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Abstract

Let (X , g) be a closed Riemmanian manifold of dimension n > 0. Let ∆ be the Lapla-

cian on X , and let (ek)k be an L2-orthonormal and dense family of Laplace eigenfunctions

with respective eigenvalues (λk)k. We assume that (λk)k is non-decreasing and that the

ek are real-valued. Let (ξk)k be a sequence of iid N (0, 1) random variables. For each

L > 0 and s ∈ R, possibly negative, set

f s
L =

∑

0<λj≤L

λ
− s

2

j ξjej .

Then, f s
L is almost surely regular on its zero set. Let NL be the number of connected

components of its zero set. If s < n
2
, then we deduce that there exists ν = ν(n, s) > 0

such that NL ∼ νVolg(X )Ln/2 in L1 and almost surely. In particular, E[NL] ≍ Ln/2. On

the other hand, we prove that if s = n
2

then

E[NL] ≍
Ln/2

√

ln
(

L1/2
)

.

In the latter case, we also obtain an upper bound for the expected Euler characteristic of

the zero set of f s
L and for its Betti numbers. In the case s > n/2, the pointwise variance

of f s
L converges so it is not expected to have universal behavior as L→ +∞.

MSC2010 subject classification: 60G15, 34L20, 60G05, 60G22
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1 Introduction

1.1 Setting and main results

In this manuscript we study the number of nodal components of random linear combinations
of eigenfunctions of the Laplacian on a closed Riemmanian manifold, that is, the number of
connected components of the zero set of such random functions. The study of such components
goes back to [NS09] where the authors consider random eigenfunctions with eigenvalue L of
the Laplacian on the sphere S2 and prove that the number of components concentrates around
cL for some c ∈]0,+∞[ as L→ +∞. Later, in [NS16], a similar result1 was proved regarding
the number of components of general Gaussian fields on Riemmanian manifolds. Meanwhile,
using different methods, in [GW14, GW16], the authors determined the rate of growth of
the Betti numbers of the nodal set for a particular model of random linear combination of
eigenfunctions on a Riemmanian manifold. Most of the arguments in these two papers were
quite general but required inputs from spectral analysis at a few key steps in the proof.
More precisely, the authors relied on a result from semi-classical analysis (see Theorem 2.3
of [GW14] in which the authors extend a result from [Hör68]). Other works in this field
are [SW16, BW17, KW18, CS16]. All of the aforementioned works study parametric families
of smooth functions (fL)L≥0 on a manifold of dimension n that vary at a natural scale L−1/2

and that posess ’local limits’. In the case of [NS16] this is an explicit assumption while in

1Note however that the concentration rate is much weaker than in the former setting [NS09].

2



the other cases, it follows from results about spectral asymptotics. As a result, the number of
connected components in a fixed compact set is of order Ln/2. In contrast, the recent [Riv17a]
introduced a model of random linear combinations of eigenfunctions of the Laplacian on a
closed surface that did not have ’local limits’. A natural problem is to determine the rate of
growth of the number of nodal domains for this new model. The present work is set in the
continuation of the articles mentioned above and provides an answer to this question.
We consider a smooth compact Riemmanian manifold (X , g) of dimension n > 0 with no
boundary. Let |dVg| be the Riemmanian density and ∆ the Laplacian operator induced by
g on X . Let g−1 be the metric induced on T ∗X by g. Since X is closed, the spectrum of
∆ is discrete and made up of a sequence of non-negative eigenvalues (λk)k≥0. Moreover, on
can find a sequence of corresponding eigenfunctions (ek)k∈N (i.e., ∆ek = λkek for all k) that
are real valued, smooth and normalized so as to form a Hilbert basis for L2(X , |dV g|). Let
(ξk)k≥0 be a sequence of independent centered Gaussians of unit variance and, for each s ∈ R

(possibly negative) and L > 0, set

f sL =
∑

0<λj≤L
λ
− s

2

j ξjej . (1)

This formula defines a smooth Gaussian field on X which we call cut-off fractional Gaus-

sian field because of the cut-off λj ≤ L and the fractional power − s
2 . A simple calculation

shows that the covariance function for f sL is

E[f sL(x)f
s
L(y)] := Ks

L(x, y) =
∑

0<λj≤L
λ−sj ej(x)ej(y) .

The behavior of Ks
L near the diagonal as L→ +∞ was studied in [Riv17b] for s ≤ n/2. It

is well known, at least for s = 0, that for L large enough, the nodal set ZL = {x ∈ X | f sL(x) =
0} is almost surely smooth (see Lemma 3.5 below). We are interested in NL, the number
of connected components of the nodal set. In the case where s < n/2, combining results
from [Riv17b] and [NS16], we deduce the following result:

Theorem 1.1. Suppose that s < n/2. Then, there exists a (deterministic) constant νn,s > 0
depending only on s and n such that L−n/2NL converges to νn,sVolg(X ) in L1 as L → +∞.

On the other hand, in the case where s = n/2, the asymptotic behavior of the field is
quite different (see Theorem 1.2 of [Riv17b] or Theorem 1.4). In particular, it does not have
non-trivial local limits. In this case, we prove the following result:

Theorem 1.2. Suppose that s = n/2. Then, there exist constants 0 < c < C < +∞ where C
depends only on n such that for L large enough,

cVolg(X )
Ln/2

√

ln
(

L1/2
)

≤ E[NL] ≤ CVolg(X )
Ln/2

√

ln
(

L1/2
)

.
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Moreover, there exists ρ = ρ(X ) < +∞ such that if NL(ρ) is the number of connected compo-
nents with diameter at most ρL−1/2 then

E [NL(ρ)] ≥ cVolg(X )
Ln/2

√

ln
(

L1/2
)

.

Remark 1. We choose to keep the L1/2 inside the logarithm in the statement ot Theorem 1.2
and below because L−1/2 is the correct scaling for the typical variation length of the field. Thus,
L−1/2 is a more natural quantity for our results than L.

Remark 2. The upper constant is explicit, as explained in Theorem 1.3 below.

Remark 3. In the case where s = 1, the field f sL is the cut-off Gaussian Free Field introduced
in [Riv17a]. By construction, this field converges in distribution to the Gaussian Free Field
(see [She07]). In this case, Theorem 1.2 implies that in dimension n = 2, E [NL] ≍ L√

ln(L)

while in dimension n ≥ 3, E [NL] ≍ Ln/2.

Remark 4. In the case where s > n/2, the results of [Riv17b] do not give asymptotic results
for the pointwise variance of the field. This is because, by Weyl’s law, λk ≍ k2/n so the
variance of f sL(x), which is,

∑

0<λj≤L λ
−s
j , converges as L → +∞. In particular, it depends

on the geometry of X .

For the lower bound, the most common strategy is to construct a ’barrier’ (see for instance
Claim 3.2 of [NS09] or Corollary 1.11 of [GW16]). This amounts to constructing a model
function with a nodal component inside a given ball and proving that the field does not
deviate too much from this model with positive probability. In this case, the barrier cannot
hold with probability bounded from below without contradicting the upper bound. However,
by pinning the field near zero at a given point, we manage to construct such a barrier losing

only a factor of
√

ln
(

L1/2
)

. For the upper bound, we follow the approach of [GW14]. Indeed,

although their main result doesn’t apply, their strategy still does. The strategy of [GW14] is
to count the critical points of a Morse function on the nodal set ZL = {x ∈ X : f sL(x) = 0}.
This provides not only an upper bound on the number of nodal components but also the
following result:

Theorem 1.3. Assume that s = n/2. For each L ≥ 1 let χ(ZL) be the Euler characteristic
of ZL and for each i ∈ {0, . . . , n− 1} let bi(ZL) be the i-th Betti number of ZL. As L→ +∞,

E[χ(ZL)] = o





Ln/2
√

ln
(

L1/2
)



 .
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Moreover, for each i ∈ {0, . . . , n− 1}, if bi(ZL) = rankZHi(ZL;Z) is the i-th Betti number of
ZL,

lim sup
L→+∞

√

ln
(

L1/2
)

Ln/2
E[bi(ZL)] ≤ AinVolg(X )

where Ain is defined as follows. Let M be a centered Gaussian vector with values in the space
of symmetric matices Symn−1(R) satisfying for any i, j, k, l ∈ {1, . . . , n − 1} such that i < j,

k ≤ k and (i, j) 6= (k, l), E [MiiMjj] = E

[

M2
ij

]

= 1, E
[

M2
ii

]

= 3 and E [MijMkl] = 0. Then,

Ain =
E[|det(M)|1[sgn(M) = i]]
√

πn+122n−1n(n+ 2)n−1
.

Here sgn denotes the number of negative eigenvalues of the symmetric matrix M .

In particular, for the upper bound in Theorem 1.2 one can set C = A0
n.

1.2 Proof strategy

The crucial tool for the proof of Theorems 1.1 and 1.2 is the following result from [Riv17b]. It
provides an estimate for the covariance of Ks

L. Recall that g−1 is the metric induced on T ∗X
by g. Given (w, ξ) ∈ T ∗X , we write |ξ|2w := g−1

w (ξ, ξ).

Theorem 1.4 (Corollaries 1.4 and 1.5 of [Riv17b]).

