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ABSTRACT: Elastomers exhibit a stress-softening response which depends on the maximum strain previ
ously endured by the material. In complex structures, the strain is not homogeneous; as a consequence, the local 
maxima of strain is not uniform and the stress-softening either. In the sequel, a stress-softening model is used 
for finite element simulations. It appears that the damage distribution is not homogeneous and that weak zones 
of the structure vary in a great range. As expected, stress levels depend strongly on the loading path, and the 
strain state is also modified because of the non-homogeneity of the whole structure. This brings to light that the 
Mullins effect is of fundamental importance in structural and fatigue design. 

I INTRODUCTION 

Elastomers exhibit a large number of phenomena as 
hysteresis, relaxation behaviour, stress-softening 
(Mullins, 1969). All these characteristics are of fun
damental importance in the prediction of long-time 
behaviour. In this paper, we only focus on the stress
softening phenomenon known as Mullins effect. Others 
phenomena are neglected. The rubber behaviour can 
be considered as time-independent and can be schemat
ically represented by Figure I, corresponding to a ten
sile cyclic loading. The virgin undamaged material is 
first stretched as the extension ratio reaches X1 and the 
stress follows path (I). Then the unloading from At to 
0 follows path (1'). The second loading from 0 to 
An > >.. 1 first follows path (I') until X = >..1 then it fol
lows path (II). The second unloading from stretch 
ratio Xn to 0 follows path (II') which is different than 
the path (I ' ). At a given stretch, the stress on (II') is 
lower than the stress on (1'). Repeating this process, 
the loading path corresponding to the increase of 
stretch from 0 to X11 is the path that joins (II ' ) and lhe 
part (III) of the virgin curve. Finally, the correspon
ding unloading follows path (111'). 

During the life of the structure, numerous different 
cycles are imposed. A lot of work have been done for 
different materials to analyze the importance of the 
loading cycle sequences. The aim of this article is to 

• i 

Figure I . Schematic behaviour of a hyperelastic material 
with stress-softening. 

show the influence of the primary loading cycles on 
the structure fatigue behaviour. As the local stress 
depends on the stress softening phenomenon, it is 
important to know what are the local stress and strain 
states after different loading histories. 

In a itrSt part, different models of stress-softening 
are presented. Then, the damage model used for predic
tions is recalled. In a secood part, we show the influence 
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of the loading history on an axjsymmetrical notched 
sample dedicated to fatigue tests. In the last part, 
results on biaxial loading cases are evaluated. Finally, 
we conclude on the importance of the Mullins effect 
for fatigue studies. 

2 MODELS FOR THE MULLINS EFFECT 

Numerous models have been proposed since the stress 
softening phenomenon was pointed out. Models were 
based on material considerations. First, Mullins and 
Tobin (1957) considered that the material contains 
hard and a soft phases. Under loading the hard phase 
becomes soft phase. The evolution of the ratio of soft 
phase is studied and different evolution laws have been 
proposed, we can quote Johnson and Beatty ( 1993) or 
Zui'i.iga and Beatty (2002). Another approach is based 
on chain consideration, the interactions between chain 
and filler or chains with each other are studied, the first 
work was presented by Bueche ( 1960, 1961 ). Recently, 
Marckmann et al. (2002) have proposed a new consti
tutive equation to describe the evolution of chain length 
of the material. A last approach has an phenomeno
logical point of view. By a study of the magnitude of 
the stress-softening according to the strain, Chagnon 
et al. (2004) have proposed a damage evolution law. 

All these models have advantages and drawbacks, 
and a comparative study has been proposed by Chagnon 
et al. (2003). Here we choose to use the damage 
model of Chagnon et al. (2004) because of its ability 
to describe the Mullins effect, as well as its easy finite 
element implementation. 

