches 0 dB. The one-step estimator is of particular

interest for initialization of the maximization-based estimators, leading to a reduction

in computation time. This type of initialization is suitable to use in devices with con-

straints on power consumption, e.g., implantable devices, but less so in off-line appli-

cations. The use of̂θOS is attractive since it draws on the framework of the inter-signal455

correlation matrix and eigenanalysis.

Since the computational saving factor is likely to depend ons(n), a “learning step”

will be required to determine the extent with which the grid search should be con-

strained. The learning step should take its starting point from results analogous to

those in Fig. 5(a). Also, an estimate ofs(n) is required, e.g., obtained by ensemble460

averaging.

The computation of̂θOS requires estimations ofσ2
v andEs′ as described in Section

2.4. Alternative methods to estimatingσ2
v is to use the higher-order eigenvalues, i.e,

σ̂2
v =

∑N
i=i0

λi/(N − i0 + 1), wherei0 is chosen such that signal shape variability

is avoided. ForEs′ , an alternatively strategy can be obtained by observing thats is465

essentially proportional to the first eigenvector ofRx in (12) so that an estimate ofEs′

is obtained fromÊs′ ≈ (λ1 − σ2
v)Eψ′

1
.

From inspection of Fig. 5(a) a iterative estimation process can be suggested by
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recurrent application of̂θOS, particularly for large SNR,leading to better estimates.

Implications of misalignment470

It is well-known that increased time delay jitter attenuates higher frequencies of

the ensemble average [2]. Assuming an ensemble ofM = 10 signals, an SNR of

15 dB, and a sampling rate of 1000 Hz, the 3 dB cut-off frequency caused byσe

is approximately 150 Hz for eigenvalue-based alignment. For the OS estimator, the

cut-off frequency drops to approximately below 90 Hz. Such a substantial drop in475

cut-off frequency has repercussions in applications such as high-frequency ECG anal-

ysis, where an ensemble of QRS complexes is averaged and bandpass filtered (150–

250 Hz) [30, 31]; thus, an SNR higher than 15 dB should be employed. Better perfor-

mance ofθ̂ER not only has implications on ensemble averaging, but even more so on

the estimation of ensemble variance where better accuracy is required of the time delay480

estimates [26].

The real data example presented in Fig. 7(c) illustrates the effects on the amplitude

and the slope of a respiratory cycle, both more pronounced after alignment. These

changes are the result of the increase in the cut-off frequency introduced by averaging

after alignment [2]. This example is descriptive in nature, and does not pretend to be a485

clinical validation which is outside the scope of this study.

Maximization

In the present paper, particle swarm optimization [32] has been used, while other

techniques were not investigated. Therefore, it may be possible that other techniques

may offer faster convergence or come with less computational cost. The computation490

time has been analyzed in relative terms since the computation time in absolute terms

are platform-dependent. While the maximization here presented is restricted to integer

values, if required, a finer temporal resolution than that provided by the sampling rate

can be obtained by interpolation. Once the optimal value is reached, a grid can be

easily computed around this value.495
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7. Conclusions

The present study introduces and evaluates novel methods for time delay estimation

based on the eigenvalues of the sample correlation matrix of the signal ensemble. It

is shown that the ML estimator can be implemented by maximizing either the first

eigenvalue of this matrix, or, equivalently, a ratio defined by its eigenvalues. A one-step500

estimator is proposed based on the second eigenvector of the inter-signal correlation

matrix. When using the one-step estimator for initialization, a reduction in computation

time of the estimators involving maximization can be achieved.

8. Appendix A

This appendix derivesλ1 for a second-order approximation ofRx, see (10). First,

we observe thats(t) ands′(t) are orthogonal, i.e.,

∫ ∞

−∞
s(t)s′(t)dt =

1
2π

∫ ∞

−∞
S(Ω)(−Ω)S∗(Ω)dΩ

= −
1
2π

∫ ∞

−∞
Ω|S(Ω)|2dΩ = 0. (35)

With the same argument,s′(t) ands′′(t) are also orthogonal. The cross-energy between

the signals(t) and its second derivatives′′(t) is always negative, and equal to minus

the energy of the derivative, since

∫ ∞

−∞
s(t)s′′(t)dt =

1
2π

∫ ∞

−∞
S(Ω)(−Ω2)S∗(Ω)dΩ

= −
1
2π

∫ ∞

−∞
Ω2|S(Ω)|2dΩ

= −
∫ ∞

−∞
s′(t)s′(t)dt < 0, (36)

whereS(Ω) denotes the Fourier transform ofs(t); Nyquist sampling is assumed.505

Assuming thatxi(t) in (9) is sampled at the Nyquist rate, orthogonality applies also

to the sampled counterpartss, s′, ands′′, andEss′′ = sT s′′ = −Es′ .