1. Assume that s < n/2. Fix x0 ∈ X and consider local coordinates x = (x1, . . . , xn)
centered at x such that |dVg| agrees the Lebesgue measure in these coordinates. Then,
there exists U ⊂ R

n a neighborhood of 0 such that for each α, β ∈ N
n, uniformly for

w ∈ U and x, y in compact subsets of Rn,

lim
L→+∞

Ls−n/2∂αx ∂
β
yK

s
L(w + L−1/2x,w + L−1/2y) =

1

(2π)n

∫

|ξ|2w≤1
ei〈ξ,x−y〉

(iξ)α(−iξ)β
|ξ|2s dξ

where for any γ ∈ N
n we set |γ| = γ1 + γ2 + · · ·+ γn.

2. Assume that s = n/2. Fix x0 and a set of local coordinates centered at x0 such that the
density |dVg| in these coordinates agreees with the Lebesgue measure. Then, there exists
U ⊂ R

n a neighborhood of 0 such that uniformly for x, y ∈ U and L ≥ 1

Ks
L(x, y) =

|Sn−1|
(2π)n

(

ln
(

L1/2
)

− ln+

(

L1/2|x− y|
))

+O(1) .

Here |Sn−1| is the area of the Euclidean unit sphere in R
n and ln+(t) := ln(t) ∨ 0.
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3. Assume that s = n/2. Fix x0 ∈ X and consider local coordinates x = (x1, . . . , xn)
centered at x such that |dVg| agrees the Lebesgue measure in these coordinates. Then,
there exists U ⊂ R

n a neighborhood of 0 such that for each α, β ∈ N
n such that (α, β) 6= 0,

uniformly for w ∈ U and L ≥ 1,

lim
L→+∞

L−(|α|+|β|)/2∂αx ∂
β
yK

s
L(x, y)|x=y=w =

1

(2π)n

∫

|ξ|2w≤1

(iξ)α(−iξ)β
|ξ|n dξ .

This estimate is the same as 1. restricted to the diagonal as long as (α, β) 6= 0.

The original result is somewhat more general and in particular provides an estimate of the
error terms in each case but since our results are bounds up to a constant factor, these will
not be of use to us.

As we shall see in Section 2, this result implies that for s < n/2, the family (f sL)L≥1 satisfies
the assumptions for the main result of [NS16] which directly implies Theorem 1.1 .

We prove the upper and lower bounds Theorem 1.2 in two separate sections. For the upper
bound, we follow the strategy of [GW14]. More explicitely, we fix a function p ∈ C∞(X ) with
at most a countable number of critical points2. For each i ∈ {0, . . . , n − 1}, each L ≥ 1 and
each Borel subset B ⊂ X , let mi(p, fL, B) be the number of critical points of p|ZL

of index3 i.
In Section 4 we prove the following theorem.

Theorem 1.5. Let M be a centered Gaussian vector with values in the space of symmetric
matices Symn−1(R) satisfying for any i, j, k, l ∈ {1, . . . , n − 1} such that i < j, k ≤ l and

(i, j) 6= (k, l), E [MiiMjj] = E

[

M2
ij

]

= 1, E
[

M2
ii

]

= 3 and E [MijMkl] = 0. Then, for L large

enough, ZL is almost surely smooth, p|ZL
is almost surely Morse and for any Borel subset

B ⊂ X , as L→ +∞,

E [mi(p, fL, B)] ∼ CnVolg(B)E [|det (M)|1[sgn (M) = i]]
L

√

ln
(

L1/2
)

(2)

where

Cn =
1

√

πn+122n−1n(n+ 2)n−1

and where sgn(M) is the number of negative eigenvalues of the matrix M .

Theorem 1.2 as well as Theorem 1.3 will then follow from the Morse inequalities. For
the lower bound, we prove that given a ball of radius ≍ L−1/2, the probability that this ball

2Such functions always exist since for instance Morse functions are dense in C
∞(X ).

3Recall that the index of a critical point of a given function is the number of negative eigenvalues of the
Hessian of this function at the critical point.
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contains a nodal component is bounded from below by a constant multiple of
(

ln
(

L1/2
))−1/2

.
This result actually holds for log-correlated Gaussian fields with only Hölder regularity. More
precisely, in Section 5 we prove the following result.

Theorem 1.6. Fix n ∈ N and U ⊂ R
n an open subset containing B(0, 1). Let (fλ)λ≥1 be a

family of continuous centered Gaussian fields on U satisfying the following properties.

1. There exists a < +∞ for each x, y ∈ U and λ ≥ 1,

|E [fλ(x)fλ(y)]− ln(λ) + ln+(λ|x− y| )| ≤ a .

2. There exists α ∈]0, 2] and b < +∞ such that for each x, y ∈ U and each λ ≥ 1 satisfying
λ|x− y| ≤ 1,

E
[

(fλ(x)− fλ(y))
2
]

≤ b2λα|x− y|α .

There exist ρ = ρ(a, b, α, n) > 0, κ = κ(a, b, α, n) > 0 and λ0 = λ0(a, b, α, n) ∈ [1,+∞[
such that the following holds. Let Cλ be the event that f−1

λ (0) has a connected component
included in the ball B(0, ρ/λ). Then, for each λ ≥ λ0.

P

[

Cλ
]

≥ κ ln(λ)−1/2 .

Theorem 1.6 plays the same role as the ’barrier lemma’ (Claim 3.2) of [NS09] or as Theorem
0.3 of [GW16]. However, in this setting, we do not (and cannot!) obtain a uniform lower
bound on the probability of having a nodal component inside a given small ball. Moreover,
the behavior of log-correlated random fields is quite different from that of locally-translation-
invariant random fields. Indeed, just as the aforementioned results were used to obtain lower
bounds on the expected number (and topology) of connected components of the nodal set,
Theorem 1.2 will follow by packing X with disjoint small balls of radius ≍ λ−1 = L−1/2 and
adding up the expected nodal components contained in each ball. The proof of Theorem 1.6
combines tools (see Lemma 5.1) from the theory of smooth Gaussian fields with the FKG
inequality (see Lemma 5.2) from statistical mechanics.

Acknowledgements.
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2 Proof of the main results

The object of this section is to prove Theorems 1.1, 1.2 and 1.3 using the results presented
in Subsection 1.2 as well as Theorem 3 of [NS16]. We start with the proof of Theorem 1.1.
As explained above, we simply check that Theorem 1.4 implies that the field satisfies the
assumptions of Theorem 3 of [NS16].

Proof of Theorem 1.1. Fix 2s < n. By the first point of Theorem 1.4, for any x0 ∈ X and any
set of local coordinates on a chart U ⊂ X centered at x0 and pushing |dVg| to the Lebesgue
measure, there exists a neighborhood V of 0 in U such that we have

lim
L→+∞

Ls−n/2Ks
L

(

w + L−1/2x,w + L−1/2y
)

:=
1

(2π)n

∫

|ξ|2w≤1
ei〈ξ,x−y〉|ξ|−2sdξ

where the convergence takes place in C∞ with respect to (x, y) ∈ V × V , uniformly with
respect to w ∈ V . This shows that the kernels Ks

L have, in the terminology of [NS16],
translation-invariant limits on V (see Definition 2 of [NS16])4 and that it satisfies the norm
estimates required for the parametric Gaussian ensemble (see Definition 1 of [NS16]) to be
locally uniformly controllable (see Definition 4 of [NS16]) on V . The spectral measure at w
equals

ρw(ξ) = |ξ|−2s
w 1

[

|ξ|2w ≤ 1
]

dξ

so it has no atoms and for each i, j ∈ {1, · · · , n}, by parity,

lim
L→+∞

∂xi∂yjL
s−(n+2)/2Ks

L(x, y)|y=x=w = − 1

(2π)n

∫

|ξ|2w≤1
ξiξj |ξ|−2s

w dξ

= − δij
n(2π)n

∫

|ξ|2w≤1
|ξ|2−2s

w dξ > 0 .

In particular, the ensemble is locally uniformly non-degenerate (see Definition 3 of [NS16])
and, together with the previous estimate on Ks

L, it is locally uniformly controllable. Since,
finally, the spectral measure has no atoms, the Gaussian ensemble

(

Ls/2−n/4fL
)

L>0
, in local

coordinates, defines a tame ensemble (see Definition 5 of [NS16]). Moreover, since such charts
exist around each x0 ∈ X , by the criterion given in Subsection 1.4.1 of [NS16], the sequence
(

Ls/2−n/4fL
)

L>0
forms a tame parametric Gaussian ensemble on X (see Definition 6 of [NS16]).

Thus, by Theorem 3 of [NS16] and the remark 1.5.2 that follows it, there exists a locally finite
(and therefore finite since X is compact) Borel measure n∞ on X such that the sequence
(

Ln/2NL

)

L
converges in L1 to n∞(X ) < +∞. Recall that the parameter L in Nazarov and

Sodin’s theorem corresponds to L1/2 of the present work. All that remains is to show that
this quantity is positive. Moreover, according to the third item of Theorem 3 of [NS16], the
density of n∞ with respect to |dVg| at a point x ∈ X is given by the constant ν given by

4The parameter L used in [NS16] corresponds to the quantity L
1/2 of the present work.
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item (ρ3) of Theorem [NS16] for the limiting ensemble at the point x. Note that we may
always require that the measure-preserving coordinates around x0 be isometric at x0 (i.e.,
we assume that the differential at x0 of the diffeomorphism defining the local coordinates
is an isometry from (Tx0X , gx0) to R

n equipped with the Euclidean scalar product). If so,
the limiting spectral measure depends only on n and s. Thus, ν = νn,s is constant that
depends only on n, s and n∞ = νn,s|dVg|. Moreover, since the support of the spectral measure
contains 0, it satisfies Pjetro Majer’s interior point criterion (see Appendix C.2 of [NS16])
which in turn implies condition (ρ4) for Theorem 1 of [NS16]. This shows that νn,s > 0 and
so n∞(X ) = νn,sVolg(X ) > 0.