2.1 Constitutive model 

The model used for predictions is based on the Con
tinuum Damage Mechanics (Chagnon eta/. (2004)). A 
thermodynamic variable D is introduced to represent 
the stress-softening effect. This damage function is 
introduced within the hyperelastic energy density, it 
yields to: 

W=(l-D)Wa (I) 

The damage evolution law is based on the ratio of 
stresses of the second loading curves. It is expressed 
in an exponential fonn: 

(2) 

thanks to the first strain invariant, where D~ and 11 are 
material parameters. As it has been shown by 
Chagnon et al. (2004} parameters must be fined on 
experimental data. 

Table l. Parameters of the damage model. 
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Figure 2. Simulation of a tensile test with the damage 
model of Chagnon el uf. (2004)- (-)model,( .. . ) experi
mental data. 

The first loading curve is then described by both 
the hyperelastic behaviour and the damage function. 
It is important to choose a compatible strain energy 
function with regard to the damage evolution law. 
Energy densities with important hardening cause 
abnormal curvatures of the model; then, a regularized 
form of W0 must be selected. The hyperelastic energy 
density proposed by Yeah ( 1990) is chosen: 

The model is implemented in the finite element soft· 
ware Abaqus, thanks to the UMAT facility. The param
eters are identified on experimental data corresponding 
to a carbon black natural rubber. The parameters values 
are given in Table I. 

The corresponding results are presented in Figures 
4 and 5. The modelling is globally in good agreement 
with the experimental material behaviour. 

2.2 Finite elements implementation 

Here, we focus our attention on the implementation 
of the model in a finite element code. The munerical 
integration of the constitutive model is summarized in 
Table 2. 
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Table 2. Model implementation. 

I. Given the deformation gradient Fn+J 
Compute Bn+t:"" Fn+l (Fn+J)T 

2. Compute the first strain invariant 
It := trace(Bn+ 1) 

3. Check evolution damage 
Ifl 1 < 11ma.' then 
no damage evolution~ dn+t := dn 
else 
damage evolution~ dn+t:= d(lt) 
endif 

4. Compute the Cauchy stress tensor 

<Tn.1=-pi+2Bn.~ 
LDn+l 

S. Update damage criterion 
l,m•x:= max(I1,I!'"ax) 

In order to make the finite element implementation 
at a low cost of computational times, it is important to 
evaluate the tangent operator of the model. The fourth
order tensor C, known as the Lagrangian or material 
elasticity tensor is defined by the relation between 
Lagrangian strain E and Lagrangian stress S: 

oS=C :oE (4) 

It is defined by the spatial derivative as: 

J ----
C= Ic,JxLE, ®EJ ®Ex ®E, 

I .J ,K,l.r:ol (5) 

CKW 

~ 
E1 are Lagrangian basis vectors. In order to take into 
account material incompressibility the relation (I) is 
modified in: 

Figure 3. Axisymetrical notched specimen. 
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Figure 4. Traction cycle history imposed to the AE 
specimen. 
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Figure 5. Damage distribution for the AE specimen after 
(6) the 20mm displacement cycle. 

The model can be dissociated into three parts for the 
calculus of tangent operator, the first one is hyper
elastic behaviour, the second one, damage behaviour 
and the last one, incompressibility assumption. 

3 FATIGUE SPECIMEN PREDICTIONS 

The tests of crack propagation in fracture specimens 
conducted in this work are developed at Modyn
Trelleborg. Classically, fatigue tests are realized by a 
sequence of numerous identical cycles. The aim of 
the present part is to numerically applied what hap
pens when a large cycle is realized somewhere in the 
succession of smaller cycles. The importance of the 
loading history for the structure is highlighted. 

3. I Axisymetrica/ notched sample 

A first test is realized on the classical fatigue speci
men called AE. It is represented in Figure 3. 

3. 1.1 Tension test 
A uniaxial tensile simulation is carried out on Abaqus, 
with an axisymetric hypothesis. A sequence of increas
ing cycles is realized on the same specimen. It is 
depicted in Figure 4 . The marks represent the compared 
structure states. Each point corresponds to the same 
imposed displacement with a different history, i.e. a dif
ferent maximwn imposed displacement to the structure. 

