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Recursive identification in transmittance of under-operated mechanical

Identification récursive en transmittance des systèmes mécaniques sous-actionnés (Application au pendule inversé)

Introduction

L'automatique consiste à étudier des systèmes réels de différentes disciplines (électronique, mécanique, thermique, chimie, écologie,...) en vue de les analyser, les surveiller, les diagnostiquer, et les commander. Cela nécessite la disponibilité d'un modèle mathématique de ce système réel. Un système est un objet dans lequel des variables de différents types interagissent et produisent des signaux observables. Lors que le modèle du système n'est pas connu, il est nécessaire de procéder à son identification. Ce modèle ne cherche qu'à reproduire "au mieux" un fonctionnement dynamique dans un contexte donné sans se préoccuper de la signification physique éventuelle des paramètres dont il dépend.

L'identification consiste à chercher les paramètres de modèles mathématiques d'un système, à partir de données expérimentales et de connaissances disponibles a priori. Ces paramètres peuvent avoir une signification physique, comme dans les modèles de connaissance (issus de lois de la mécanique, de l'électricité, etc...), ou ne pas en avoir, comme c'est le cas pour les modèles de comportement. Dans les deux cas, ils doivent fournir une approximation fidèle des comportements du système physique, dans la mesure où leurs paramètres sont ajustés à partir de données expérimentales. L'objectif cherché est de rendre identiques les réponses du processus et du modèle, pour des séquences d'entrée données.

Il existe plusieurs méthodes d'identification paramétrique, mais la plupart des méthodes utilisées sont basées sur le calcul du gradient pour trouver les paramètres cherchés avec une précision acceptable. Il sera raisonnable d'affirmer que les bonnes valeurs des paramètres cherchés seront celles qui minimisent le critère quadratique appelé souvent fonction coût. Néanmoins, il n'est pas toujours possible d'évaluer les gradients lorsque les mesures sont noyées dans le bruit. L'identification paramétrique est donc une tâche primordiale pour déterminer les valeurs numériques de paramètres d'un système pour leur utilisation dans la simulation et dans la loi de commande.

Les systèmes mécaniques sous-actionnés sont définis comme étant des systèmes dont le nombre d'actionneur est inférieur au nombre de degré de liberté [START_REF] Chemori | Le pendule inversé stabilisé par volant d'inertie, 3èmes Journées Démonstrateurs[END_REF]. On peut citer le pendule inversé, le pendulot, comme exemples des systèmes mécaniques sous-actionnés. Le manque d'actionneur complique la tâche d'identification de ce genre de système. Par conséquent, les méthodes d'identification des systèmes mécaniques complètement actionnés ne peuvent être mises en oeuvre pour de tels systèmes.

Par ailleurs, le pendule inversé a fait l'objet de nombreuses études de recherche tout au long de ces dernières années. Cet intérêt est dû au fait que le pendule inversé possède plusieurs caractéristiques intéressantes entre autre la non linéarité, le couplage, l'instabilité intrinsèque [5]. Une littérature abondante traite de la commande de ce processus [3], [START_REF] Riachy | Stabilisation de systèmes mécaniques sous-actionnés par commande quasihomogène, e-STA[END_REF], [START_REF] Chemori | Le pendule inversé stabilisé par volant d'inertie, 3èmes Journées Démonstrateurs[END_REF] et [START_REF] Wang | Modélisation et commande d'un pendule inversé sur un robot X-Y par asservissement visuel[END_REF]. Dans [START_REF] Chemori | Le pendule inversé stabilisé par volant d'inertie, 3èmes Journées Démonstrateurs[END_REF], une commande prédictive généralisée (GPC) a été appliquée en temps-réel sur le prototype du pendule inversé stabilisé par volant d'inertie dans le but de le stabiliser autour de son point d'équilibre instable, or, l'application d'une telle commande nécessite un bon modèle du processus; ceci sous-entend donc que le processus a été identifié. Or, en ma connaissance un seul article tarite ce sujet. [5] propose une méthode d'identification neuronale du pendule inversé à l'aide d'un algorithme génétique.