Next we check Theorem 1.3.

Proof of Theorem 1.3. Fix p ∈ C∞(X ). By Theorem 1.5, p|ZL
is almost surely a Morse

function. By the (weak) Morse inequalities (see Theorem 5.2 of [Mil63]), we have first for each
i ∈ {0, . . . , n− 1},

bi (ZL) ≤ mi(p, fL,X )

where the mi are as in Theorem 1.5. Taking expectations, by Equation (2), we obtain the
upper bound on E [bi(ZL)] announced in Theorem 1.3. Theorem 5.2 of [Mil63] also implies
that

χ(ZL) =

n−1
∑

i=0

mi(p, fL,X ) .

Taking expectations and using Equation (2) on the right-hand side, we get, as L→ +∞:

E [χ(ZL)] = CnVolg(X )×
n−1
∑

i=0

E [|det(M)|1[sgn(M) = i]]
L

√

ln
(

L1/2
)

+ o





L
√

ln
(

L1/2
)



 (3)

where Cn = 1√
πn+122n−1n(n+2)n−1

and M is as described in the statement of Theorem 1.3.

Observe now that since M is a symmetric matrix, then

n−1
∑

i=1

(−1)i|det(M)|1[sgn(M) = i] = det(M) .

Therefore,
n−1
∑

i=0

E [|det(M)|1[sgn(M) = i]] = E[det(M)] . (4)

Let us compute E[det(M)]. We claim the following:
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Claim 1. Let M be a centered Gaussian vector in Symm(R) the space of m ×m symmetric
matrices, with the following covariance structure: for any i, j, k, l ∈ {1, . . . ,m} such that i < j,
k ≤ l and (i, j) 6= (k, l), E[MiiMjj] = E[M2

ij] = 1, E[M2
ii] = a ≥ 1 and E[MijMkl] = 0. Then,

E[det(M)] = 0 .

Proof. Since M is centered, M has the same law as −M . If m is odd, this implies that det(M)
has the same law as − det(M) so E[det(M)] = 0. Let us now assume that m = 2q with q ∈ N.
We have

E[det(M)] =
∑

σ∈Sm

sgn(σ)E

[

m
∏

i=1

Miσ(i)

]

(5)

where Sm is the set of permutations of {1, . . . ,m} and sgn(σ) is the signature of the per-
mutation σ. Let us fix σ ∈ Sm and compute its corresponding term in the sum (5). Let
i ∈ {1, . . . ,m} be such that σ(i) 6= i. Then, Miσ(i) is independent from all the other factors
in the product except if the factor Mσ(i)i appears. In other words, σ(σ(i)) = i. Thus, if σ has
cycles of order greater than two, its corresponding term in (5) vanishes. Let us assume that
σ only has cycles of order either one or two and let k ∈ {0, . . . , q} be the number of cycles of
order two of σ. Then, σ is conjugated to the product of transpositions (12) . . . (2k − 1)(2k)
(with the convention that σ = id if k = 0. Moreover, since the law of M is invariant under
conjugation by permutation matrices, we have, by independence of the off-diagonal coefficients

E

[

m
∏

i=1

Miσ(i)

]

= E

[

q
∏

i=k+1

Mii

]

×
k
∏

i=1

E

[

M2
i(i+1)

]

= E





2(q−k)
∏

i=1

Mii



 .

To compute the expectation of the product, we introduce Y1, . . . , Y2(q−k) i.i.d centered normals
with variance a − 1 and Y an independent centered normal with unit variance. Then, the
vectors (Mii)1≤i≤2(q−k) and (Yi + Y )1≤i≤2(q−k) have the same law so

E





2(q−k)
∏

i=1

Mii



 = E





2(q−k)
∏

i=1

(Y + Yi)



 .

Developing the sum, by independence of the Yi, the only term with non-vanishing expectation
is E

[

Y 2(q−k)] = (2(q − k))!!. Here, (2(q − k))!! denotes the product of all the odd integers
between 0 and 2(q − k). Thus,

E

[

m
∏

i=1

Miσ(i)

]

= (2(q − k))!! . (6)

Now, the number of permutations with k cycles of order two and no cycles of higher order is
(

2q

2k

)

(2k)!! . (7)

10



Indeed, the factor
(2q
2k

)

encodes the choice of the support of σ. Having fixed the support of
σ, there are 2k − 1 choices for the image of the first element. Extracting the resulting two-
cycle from the support leaves 2k − 2 elements. Equation (7) is then established by induction.
Combining (5) with (6) and (7), we get

E[det(M)] =

q
∑

k=0

(−1)k
(

2q

2k

)

(2k)!!(2(q − k))!!

= (2q)!

q
∑

k=0

(−1)k
(2k)!!

(2k)!
× (2(q − k))!!

(2(q − k))!

= (2q)!

q
∑

k=0

(−1)k
1

2kk!× 2q−k(q − k)!

=
(2q)!

2qq!

q
∑

k=0

(−1)k
(

q

k

)

= 0 .

Using Claim 1, (3) yields

E [χ(ZL)] = o





L
√

ln
(

L1/2
)





as announced.

Finally, we check Theorem 1.2.

Proof of Theorem 1.2. The upper bound follows with C = A0
n by Theorem 1.3. For the lower

bound, first, by the second point of Theorem 1.4 together with the compactness of X , there
exist a constant a = a(X ) < +∞ such that the first assumption of Theorem 1.6 is satisfied by

(fλ)λ≥1 =
(

f√L

)

L≥1
in local charts of some atlas. Let us check that the second assumption of

Theorem 1.6 is also satisfied by this family of fields with α = 2. Consider U a local chart given
by Theorem 1.4. Let V ⊂ U a convex neighborhood of 0. Fix x, y ∈ U . For each t ∈ [0, 1] we

have x+ t(y − x) ∈ U . For such t, let u(t) = E

[

(

f√L(x)− f√L(x+ t(y − x))
)2
]

. Then, u is

11



twice continuously differentiable and we have u(0) = u′(0) = 0. Moreover, for each t ∈ [0, 1],

u′′(t) =2E

[

(

dx+t(y−x)f√L(y − x)
)2
]

+ 2E
[(

f√L(x+ t(y − x))− f√L(x)
)

d2x+t(y−x)f
√
L(y − x, y − x)

]

≤2∂z∂wKL(z, w)
∣

∣

∣

z=w=x+t(y−x)
(y − x, y − x)

+ 2

(

u(t)∂2z∂
2
wKL(z, w)

∣

∣

∣

z=w=x+t(y−x)
(y − x, y − x, y − x, y − x)

)1/2

.

Here we used the definition of KL as well as the Cauchy-Schwarz inequality. Applying the
third point of Theorem 1.4 to the derivatives of KL in the right hand side of the last line of
the above computation, we have the following estimate: There exists C = C(n) < +∞ such
that for each L ≥ 1, and for any choice of x, y ∈ V ,

u′′(t) ≤ CL|x− y|2
(

1 +
√

u(t)
)

.

Now, applying Taylor’s inequality up to order 2 to u from 0 to any t ∈ [0, 1], we get

u(t) ≤ C

2
L|x− y|2

(

1 +
√

sup
0≤s≤t

u(s)

)

.

Assume now that
√
L|x− y| ≤ 1. For each t ∈ [0, 1], let v(t) = sup0≤s≤t u(s). We have shown

that for each t ∈ [0, 1],
v(t)

1 +
√

v(t)
≤ C

2
L|x− y|2 ≤ C

2
.

Comparing the first and third term, we get that v(t) is uniformly bounded. Then, with this
information, the first inequality shows that there exists b < +∞ depending only on C such
that v(t) ≤ bL|x−y|2. In particular, for each L ≥ 1 and each x, y ∈ V such that

√
L|x−y| ≤ 1,

E

[

(

f√L(x)− f√L(y)
)2
]

= u(1) ≤ v(1) ≤ b2L|x− y|2 .

Hence, Theorem 1.6 does apply. Let ρ > 0, κ > 0 and λ0 < +∞ be as in Theorem 1.6. Then,
there exists c′ > 0 independent of X and λ1 = λ1(X ) such that for each L ≥ λ20 ∨ λ21, we can
find ⌊c′Ln/2Volg(X )⌋ disjoint balls of radius ρL−1/2 in X . By Theorem 1.6, for such L, each

ball contains a nodal component with probability at least κ
(

ln
(

L1/2
))−1/2

and

E[NL] ≥ κ⌊c′Ln/2Volg(X )⌋
(

ln
(

L1/2
))−1/2

.

This proves the lower bound with for instance c = c′κ/2. Finally, since X is compact, the
Euclidean diameter of balls in local charts such as the one used above and the Riemmanian
diameter are comparable. Since the connected components constructed using Theorem 1.6
have Euclidean diamter less than ρ/λ then we also have the second part of Theorem 1.2.
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3 Differential geometry of smooth Gaussian fields

The object of this section is to apply classical results from the theory of smooth Gaussian
fields to our setting. These results will be used in Section 4. Throughout this section X will
be a smooth manifold of dimension n > 0 and f be a real-valued Gaussian field on X with
covariance K. We will assume throughout that f is almost surely of class C2.

Condition 1. For each x ∈ X , the Gaussian vector (f(x), dxf) is non-degenerate.