As an example, the damage state after the largest 
displacement cycle is illustrated in Figure 5. 

The central part of the specimen is the most 
stretched one. This region is the most favourable for 
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Figure 6. Evolution of the stress-softening according to 
the maximum imposed displacement. 

0,5 50 

0,4 .. X :I "' 
............._ 

"' .__ 'It' ~ .. ~~ 
! 0 ,3 u; _,____ 
>- .. r--.. 

20 1 '5 0,2 

"' • (,) 0,1 "' 10 ~ ,...,• 
0 0 

0 4 8 12 16 20 
Displacement (mm) 

Figure 7. Evolution of the maximum principal stress in the 
centre of the structure after a larger cycle (--). The per
centage of stress loss is presented on the secondary axis --). 

crack initiation. The damage, or Mullins effect percent
age, in the centtal zone of the specimen is represented 
according to the maximum imposed displacement in 
Figure 6. The evolution is quasi linear. 

The centtal zone structural state stress remains uni
axial whatever the maximum imposed displacement, 
but the stress level is evolving. Figure 7 presents the 
evolution of the maximum principal stress in the 
structure for a 4 mm displacement after a maximum 
cycle of different size. 

It appears that the stress loss rises 50% after a cycle 
of 16 nun. It proves that the central structure endured 
two times less of stress. To finish the analysis, the 
strain state is compared. The structure geometry of the 
structure makes the central zone being in a quasi uni· 
axial tension. The evolution of the maximum principal 
elongation is presented in Figure 8 on the left hand 
side axis; the two other elongations are presented right 
hand side axis. 

It appears that the structure is defonned more 
and more in the applied force direction. The rise is 
about 40%. As a consequence, the strain in the two 
others directions is decreasing with the prescribed 
displacement. 
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Figure 8. EvoiUiion of the maximal principal elongation in 
the center of the structure after a larger cycle (--). 
Evolution of the two others principal elongations(-). 

Table 3. Evalualion of the biaxiality ratio according to the 
maximum imposed displacement for the axisymetric cut 
specimen. 

Displacement 4 6 8 10 12 
B -0,(ll5 -0,608 -0,602 -0,601 -0,600 
Displacement 14 16 18 20 
B -0,601 -0,602 -0,604 -0,610 

The deformation state of the body is fundamental 
for the fatigue analysis. The biaxiality state of defor
mation influences the crack apparition. Saintier (2000) 
has introduced a biaxiality coefficient B to evaluate 
the deformation state of the material, its definition is: 

B = ln(i..J) 
ln(i..1) 

(7) 

Where >. 1 and A2 are extensions on the considered sur
face. The evaluation of this ratio for the previous 
example is given by Table 3. 

lt is interesting to note that the biaxiality ratio does 
not evolve whatever is the maximum prescribed dis
placement. It remains close to -0.5 which corresponds 
to an uniaxial tension state. 

The stress-softening imposed to the structure implies 
a fall of the stress in the structure (about 40".4) and a 
large modification of extension amplitudes. But the 
strain state does not evolve for a constant biaxiality ratio. 

3.1.2 Torsion test 
In the same way as for the traction tests, a parametric 
analysis is performed for important cycles on torsion 
behaviour of an AE specimen. The behaviour of the 
specimen is studied under torsion angle of 30° but 
after different maximum cycles between 30° and 
225°. The damage concentrates in the central zone of 
the structure, as shown in Figure 9 afu:r a loading tor
sion cycle of225°. 
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Figure 9. Damage state of the axisymetric notched speci
men (AE) after a 225° rotation cycle. 
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Figure 10. Evolution of damage in the center of the struc
ture according to the maximum prescribed angle. 

The maximum damage in the central zone of the 
structure is plotted according to the maximum angle 
imposed to the specimen in Figure I 0. The damage is 
maximum at the surface of the specimen. It appears 
that the stress-softening varies quasi-linearly with the 
torsion angle imposed to the structure. 