Using these observations, we can see that the first eigenvector of the correlation

matrix in (10) should be a linear combination betweens ands′′ of the form (s + αs′′),

whereα is a scale factor to be determined. When multiplyings ands′′ with the term510
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being a combination ofs ands′′ in Rx, we obtain
(

ssT +
σ2

θ

2

(
ss′′T + s′′sT

)
)

s =

(

Es −
σ2

θ

2
Es′

)

︸ ︷︷ ︸
Css

s +

(
σ2

θ

2
Es

)

︸ ︷︷ ︸
Css′′

s′′ (37)

and
(

ssT +
σ2

θ

2

(
ss′′T + s′′sT

)
)

s′′ =

(

−Es′ +
σ2

θ

2
Es′′

)

︸ ︷︷ ︸
Cs′′s

s +

(

−
σ2

θ

2
Es′

)

︸ ︷︷ ︸
Cs′′s′′

s′′. (38)

Thus, the eigenvalue equation forλ1, for convenience expressed as

λ1 = λ1,s + σ2
v , (39)

is given byRx(s + αs′′) = (λ1,s + σ2
v)(s + αs′′), yielding

Csss + Css′′s′′ + α(Cs′′ss + Cs′′s′′s′′) = λ1,s(s + αs′′). (40)

To estimate the eigenvalue, the following equation system should be solved:

Css + αCs′′s = λ1,s,

Css′′ + αCs′′s′′ = αλ1,s. (41)

Solving forλ1,s the following quadratic equation results:515

λ2
1,s − λ1,s(Cs′′s′′ + Css) + (CssCs′′s′′ − Css′′Cs′′s) = 0, (42)

whose solutions are given by

λ1,s =
Cs′′s′′ + Css ±

√
(Cs′′s′′ + Css)2 − 4(CssCs′′s′′ − Css′′Cs′′s)

2

=
Cs′′s′′ + Css ±

√
(Cs′′s′′ − Css)2 + 4Css′′Cs′′s

2
. (43)

Substituting theC coefficients defined in (37) and (38), we obtain

λ1,s =
Es − σ2

θEs′ ±

√

E2
s + 4

(
−Es′ + σ2

θ

2 Es′′

)
σ2

θ

2 Es

2
. (44)
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Approximating the square root, realizing that higher-order terms are always smaller

than the lower-order terms for smallσ2
θ , and retaining the positive sign of the square

root solution, we obtain

λ1,s ≈ Es −
σ2

θ

2
Es′ +

(

−Es′ +
σ2

θ

2
Es′′

)
σ2

θ

2
. (45)

It is noted that the solution with negative sign is ignored since it corresponds to a much520

smaller eigenvalue. Neglecting the fourth-order term, we obtain

λ1,s ≈ Es − σ2
θEs′ , (46)

which, when substituted in (39), becomes the desired eigenvalue in (11), i.e.,

λ1 ≈ Es − σ2
θEs′ + σ2

v . (47)

Theα factor in the linear combination betweens ands′′, using the above approx-

imations, results inα = σ2
θ/2. Hence, the first eigenvectorψ1 is proportional to

(s + (σ2
θ/2)s′′) as expressed in (12).525

Repeating the same derivation forR̂•
x in (19), ψ•

1 should be proportional to the

form (1 + α•θ2), and the equations corresponding to (37) and (38) become:

1
N

(

Es11T −
Es′

2

(
1θ2T

+ θ21T
))

1 =
M

N

(

Es −
σ2

θ

2
Es′

)

︸ ︷︷ ︸
Css

1 +

(

−
M

2N
Es′

)

︸ ︷︷ ︸
Css′′

θ2

(48)

and

1
N

(

Es11T −
Es′

2

(
1θ2T

+θ21T
))

θ2 =
M

N

(

σ2
θEs−

3σ4
θ

2
Es′

)

︸ ︷︷ ︸
Cs′′s

1+

(

−
Mσ2

θ

2N
Es′

)

︸ ︷︷ ︸
Cs′′s′′

θ2,

(49)

yielding

λ•
1 ≈

EsM

N
−

σ2
θEs′M

N
+ σ2

v (50)

which is the desired eigenvalue in (20). Derivingα• using the above approximations,530

we obtain thatα• = −Es′/(2Es), leading to the eigenvectors in (21).
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9. Appendix B

This appendix derives the expression forθ̂ML . First, we observe that for the model

in (1) the probability density function (PDF) ofxi(n), given a samplen, a deterministic

signals(n), and a delayθi is given by535

p(xi(n); s(n), θi) =
1

√
2πσ2

v

exp

[

−
1

2σ2
v

(xi(n) − s(n − θi))
2

]

. (51)

Since the noise at different time instants are independent, the joint PDF of a signalxi

is just the individual products, and similarly for the complete signal ensembleX in (3)

p(X; s, θ) =
1

(2πσ2
v)NM/2

exp

[

−
1

2σ2
v

M∑

i=1

N−1∑

n=0

(xi(n) − s(n − θi))
2

]

. (52)

The ML estimation ofθ comes from that̂θML which maximizes the PDF, or equivalently

its logarithm transformation. Operating this maximization, it results in minimization

of the objective functionJ540

J(X; s, θ) =
1

2σ2
v

M∑

i=1

N−1∑

n=0

(xi(n) − s(n − θi))
2, (53)

and the estimated results will be those which satisfy

(ŝML , θ̂ML) = arg min
s,θ

J(X; s, θ) (54)

Since this function contains, in a interleaved way,ŝML andθ̂ML we solve the minimiza-

tion first for ŝML at a particularθ resulting in

ŝML,θ =
1
M

M∑

i=1

xi(n + θi), (55)

and later, substituting this expression in (53), and minimizing forθ̂ML results in [22]

θ̂ML = arg max
θ

∑

n

M∑

i=1

M∑

k>i

xk(n + θk)xi(n + θi). (56)
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