Condition 2. Let p ∈ C∞(X ). For each x ∈ X such that dxp 6= 0 and for any connection ∇p

on p−1(0) defined near x, the Gaussian vector (f(x), dxf, (∇pdf |p−1(0))x) is non-degenerate.

Remark 5. Condition 2 is satisfied for any connection ∇p as soon as it is satisfied for one
particular connection.

Remark 6. Conditions 1 and 2 are diffeomorphism invariant.

Remark 7. As we shall see in Lemma 4.1 below, for any p ∈ C∞(X ) the field (f sL) satisfies
Condition 2 for s = n/2 and large enough values of L.

3.1 Manifold versions of classical lemmas for smooth Gaussian fields

In this subsection we state two general lemmas for smooth Gaussian fields. The statements
are slightly altered to fit the case of section-valued fields. We simply check that the Euclidean
case adapts well to this setting. First, let us introduce the following notation.

Definition 3.1. Let V,W be two n-dimensional vector spaces each equipped with a non-zero
n-form ωV and ωW . Let A : V →W be a linear map. We define the determinant detωV ,ωW

(A)
of A from (V, ωV ) to (W,ωW ) by the following equation

A∗ωW = det
ωV ,ωW

(A)ωV .

Note that changing the sign of ωV or ωW only affects the sign of the determinant so we
can speak of |det|ωV |,|ωW |(A)| even when |ωV | and |ωW | are given only up to a sign.

The following lemma is an adaptation of the classical Kac-Rice formula to crossings of
sections of vector bundles. It is the main tool used in the proof of Theorem 1.5. Before we
state the lemma, we introduce the following terminology.

Definition 3.2. Let X be a smooth n-dimensional manifold and let E → X be a vector bundle
on X . For each x ∈ X , we denote by Ex the fiber of E at x. A random E-valued field on
X will be a collection of random variables (Fx)x∈X defined on the same probability space such
that for each x ∈ X , the random variable Fx takes values in Ex. A Gaussian E-valued field
on X is a random E-valued field (Fx)x∈X on X such that for each x1, . . . , xk ∈ X , the random
variable (Fx1 , . . . , Fxk) is a Gaussian vector in Ex1 × · · · ×Exk .

13



We have the following result, which is a variant of Theorem 6.4 of [AW09].

Lemma 3.3. Let X be a smooth n-dimensional manifold equipped with a smooth positive
density dµ and let E → X be a vector bundle on X of rank n. We equip E with positive
smooth density dν. Let F be a Gaussian E-valued field on X that is almost surely of class
C1 and such that for each x ∈ X , Fx is a non-degenerate Ex-valued Gaussian vector. For
each x ∈ X , let γν,Fx be the density of Fx with respect to dν. Then, for any connection ∇E

on E, any Borel subset B ⊂ X , any section σ of E defined in a neighborhood of B and any
ϕ ∈ C∞

c (T ∗X ⊗ E),

E





∑

x∈B |Fx=σx

ϕ
(

x, (∇EF )x
)



 =

∫

B
E

[

ϕ
(

x, (∇EF )x
)

∣

∣

∣

∣

det
µx,νx

((

∇EF
)

x
−
(

∇Eσ
)

x

)

∣

∣

∣

∣

∣

∣

∣
Fx = σx

]

γν,Fx(σx)dµ(x) .

Here, both quantities may be infinite.

Note that
(

∇EF
)

x
−
(

∇Eσ
)

x
does not depend on ∇E at the points x where Fx = σx.

Proof of Lemma 3.3. Since both sides of the equality are additive in B, we may restrict our-
selves to the case where E → X is the trivial bundle U × R

n → U over some open subset
U ⊂ R

n. Moreover, by considering F̃ = F − σ, and ϕ̃(x, ζ) = ϕ(x, ζ − (dxσ)) it is enough to
treat the case where σ = 0. In this case, F is just an R

n valued Gaussian field on U , and the
Rice formula (see Theorem 6.4 of [AW09]) applies. Therefore,

E





∑

x∈B |Fx=0

ϕ(x, dxF )



 =

∫

B
E
[

ϕ(x, dxF ) |det (dxF )|
∣

∣Fx = 0
]

γFx(0)dx . (8)

Here, first, γFx is the density of the measure of F (x) with respect to the Lebesgue measure
dx. Second, we endowed T ∗

xU with the Lebesgue density and det is the usual determinant,
i.e., |det | = |detdx,dv |. Let g, h ∈ C∞(U) be such that

dµ(x) = g(x)dx; dνx(v) = h(x)dv .

Then, for any L ∈ Hom(TxU,R
n), |det(L)|g(x) = |detνx,µx(L)|h(x) and γFx = γν,Fxh(x).

Applying these identities to the right hand side of equation (8), we get

E





∑

x∈B |Fx=0

ϕ(x, dxF )



 =

∫

B
E

[

ϕ(x, dxF )

∣

∣

∣

∣

det
νx,µx

(dxF )

∣

∣

∣

∣

∣

∣Fx = 0

]

γν,Fx(0)dµ(x) . (9)
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Finally, let ∇ be a connection on E. Then, there is exists smooth family (Ax)x∈U of linear
maps Ax : Rn → Hom(TxU,R

n) such that for any function f : U → R
n and any x ∈ U ,

∇fx = dxf + (Ax ◦ f)(x) .

In particular,

E

[

ϕ(x, dxF )

∣

∣

∣

∣

det
νx,µx

(dxF )

∣

∣

∣

∣

∣

∣Fx = 0

]

= E

[

ϕ(x, (∇F )x)
∣

∣

∣

∣

det
µx,νx

((∇F )x)
∣

∣

∣

∣

∣

∣Fx = 0

]

and in view of equation (9) we are done.

In Subsection 3.2 we will use the following lemma to prove basic facts about the regularity
of Zf = {x ∈ X : f(x) = 0} and functions defined on it. It is an easy application of Lemma
11.2.10 [AT07].

Lemma 3.4. Let X be a smooth manifold of dimension n equipped with a rank n + 1 vector
bundle E → X . Let ν be an arbitrary positive smooth density on E. Let F be a random field
on X with values in E. Assume that F is almost surely C1 on X and that the random vector
F (x) has a density with respect to νx which is uniformly bounded for x in compact subsets of
X . Then, almost surely, for all x ∈ X , F (x) 6= 0.

Proof. Firstly, since X is paracompact we may assume that E → X is the trivial bundle
over some open subset U ⊂ R

n so that F is an R
n+1 valued Gaussian field on U . Next, the

assumption on the density of Fx does not depend on the choice of ν so we may assume that
it is the Lebesgue measure. Since U is covered by a countable union of closed balls, it suffices
to check the conclusion of the lemma for T a compact subset of U of Hausdorff dimension n.
The fact that F is almost surely C1 implies that its covariance is continuous. Since for each
x ∈ T , F (x) = (F1(x), · · · , Fn(x)) has locally bounded density and T is compact, its density is
bounded on T . Finally, since T is compact and the partial derivatives of F are almost surely
continuous, they are almost surely bounded on T . Hence we can apply Lemma 11.2.10 of
[AT07] with u = 0 ∈ R

n+1.

3.2 Almost-sure properties of Zf

In this subsection, we use Lemma 3.4 to prove that Zf = {x ∈ X : f(x) = 0} is almost surely
smooth and that if we restrict an adequate deterministic function to Zf then it is almost surely
Morse. We begin by treating smoothness.

Lemma 3.5. Assume that f satisfies Condition 1. Then, Zf is almost surely a C2 hypersurface
of X .

Proof. The random field F = (f, df) is a Gaussian random field on X with values in R×T ∗X .
Moreover, it is almost surely C1 since f is almost surely C2. In addition, since f satisfies
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Condition 1, the components of F have positive variances. Therefore, by Lemma 3.4, almost
surely, there is no x ∈ X such that F (x) = 0. Therefore, f is almost surely regular on Zf .
Since f is of class C2, Zf is almost surely a smooth hypersurface of X of class C2.

We now briefly recall the definition of the Hessian of a function at its critical point.

Definition 3.6. Let X be a smooth manifold. We equip T ∗X with a connection ∇. Let
f ∈ C2(X ) and x ∈ X be such that dxf = 0. Then, (∇df) : T ∗

xX × T ∗
xX → R defines a

symmetric bilinear form that does not depend on the choice of connection ∇. We call this
map the Hessian of f at x and denote it by Hess(f)(x). In particular, for any local chart
ψ : U ⊂ X → ψ(U) ⊂ R

n, any x ∈ U such that dxf = 0 and any v,w ∈ TxX ,

d2ψ(x)(f ◦ ψ−1)(v,w) = Hess(f)(x)((dxψ)
−1v, (dxψ)

−1w)) . (10)

The following lemma will be useful first to prove the next almost sure result about Zf and
to characterize the signature of the Hessian of a function restricted to Zf in terms of f near
this point.

Lemma 3.7 (Lemma A.3 [GW14]). Let X be an n-dimensional smooth manifold. Let f, p ∈
C2(X ) and fix x0 ∈ X . Assume that dx0f, dx0p 6= 0 and that dx0p = λdx0f for some λ ∈ R\{0}.
Then Lf = f−1(f(x0)) and Lp = p−1(p(x0)) are both smooth in a neighborhood of x0 and

Hess(p|Lf
)(x0) = −λHess(f |Lp)(x0) .