As a consequence, the stress state is modified by 
the damage evolution. The evolution ofthe maximum 
principal stress in the centre of the structure is pre
sented in Figure 11 . The stress loss rises 20% for the 
largest imposed angle. 

The evolution of the principal stretches is presented 
in figure 12. 

As for uniaxial tests prescribed, the elongation in 
the most sollicitated direction increases whereas the 
two others decrease. It is interesting to evaluate the 
evolution of the biaxiality ratio; it is presented in 
Table 4. It appears that B does not depend on the max
imum imposed angle. It remains equal to -0.92 which 
is near a pure shear strain field. 

3.2 Centre cracked plate 

A second test is realized on a classical fatigue struc
ture: a cracked plate (40 mm large and 60 nun high) 
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Figure 1 I. Evolution of the maximal principal stress in the 
center of the structure according to the maximum imposed 
angle. 
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Figure 12. Evolution of the maximal principal elongation 
(-)and the two others principal elongations(--) in the 
center of the structure after a larger cycle. 

Table 4. Evaluation of the biaxiality ratio according to the 
maximum imposed angle for the axisyrnetric cut specimen. 

Angle 
8 
Angle 
B 

30 
-0,926 
135 
-0,922 

45 
- 0,926 
180 
-0,920 

60 
-0,925 
210 
-0,918 

90 
-0,922 
225 
-0,918 

120 
-0,921 

with a horizontal centred crack of 2.5 mm long. The 
structure is studied for a 4 mm displacement, after dif
ferent maximum cycles at displacement between 4 
and 40 mm. The damage distribution of the structure 
after a 40 mm imposed displacement is presented in the 
Figure 13. It appears that the damage (i.e. the stress
softening phenomenon) is concentrated at crack tip. It 
is about three times the stress softening of the rest of 
the structure. 

The structure becomes totally non-homogeneous, 
the behaviour of the crack tip is very different than the 
one in the rest of the plate. Moreover, local data of 

the crack tip are largely modified. The evolution of 
the maximum principal stress is shown in Figure 14. 
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(a) (b) 

Figure 13. Stress softening map of the crack plate after a 
40mm cycle displacement- (a) deformed state- (b) non
deformed state. 
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Figure 14. Evolution of the maximum stress at the crack tip. 
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Figure IS. Evolution of the maximal principal elongation 
(---)and the two others principal elongations(·-) at the 
crack tip after a larger imposed cycle. 

As for the AE specimen, the strain field is modi
fied Figure 15 illustrates the variations of the principal 
stretches with the maximum prescribed displacement. 

Nevertheless, variations of the biaxiality ratio are 
presented in the Table 5.lt appears that the ratio evolves 

Table 5. Evaluation of the biaxiality ratio according to the 
maximum imposed displacement for the centred crack plate. 

Displacement 4 8 12 16 20 
B - 0,305 -0,311 -0,317 -0,323 -0,327 
Displacement 24 28 32 36 40 
B -0,331 -0,334 -0,337 -0,339 -0,342 

with the maximum imposed displacement. As a con
sequence, the behaviour of the crack tip can be differ
ent after a large imposed cycle. 

4 CONCLUSIONS 

The numerical analysis of three examples (two on a 
fatigue test specimen and one on a cracked structure) 
demonstrates that the structure becomes non-homo
geneous after stressing. The analysis of the critical 
fields highlights that the stress decreases, whereas the 
strain becomes larger. In fact, the decrease of the stress 
field leads to a concentration of the deformation in the 
weaker zone of the structure. The measure of the biax
iality ratio is an appropriate tool to analyse the strain 
field of a given free surface. The two first examples 
show that it does not evolve; but in the last example, 
some variations are observed. It proves that according 
to the geometry of the considered structure, the Mullins 
effect induces different behaviours of the structural 
critical zone. 
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