Here, note that the condition dx0p = λdx0f implies that both f |Lp and p|Lf
are singular

at x0 so their Hessian at x0 are well defined bilinear forms on Tx0Lp and Tx0Lf respectively.
But these two tangent spaces are naturally isomorphic to the same subspace of Tx0R

n so it
makes sense to compare the two Hessians. Gayet and Welschinger state and show this lemma
in a coordinate free language. Here we provide a proof in local coordinates.

Proof of Lemma 3.7. Without loss of generality, we may replace (X , x0) by (U, 0) where U is
an open neighborhood of 0 in R

n. We may also assume d0f = d0p = dxn, f(0) = p(0) = 0.
Since d0f = dxn, the following map is a local diffeomorphism at 0:

x = (x1, . . . , xn) 7→ (x1, · · · , xn−1, f(x)) .

Moreover, its inverse F satisfies d0F = Idn. The map F is a local diffeomorphism at 0, say
from 0 ∈W ⊂ R

n to x0 ∈ V ⊂ U . Let h ∈ C2(U) be such that d0h = dxn. Then,

d20(h ◦ F ) = d20h ◦ (d0F )⊗2 + d0h ◦
(

d20F
)

= d20h+ d20Fn .

Take first h = f . Then, the left hand side vanishes since f ◦ F (x) = xn and
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0 = d20f + d20Fn .

Next, take h = p. Then,

d20(p ◦ F ) = d20p+ d20Fn .

Hence,

d20(p ◦ F ) = d20p− d20f . (11)

By symmetry of the initial assumptions, if P is the local inverse at x0 of the map

x = (x1, . . . , xn) 7→ (x1, · · · , xn−1, p(x)) .

Then,

d20(f ◦ P ) = d20f − d20p . (12)

Therefore, if H = T0Lf = T0Lp, we have

Hess(p|Lf
)(0) = d20(p ◦ F )|H = −d20(f ◦ P )|H = −Hess(f |Lp)(0)

where the middle equality follows from (11) and (12) while the two others follow from
equation (10).

Finally, we prove the following result.

Lemma 3.8. Assume that f satisfies Condition 2. Let p ∈ C∞(X ) with an at most countable
set of critical points. Let X ′ ⊂ X be the regular set of p. Then, almost surely, Zf ⊂ X ′ and
p|Zf

is a Morse function.

Proof. Firstly, for any critical point x of p, by Condition 2, f(x) is non-degenerate and therefore
almost surely non-zero. Since p has at most countably many critical points, almost surely, Zf
stays in X ′. By Lemma 3.7, for p|Zf∩X ′ , not to be Morse, there must be (x, v) ∈ TX such that
f(x) = 0, dxf vanishes on the kernel of dxp, dxp(v) = 0 and Hess(f |p−1(p(x)))(x)(v, ·) = 0. Let
us prove that this is almost surely never the case. On the manifold X ′, the kernel of dp defines
a smooth rank n−1 vector bundle K on X . Let S(K) be the unit sphere bundle of K for some
auxiliary metric on K. Let ∇p be an auxiliary connection on T ∗p−1(p(x)). For each x ∈ X ′

and v ∈ Sx(K), let F (x, v) = (f(x), dxf |Kx, (∇p(df |K)) (x)(v, ·)). Let π denote the projection
map S(K) → X ′. Then, (F (x, v))(x,v)∈S(K) defines a π∗ (R⊗K∗ ⊗K∗) valued Gaussian field
on S(K). But S(K) is a smooth manifold of dimension 2n− 2 while the image vector bundle
has dimension 2n − 1. By Condition 2, Lemma 3.4 applies so, with probability one, the field
F does not vanish and p|Zf∩X ′ is a Morse function.
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4 The upper bound in the critical case

In this section we apply the results of Section 3 to prove Theorem 1.5. First, in Subsection
4.1 we use Theorem 1.4 to compute the asymptotic covariance of the two-jet of fL at a given
point. Then, in Subsection 4.2 we prove Theorem 1.5 using this computation on the integral
formula provided by Lemma 3.3. In this subsection, we consider a closed Riemmanian manifold
(X , g) of positive dimension n and consider the family of fields (f sL)L≥1 defined in Section 1
for s = n/2. Since we have fixed s, we write fL instead of f sL and KL instead of Ks

L for the
rest of the subsection. Moreover, set ZL = ZfL = {x ∈ X : fL(x) = 0}. Recall that |dVg| is
the Riemmanian density induced by g on X .

4.1 Covariance computations

The object of this subsection is to prove the following Lemma.

Lemma 4.1. Let p ∈ C∞(X ) be a Morse function on X . Let K be the vector bundle on
X ′ = {x ∈ X , dxp 6= 0} whose fiber above x is Ker(dxp) ⊂ TxX . Fix x0 ∈ X . There exist ∇p

a connection on K and local coordinates x = (x1, . . . , xn) defined on 0 ∈ U ⊂ R
n centered at x0

such that the density |dVg| agrees with the Lebesgue measure in these coordinates and the follow-
ing holds. Let U ′ be the regular set of p in these coordinates. For each x ∈ U ′ and L ≥ 1, define
the centered Gaussian vector (XL(x), Y L(x), ZL(x)) with values in R×R

n×Symn−1(R) as fol-
lows. Let XL(x) = 1

√

ln(L1/2)
fL(x). Next, let Y L(x) = (Y L

1 (x), · · · , Y L
n (x)) be L−1/2dxfL seen

as a n-uple in the local coordinates. Finally, let ZL(x) be L−1∇p(dfL|K)(x)|Kx seen as a sym-
metric (n− 1)-matrix in the local coordinates Then, for any i, j, k, l ∈ {1, . . . , n− 1} such that
i 6= j and (i, j) 6= (k, l), uniformly for x ∈ U ′, the covariance matrix of (XL(x), Y L(x), ZL(x))
converges as L→ +∞ to the following matrix.

cn ×





n 0 0
0 1

2Idn 0
0 0 1

4(n+2)Ξ





where cn is the (positive) constant defined in Lemma 4.2. Moreover, Ξ is the symmetric matrix
indexed by the pairs ((i, j), (k, l)) ∈ {1, . . . , n− 1}2 ×{1, . . . , n− 1}2 such that i ≤ j and k ≤ l
defined as 1

4(n+2)Ξij,kl = E[ZL(x)ijZ
L(x)kl]. We have for any i, j, k, l ∈ {1, . . . , n − 1} such

that i < j, k ≤ l and (i, j) 6= (k, l), Ξii,jj = Ξij,ij = 1, Ξii,ii = 3 and Ξij,kl = 0. In particular,
for L large enough, the field fL satisfies Condition 2 on U ′.

Proof of Lemma 4.1. We start with ∇p
1 a connection on K. Fix x0 ∈ X and consider a local

coordinate patch Ũ at x0 given by Theorem 1.4 that is also isometric at x0 (i.e., we assume that
the differential at x0 of the diffeomorphism defining the local coordinates is an isometry from
(Tx0X , gx0) to R

n equipped with the Euclidean scalar product). We have, in this set of local
coordinates, ∇p

1(dfL|K)(x)|Kx = d2xfL|Kx + (Ax(dxfL|Kx))|Kx where A ∈ Γ(U ′;T ∗U ⊗K∗ ⊗K).
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Let χ ∈ C∞
c (Ũ) be equal to one in a neighborhood U of 0 and let ∇p = ∇p

1 − χA. Then, ∇p

defines a connection on K. Let i, j, k, l ∈ {1, . . . , n − 1} such that i 6= j and (i, j) 6= (k, l).
Moreover, with this choice of ∇p, we have, for each x ∈ U ′, ZL(x) = L−1d2xfL|Kx . Therefore,
the joint covariance of (XL(x), Y L(x), ZL(x)) is equal to













1
ln(L1/2)

KL(x, x)
1

L1/2
√

ln(L1/2)
dyKL(x, x)

1

L
√

ln(L1/2)
d2yKL(x, x)

1

L1/2
√

ln(L1/2)
dyKL(x, x)

1
LdxdyKL(x, x)

1
L3/2 dxd

2
yKL(x, x)

1

L
√

ln(L1/2)
d2xKL(x, x)

1
L3/2 d

2
xdyKL(x, x)

1
L2 d

2
xd

2
yKL(x, x)













for any x ∈ U . By applying the estimates of the second and third of Theorem 1.4 and since,
by parity, the integrals

∫

|ξ|2≤1 |ξ|−n(iξ)α(−iξ)βdξ vanish whenever α+β ∈ N
n has at least one

odd component, we get, for any i, j, k, l ∈ {1, . . . , n} such that i < j, k ≤ l and (i, j) 6= (k, l),
uniformly for x ∈ U ′:

lim
L→+∞

E
[

XL(x)2
]

=
|Sn−1|
(2π)n

lim
L→+∞

E
[

XL(x)Y L
i (x)

]

= 0

lim
L→+∞

E
[

Y L
i (x)ZLkl(x)

]

= 0

lim
L→+∞

E
[

XL(x)ZLkl(x)
]

= 0

lim
L→+∞

E
[

Y L
i (x)2

]

=
1

(2π)n

∫

|ξ|2≤1

ξ2i
|ξ|n dξ

lim
L→+∞

E
[

Y L
i (x)Y L

j (x)
]

= 0

if k, l ≤ n− 1, lim
L→+∞

E
[

ZLkk(x)Z
L
ll (x)

]

= lim
L→+∞

E
[

ZLkl(x)
2
]

=
1

(2π)n

∫

|ξ|2≤1

ξ2kξ
2
l

|ξ|n dξ

if i, j, k, l ≤ n− 1, lim
L→+∞

E
[

ZLij(x)Z
L
kl(x)

]

= 0 .

The first statement then follows by the computations carried out in Lemma 4.2. To check Con-
dition 2 we check that the limit law is non-degenerate. Aside from the diagonal coefficients of
the symmetric matrix component, all the components are independent with positive variance.
As for the diagonal components of the symmetric matrix, their covariance is a positive multiple
of 2Idn−1 + Jn−1 where Jn−1 is the (n − 1) × (n − 1) matrix whose coefficients are all equal
to 1. But Jn−1 is the covariance of the constant Gaussian vector with unit variance so it is
non-negative. Therefore, 2Idn−1 + Jn−1 is positive definite.

The following lemma contains the integral calculations needed for the proof of Lemma 4.1
above.
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Lemma 4.2. Fix n ≥ 2. We define the universal constant cn as follows.

cn =
2(n+1)/2((n+ 1)/2)!

(n+ 1)!

√

2

π
if n is odd and

1

2n/2(n/2)!
if n is even.

Let Bn denote the Euclidean unit ball in R
n. Then, for any i, j ∈ {1, . . . , n} distinct,

|Sn−1|
(2π)n

= ncn

1

(2π)n

∫

Bn

ξ2i
|ξ|n dξ =

1

2
cn

1

(2π)n

∫

Bn

ξ2i ξ
2
j

|ξ|n dξ =
1

4(n+ 2)
cn

1

(2π)n

∫

Bn

ξ4i
|ξ|n dξ =

3

4(n+ 2)
cn .

Proof of Lemma 4.2. First, by a polar change of coordinates we get
∫

Bn

ξ2i
|ξ|n dξ =

1

2

∫

Sn−1

ω2
i dω

∫

Bn

ξ2i ξ
2
j

|ξ|n dξ =
1

4

∫

Sn−1

ω2
i ω

2
j dω

∫

Bn

ξ4i
|ξ|n dξ =

1

4

∫

Sn−1

ω4
i dω .

Here dω is the surface area for the unit sphere in R
n. Moreover |Sn−1| =

∫

Sn−1 dω. To compute
the integrals over the sphere, we compare them to moments of Gaussian random variables.
Let X be a centered Gaussian vector in R

n with covariance Idn. Another polar change of
coordinates yields, for 1 ≤ i < j ≤ n,

1 = E[1] =
1

(2π)n/2

∫ +∞

0
tn−1e−t

2/2dt

∫

Sn−1

dω

1 = E[X2
i ] =

1

(2π)n/2

∫ +∞

0
tn+1e−t

2/2dt

∫

Sn−1

ω2
i dω

1 = E[X2
i X

2
j ] =

1

(2π)n/2

∫ +∞

0
tn+3e−t

2/2dt

∫

Sn−1

ω2
i ω

2
jdω

3 = E[X4
i ] =

1

(2π)n/2

∫ +∞

0
tn+3e−t

2/2dt

∫

Sn−1

ω4
i dω .

Now, for each k ∈ N, let Jk =
∫ +∞
0 tke−t

2/2dt. By integration by parts, for each k ∈ N, we
have Jk+2 = (k + 1)Jk. From this we deduce the following:

Jk =
1

2k/2
k!

(k/2)!

√

π

2
if k is even and 2(k−1)/2((k − 1)/2)! if k is odd.
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With this notation,

∫

Sn−1

dω =
(2π)n/2

Jn−1
=
n(2π)n/2

Jn+1
∫

Sn−1

ω2
i dω =

(2π)n/2

Jn+1
∫

Sn−1

ω2
i ω

2
jdω =

(2π)n/2

Jn+3
=

(2π)n/2

(n+ 2)Jn+1
∫

Sn−1

ω4
i dω =

3(2π)n/2

Jn+3
=

3(2π)n/2

(n+ 2)Jn+1
.

Replacing these expressions in the original integrals yields the desired result (with cn =
1/Jn+1).

4.2 Proof of Theorem 1.5

In this subsection we prove Theorem 1.5. The proof relies on Lemmas 3.3 and 4.1. Let
p ∈ C∞(X ) with an at most countable number of critical points. Let X ′ ⊂ X be its regular set
and let K be the sub-bundle of TX ′ defined by the kernel of dp. For each i ∈ {0, · · · , n − 1},
L ≥ 1 and B ⊂ X Borel subset, let νi(p, fL, B) be the number of critical points of index i of
p|Zf

inside B. In addition to previous results will need the following elementary lemma:

Lemma 4.3. Let (XL
t )t∈T,L≥1 = (XL

1,t,X
L
2,t)t∈T,L≥1 be a family of centered Gaussian vectors

in R
n×R

m with covariances Σt,L. Here T is any index set. Assume that, uniformly for t ∈ T ,
the sequence (Σt,L)L≥1 converges to some covariance matrix Σ corresponding to the Gaussian
vector X = (X1,X2) such that the vector X2 is non-degenerate. Let f : R

n × R
m → R

be a measurable function such that for each ε > 0 there exist c = c(ε) < +∞ for which
∀x ∈ R

n × R
m, |f(x)| ≤ ceε|x|

2

. Then, uniformly for t ∈ T ,

lim
L→+∞

E
[

f(XL
t ) |XL

2,t = 0
]

= E [f(X) |X2 = 0] .

Proof of Lemma 4.3. Apply the regression formula (see Proposition 1.2 of [AW09]) to (XL
t )

and use the dominated convergence theorem on f times the conditional density with respect
to the Lebesgue measure on R

n. The fact that X2,t is uniformly non-degenerate guarantees
that for large enough values of the vectors XL

2,t are all non-degenerate and that the conditional

inverse covariances of XL
t are uniformly bounded from below by a positive multiple of Idn.

This and the sub-exponential bound on f guarantees the uniform integrability needed for
dominated convergence.

We are ready to prove Theorem 1.5.
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Proof of Theorem 1.5. By Lemma 4.1 and compactness of X , for L large enough, fL satisfies
Condition 2 so the smoothness of ZL and the fact that p|ZL

is almost surely a Morse function
follows from Lemmas 3.5 and 3.8 respectively. By Lemma 3.8, almost surely Zf ⊂ X ′ so it is
enough to treat the case where B ⊂ X ′. Secondly, the quantities on both sides of equation (2)
are (at least finitely) additive in B so it is enough to prove the result for B inside any local
chart of some atlas. Fix i ∈ {0, · · · , n − 1}. Let x0 ∈ X and consider ∇p a connection on K
and x = (x1, · · · , xn) the local coordinates centered at x0 provided by Lemma 4.1, defined on
0 ∈ U ⊂ R

n. Let U ′ be the regular set of p in these coordinates. Let |dx| be the Lebesgue
measure on U . Let |dt| be the Lebesgue density on the trivial bundle R = R×U on U . On U ′,
the Euclidean scalar product restricts to the fibers of K (resp. K⊥, K∗) and defines a density
|dx̃| (resp.

∣

∣dx⊥
∣

∣, |dx∗|). Let ν = |dt| ⊗ |dx∗|. The product E = R ⊗ K∗ is a rank n vector
bundle on U ′. Fix B ⊂ U ′. In order to compute E [mi(p, fL, B)], we wish to apply Lemma 3.3.
However indicator that the Hessian of fL restricted to K has signature i is discontinuous. We
need to approximate it by suitable test functions and justify the convergence of the formula.
In other words, we need to prove the following claim:

Claim 2. Given x ∈ U , conditionally on the event that f(x) = 0 and dxf |K = 0, let SLi (x) be
the event that Hess(p|ZL

) has signature i. The quantity E [mi(p, fL, B)] is the integral against
|dx| of the following density

E

[∣

∣

∣

∣

det
|dx|,ν

((dxfL,∇pdfL|Kx) (x))

∣

∣

∣

∣

1
[

SLi (x)
]

∣

∣

∣ fL(x) = 0, dxfL|K = 0

]

γν,(fL(x),dxfL|Kx )
(0) .

(13)

Proof. In the bundle T ∗X ⊗E, ignoring the R factor and restricting T ∗X to K∗, we obtain a
map ρ : E → K∗ ⊗ K∗. Let ϕ ∈ C∞

c (K∗ ⊗ K∗), which we see as a function in C∞(T ∗X ⊗ E)
composed with the aforementioned map ρ. We apply Lemma 3.3 to the sections (Fx)x and
(σx)x of E defined by Fx := (fL(x), dxfL|Kx) and σx = 0. The lemma applies for L large
enough by Lemma 4.1. We deduce that

E





∑

x∈U ′ : fL(x)=0,dxfL|Kx=0

ϕ (∇pdfL(x))



 (14)

is the integral over B against |dx| of the following density

E

[

ϕ (∇pdfL(x))

∣

∣

∣

∣

det
|dx|,ν

((dxfL,∇pdfL|Kx) (x))

∣

∣

∣

∣

∣

∣

∣ fL(x) = 0, dxfL|Kx = 0

]

γν,(fL(x),dxfL|Kx )
(0) .

(15)

Now fix i ∈ {0, . . . , n − 1} and let ϕi : K∗ ⊗ K∗ → {0, 1} be defined as ϕi((x, ηx)) is the
indicator that the bilinear form ηx is non-degenerate and has signature i. The function ϕi is
bounded and continuous on K∗ ⊗K∗ except on the set D ⊂ K∗ ⊗K∗ of (x, ηx) such that said
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bilinear form is degenerate. Let (ϕl)l∈N be a sequence of functions in C∞
c (K∗ ⊗ K∗) taking

values in [0, 1] converging pointwise to ϕi on the complement of D. We study (14) and (15)
with ϕ = ϕl and claim that as l → +∞ we obtain the same statement with ϕ = ϕi. Let
us first check that (14) . Note that applying (14) with ϕ = 1 we deduce that the random
variables

∑

{x∈U ′ : fL(x)=0,dxfL|Kx=0}
ϕl (∇pdfL(x)) (16)

for l ∈ N are uniformly bounded by the integrable random variable

Card{x ∈ U ′ : fL(x) = 0, dxfL|Kx = 0} .

Moreover, by Condition 2, we may apply Lemma 3.4 to Fx = (fL(x), dxfL|Kx ,det(∇pdxfL))
and deduce that a.s., ∇pdxfL /∈ D. Thus, the random variable(16) converges a.s. to

∑

{x∈U ′ : fL(x)=0,dxfL|Kx=0}
ϕi (∇pdfL(x))

as l → +∞. Since the sequence is uniformly integrable, the expectation (14) with ϕ = ϕl
converges to the same quantity with ϕ = ϕi. To show the convergence of the right-hand
side, we follow a similar strategy. As before, uniform boundedness follows by replacing ϕ by
the constant function equal to 1 in the expectation of (15). Next, Condition 2 implies that,
Conditionally on fL(x) = 0 and dxfL|Kx = 0, the Gaussian vector ∇pdxf is non-degenerate.
In particular, a.s., ∇pdxf /∈ D so ϕl(∇pdxf) converges a.s. to ϕi(∇pdxf) as l → +∞. We
conclude that for each x ∈ B, the quantity (15) with ϕ = ϕl converges when l → +∞ to the
same quantity with ϕ = ϕi. Moreover, it is uniformly bounded by

Ψ(x) := E

[∣

∣

∣

∣

det
|dx|,ν

((dxfL,∇pdfL|Kx) (x))

∣

∣

∣

∣

∣

∣

∣ fL(x) = 0, dxfL|Kx = 0

]

γν,(fL(x),dxfL|Kx)
(0)

To show convergence of the integrals it is enough to show that Ψ is integrable on B. But by
the regression formula (see Proposition 1.2 of [AW09]), Ψ depends continuously on x. Thus,
by compactness of X , it is bounded and integrable on B. Thus, the quantity (14) with ϕ = ϕi

is the integral over B of |dx| against the density (15) with ϕ = ϕi. We conclude the proof
of the claim by observing that by definition, ϕi(∇pdxf) = 1

[

SLi (x)
]

and mi(p, fL, B) =
∑

{x∈B : fL(x)=0, dxfL|Kx=0} ϕ
i(∇pdxf).

Having established Claim 2, we set about simplifying the density (13). Note that |dx| =
∣

∣dx⊥
∣

∣⊗ |dx̃| so conditionally on dxfL|Kx = 0,

∣

∣

∣

∣

det
|dx|,ν

((dxfL,∇pdfL|Kx) (x))

∣

∣

∣

∣

= ‖dxfL‖eucl
∣

∣

∣

∣

det
|dx̃|,|dx∗|

(∇p(dfL|K)(x)|Kx)

∣

∣

∣

∣

.
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For any x ∈ U ′ and L ≥ 1, let (XL(x), Y L(x), ZL(x)) be as in Lemma 4.1. Let Ỹ L(x) be
the coordinates of Y L(x)|Kx in some orthonormal basis of K∗

x and let ΣL(x) be the covariance
of (XL(x), Ỹ L(x)). Then,

‖dxfL‖eucl
∣

∣

∣

∣

det
|dx̃|,|dx∗|

(∇p(dfL|K)(x)|Kx)

∣

∣

∣

∣

= Ln−1/2‖Y L(x)‖eucl
∣

∣det
(

ZL(x)
)∣

∣

and

γν,(fL(x),dxf |Kx )
(0) =

1

(2π)n/2L(n−1)/2
√

ln
(

L1/2
)
√

det(ΣL(x))
.

Therefore, by equation (13), E [mi(p, fL, B)] is the integral over B and against |dx| of the
following density:

E
[

‖Y L(x)‖eucl
∣

∣det
(

ZL(x)
)∣

∣1
[

SLi (x)
] ∣

∣XL(x) = 0, Y L(x)|Kx = 0
]

(2π)n/2
√

det(ΣL(x))

Ln/2
√

ln
(

L1/2
)

. (17)

By Lemma 4.1, uniformly for x ∈ U ′,

lim
L→+∞

det
(

ΣL(x)
)

= n21−ncnn .

To deal with the expectation, note first that by Lemma 3.7, the event SLi (x) is exactly the
event that, either Y L(x) is a positive multiple of dxp and the signature of ZL(x) is n−1− i, or
it is a negative multiple and the signature is i. Let (X∞, Y ∞, Z∞) be the centered Gaussian
vector with values in R×R

n× Symn−1(R) with the following covariance structure. The three
components X∞, Y∞ and Z∞ are independent. X∞ has variance ncn, Y

∞ has covariance
(cn/2)In and the covariance cn

4(n+2)Ξ of Z∞ is determined by the following relations: for any

i, j, k, l ∈ {1, . . . , n− 1} such that i < j, k ≤ l and (i, j) 6= (k, l),

cn
4(n + 2)

Ξii,jj =
cn

4(n + 2)
Ξij;ij := E

[

Z∞
ii Z

∞
jj

]

= E
[

(Z∞
ij )

2
]

=
cn

4(n + 2)
cn

4(n+ 2)
Ξii,ii := E

[

(Z∞
ii )

2
]

= 3
cn

4(n + 2)
cn

4(n + 2)
Ξij,kl := E

[

Z∞
ij Z

∞
kl

]

= 0 .

By Lemmas 4.1 and 4.3, we have, uniformly for x ∈ U ′,

E

[

‖Y L(x)‖eucl
∣

∣det
(

ZL(x)
)∣

∣1
[

SLi (x)
]

∣

∣

∣
XL(x) = 0, Y L(x)|Kx = 0

]

−−−−−→
L→+∞

E
[

‖Y ∞‖eucl |det (Z∞)|1 [S∞
i ]
∣

∣X∞ = 0, Y∞|Kx = 0
]
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where S∞
i is the event that either Z∞ has signature n− 1 − i and Y∞ is a positive multiple

of dxp or that its signature is i and Y∞ is a negative multiple of dxp. Since the components
of (X∞,X∞, Z∞) are independent, the above limit equals

E
[

‖Y∞‖eucl
∣

∣Y∞|Kx = 0
]

E [|det (Z∞)|1[sgn (Z∞) = i]] . (18)

Let M =
√

4(n + 2)/cnZ
∞ so that M has covariance Ξ. Then, since Y∞ has covariance

(cn/2)Idn, the quantity (18) equals

(cn/π)
1/2(cn/(4(n + 2)))(n−1)/2

E [|det (M)|1[sgn (M) = i]] .

Therefore, by equations (17) and (18), as L→ +∞,

E [mi(p, fL, B)] ∼ CnVoleucl(B)E [|det (M)|1[sgn (M) = i]]
Ln/2

√

ln
(

L1/2
)

where

Cn =
1

√

πn+122n−1n(n+ 2)n−1
.

To conclude note that in the coordinates given by Lemma 4.1, the density |dVg| corresponds
to the Lebesgue density so Voleucl(B) = Volg(B).

5 The lower bound in the critical case

The object of this section is to prove Theorem 1.6. The proofs of this section do not rely
on any result from the rest of the article. First, in Subsection 5.1 we prove two elementary
inequalities. Then, we use these to prove Theorem 1.6 in Subsection 5.2.

5.1 Two useful Gaussian inequalities

In this subection, we state two inequalities that follow easily from known results. The first is
an upper bound for the concentration of the maximum and combines the Fernique inequality
with the Borell-TIS inequality.

Lemma 5.1. Let g be a centered Gaussian field on a bounded subset V of Rn. Assume that
there exist 0 < σ,D < +∞ and α ∈]0, 2] such that for all x, y ∈ V

E
[

g(x)2
]

≤ σ2

E
[

(g(x) − g(y))2
]

≤ D2|x− y|α .

Then, g is almost surely bounded, its supremum M has finite expectation and there exists
C = C(V, α) < +∞ such that

E [M ] ≤ CD .
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Moreover, for each u > 0,

P [M ≥ CD + u] ≤ 2e−
1

2σ2 u .

Proof. By Theorem 2.9 of [AW09], it is enough to obtain a uniform bound on the expectation
of M . Let (X(x))x∈V be an n-dimensional fractional Brownian motion of index α on V (see
for instance Definition 3.3.1 [CI13]), that is, X is a centered Gaussian field which is almost
surely continuous on V and whose covariance is

E[X(x)X(y)] =
1

2
[|x|α + |y|α − |x− y|α] .

Since X is almost surely continuous and V is bounded, its maximum on V is almost surely
finite. Since it is a Gaussian field, its maximum has finite expectation (see once more Theorem
2.9 of [AW09]). Let m = E[maxV X]. For any x, y ∈ V ,

E
[

(DX(x)−DX(y))2
]

= D2|x− y|α ≥ E
[

(g(x)− g(y))2
]

so that, by the Sudakov-Fernique inequality (see Theorem 2.4 of [AW09]),

E[M ] ≤ E[sup
V
DX] = Dm < +∞

and we are done.

The second lemma deals with a certain type of event that we now define. For any set T ,
we say that an event A ⊂ R

T is increasing if for any x ∈ A

{y ∈ R
T | ∀t ∈ T, y(t) ≥ x(t)} ⊂ A .

The following result is essentially due to Loren Pitt and says that Gaussian vectors with non-
negative covariance satisfy the FKG inequality. Loren Pitt stated it for finite dimensional
Gaussian vectors but the general case follows easily (see for instance Theorem A.4 of [RV18]).

Lemma 5.2 ([Pit82]). Let (Xt)t∈T be an a.s. continuous Gaussian random field on a separable
topological space T with covariance Σ = (σij)ij . Assume that for each i, j ∈ {1, · · · , n},
σij ≥ 0. Then, for any two increasing events A,B ⊂ R

T (measureable with respect to the
product σ-algebra),

P[X ∈ A ∩B] ≥ P[X ∈ A]P[X ∈ B] .

5.2 Proof of Theorem 1.6

In this subsection, we use the inequalities of Subsection 5.1 to prove Theorem 1.6. Throughout
the proof, the constants implied by the O’s will be universal constants. The proof of Theorem
1.6 goes roughly as follows:
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• We show first that for ρ > 0 large enough, at distance ρ/λ, we may assume that the field
is positively correlated, even after conditioning on fλ(0). This will allow us to use the
FKG inequality (Lemma 5.2) on points at distance ρ/λ from 0.

• To detect a nodal domain, we want to estimate the probability that fλ(0) < 0 and that
fλ be positive on a sphere Sλ of radius O(1/λ) centered at 0. The difficulty comes from
the fact that fλ(0) will typically take very low values (of order −

√

ln(λ)) which we make
the second half of the event very unlikely.

• To deal with this difficulty, we restrict ourselves to the event that 0 > fλ(0) ≥ −1.
On this event, we show that fλ being positive on a small spherical cap happens with
probability at least 1/3 (see Claim 3).

• Since the field is positively correlated on Sλ, we can "glue" the events that fλ is positive
on spherical caps using Lemma 5.2.

• We conclude by observing that P[0 > fλ(0) ≥ −1] ≍ (ln(λ))−1/2.

Proof of Theorem 1.6. Take ρ ≥ 1 a parameter to be fixed later and for each λ ≥ ρ, set Sλ
the sphere centered at 0 of radius ρ/λ. For each λ ≥ ρ and each x, y ∈ Sλ,

E
[

fλ(0)
2
]

= ln(λ) +O(a)

E [fλ(0)fλ(x)] = ln(λ)− ln(ρ) +O(a)

E [fλ(x)fλ(y)] ≥ ln(λ)− ln(ρ) +O(a) .

In particular, there exists λ1(ρ, a) < +∞ such that for λ ≥ λ1(a, ρ), fλ(0) is non-degenerate.
By the regression formula (see Proposition 1.2 of [AW09]), the field (fλ(x))x∈Sλ

conditioned
on fλ(0) is an almost surely Gaussian field with mean

∀x ∈ Sλ, E
[

fλ(x)
∣

∣ fλ(0)
]

=
[

1 +O
(

(ln(λ))−1(ln(ρ) + a)
)]

fλ(0) (19)

and whose covariance at any x, y ∈ Sλ is by definition

E
[(

fλ(x)− E
[

fλ(x)
∣

∣ fλ(0)
]) (

fλ(y)− E
[

fλ(y)
∣

∣ fλ(0)
]) ∣

∣ fλ(0)
]

which equals

ln(λ)− ln(ρ)+O(a)− (ln(λ)− ln(ρ) +O(a))2

ln(λ) +O(a)
= ln(ρ)+O(ln(ρ)/ ln(λ))+O(a)+O(1) . (20)

In particular, there exists ρ0 = ρ0(a) < +∞ such that if ρ ≥ ρ0, then, for each λ ≥ ρ ∨ λ1,
the vector (fλ(x))x∈Sλ

conditioned on fλ(0) is positively correlated. Take λ ≥ λ0. Let Hλ be
the event that for all x ∈ Sλ, fλ(x) > 0. We want to find a lower bound for the probability of
Hλ conditioned on fλ(0), on the event that fλ(0) > −1. To this end we start by proving the
following estimate.
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Claim 3. There exists ρ1 = ρ1(a, b, α, n) < +∞ such that if ρ ≥ ρ1, for each λ ≥ ρ ∨ λ1 and
each x ∈ Sλ, on the event fλ(0) ≥ −1,

P
[

∀y ∈ Sλ ∩B(x, 1/λ), fλ(y) > 0
∣

∣ fλ(0)
]

≥ 1/3 .

Proof. Fix ρ ≥ ρ0, λ ≥ ρ∨λ1 and x ∈ Sλ. Set Vλ ⊂ B(0, 1) be the set of z ∈ B(0, 1) such
that x+ z/λ ∈ Sλ. For each z ∈ B(0, 1),

mλ(z) = E [fλ(x+ z/λ) | fλ(0)]
hλ(z) = fλ(x+ z/λ)−mλ(z)

gλ(z) = hλ(0) − hλ(z) .

Then, we have, for each z ∈ B(0, 1),

fλ(x+ z/λ) = hλ(0) − gλ(z) +mλ(z) . (21)

We will now show that, conditionally on fλ(0) and on the event fλ(0) > −1, with positive
probability, the three terms in the right-hand side of (21) satisfy inequalities that imply that
fλ(x + zλ) > 0 for each z ∈ Vλ. Firstly, Equation (19) shows that on the event fλ(0) > −1,
mλ(z) is bounded from below uniformly for each λ and each z ∈ Vλ. Letm = m(a, n) > −∞ be
a uniform lower bound. Next, conditionally on fλ(0), gλ is centered and for each z, z′ ∈ B(0, 1),

E
[

gλ(z)
2 | fλ(0)

]

≤ E
[

gλ(z)
2
]

≤ 2b2|z|α ≤ 2b2

E
[

(gλ(z)− gλ(z
′))2 | fλ(0)

]

≤ 4E
[

(fλ(x+ z/λ) − fλ(x+ z′/λ))2
]

≤ 4b2|z − z′|α .
Here we used that, by the regression formula (Proposition 1.2 of [AW09]), variances do not
increase under Gaussian conditioning. By Lemma 5.1 (with V = B(0, 1)) there exist a constant
C = C(n, α) < +∞ and a constant u0 = u0(b) ∈]0,+∞[ such that for each λ,

P

[

sup
B(0,1)

gλ > Cb+ u0

∣

∣

∣ fλ(0)

]

≤ 1/9 . (22)

By equation (20), uniformly in λ ≥ ρ,

E
[

hλ(0)
2 | fλ(0)

]

= ln(ρ) +O(a) +O(1) .

Also, conditionally on fλ(0), hλ(0) is centered. Hence, there exists ρ1 = ρ1 (a,m, u0, b, C) <
+∞ such that if ρ ≥ ρ1,

P [hλ(0) > Cb+ u0 −m | fλ(0)] > 4/9 . (23)

Here m, C and u0 depend only on a, b, α and n so ρ1 depends only on a, b, α and n. Assume
now that fλ(0) > −1. By Equation (21), since for each z ∈ Vλ we have mλ(z) ≥ m, the event

{hλ(0) > Cb+ u0 −m} ∩ ¬
{

sup
B(0,1)

gλ > Cb+ u0

}
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implies that ∀y ∈ Sλ ∩B(x, 1/λ), fλ(y) > 0. Hence, for each ρ ≥ ρ1, each λ ≥ ρ∨λ1 and each
x ∈ Sλ, we have shown that on the event fλ(0) > −1,

P
[

∀y ∈ Sλ ∩B(x, 1/λ) fλ(y) > 0
∣

∣ fλ(0)
]

≥ P [hλ(0) > Cb+ u0 −m | fλ(0)]

− P

[

sup
B(0,1)

gλ > Cb+ u0

∣

∣

∣
fλ(0)

]

≥ 4/9− 1/9 by equations (22) and (23)

≥ 1/3 .

�

From now on, we assume that ρ ≥ ρ0 ∨ ρ1. Cover Sλ with N = N(ρ) balls (Bi)1≤i≤N of
radius 1/λ. Conditionally on fλ(0), for each i ∈ {1, . . . , N}, the event that the field fλ stays
positive on Bi is increasing. Therefore, by the FKG inequality (Lemma 5.2) we have, for each
λ ≥ ρ ∨ λ1,

P

[

Hλ
∣

∣ fλ(0)
]

≥
N
∏

i=1

P [∀x ∈ Bi fλ(x) > 0 | fλ(0)] .

Now, by the previous claim, on the event that fλ(0) ≥ −1, the right hand side is greater than
3−N . Consequently, for each λ ≥ ρ ∨ λ1,

P

[

Cλ
]

≥ P

[

fλ(0) < 0; Hλ
]

≥ E

[

P

[

Hλ
∣

∣ fλ(0)
]

1[−1 ≤ fλ(0) < 0]
]

≥ 3−NP [−1 ≤ fλ(0) < 0] .

Since fλ is centered and E[fλ(0)
2] = ln(λ) + O(a), there exist λ0 = λ0(a, ρ) < +∞ and

κ = κ(a, ρ) > 0 such that for each λ ≥ λ0,

P

[

Cλ
]

≥ κ (ln(λ))−1/2 .

Choosing ρ = ρ0 ∨ ρ1, one can assume that λ0 and κ depend only on a, b, n and α.
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