Ce manuscrit présente une extension des algorithmes des moindres carrés étendus et de Steiglitz et

McBride aux systèmes mécaniques sous-actionnés en utilisant les structures OE et ARMAX.

L'article est organisé comme suit: la section 2 donne un rappel sur les modèles de processus (OE et ARMAX) tenant compte de la nature du bruit, et propose également une méthode de minimisation de la distance procédé-modèle pour chaque modèle. Ensuite, une modélisation en transmittance d'un modèle typique des systèmes mécanique sous-actionnés est présentée à la section 3. Enfin, la dernière section est consacrée à la présentation des résultats d'identification et à la validation de modèles.

Modèles du processus

Par rapport aux approches non paramétriques, les méthodes paramétriques présentent un avantage considérable quant au nombre de paramètres à identifier. L'identification des paramètres du modèle se fait sur base d'un critère d'écart entre des mesures expérimentales provenant du processus et une simulation des équations constituants le modèle.

Pour cela, il faudra choisir au préalable :

-la structure du modèle, -le critère de performance, -l'algorithme d'identification, -le signal d'excitation.

Les modèles d'identification utilisent le plus souvent une représentation discrète, bien que les processus physiques réels soient généralement de nature continue. Ceci résulte du fait que, d'une part, l'ordinateur qui se charge de l'identification voit un processus discret à travers les convertisseurs A/N et N/A et que, d'autre part, l'identification des paramètres, la synthèse du régulateur et la simulation du système sont plus simples sous forme numérique que sous forme analogique.

Le choix de la structure du modèle dépend des hypothèses sur l'ordre du modèle du processus et la nature du bruit.

Structures sans modèle du bruit (Ouput error)

Cette structure est basée sur l'hypothèse selon laquelle le bruit n'est pas corrélé avec l'entrée du processus.

Supposons que la sortie mesurée du système puisse être exprimée comme suit :
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est un bruit stationnaire à moyenne nulle indépendant de l'entrée et
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est le vrai modèle du système avec une fonction de transfert d'ordre fini représentée par :
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La structure du modèle présenté à l'équation (1) est connue sous le nom de la structure de l'erreur de sortie (output error, OE). Donc le meilleur prédicteur pour la structure de l'erreur de sortie est :
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est la sortie prédite à l'instant k qui dépend du vecteur de paramètres du vrai modèle 0  . Comme 0  est en principe inconnu, on peut construire un prédicteur où le vecteur de paramètres du vrai modèle 0  est remplacé par un vecteur de paramètres inconnu  comme suit :
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est l'ensemble des modèles candidats pour le vrai modèle.

La sortie prédite est en effet la sortie du modèle m y et l'erreur de prédiction pour cette structure est l'erreur de sortie
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A partir de cette équation, on observe que si

) ( 1 0  q G appartient à l'ensemble des modèles et 0    , c'est-à-dire ) ( ) ( 1 0 1    q G q G
, l'erreur de prédiction sera égale au bruit
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. Alors, pour 0 ˆ   , l'erreur de prédiction ne sera pas corrélée avec l'entrée du processus. Cette propriété intéressante peut être utilisée pour la validation du modèle identifié.

Cette structure est la meilleure structure pour identifier un modèle si le but d'identification est de trouver un modèle de simulation et que l'on n'a pas besoin d'un modèle du bruit. Cependant, les paramètres du modèle interviennent de façon non linéaire dans l'équation de l'erreur de prédiction et par conséquent cela conduit à un problème de régression non linéaire pour lequel un optimum global ne peut pas être garanti facilement.

OE par la méthode de Steiglitz et Mc Bride

Cette méthode consiste à filtrer l'entrée et la sortie par une fonction de transfert qui vaut

) ( 1 1  q F .
Pour identifier une fonction de transfert correctement, la méthode de Steiglitz et McBride minimise à chaque itération l'erreur d'équation pondérée [START_REF] Ashari | Sur les points stationnaires de la méthode de Steiglitz et McBride dans le cas sous modélisé. Quinzième colloque GRETSI[END_REF].

L'OE est un système assez répandu. On définit l'erreur généralisée par :
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On définit m y comme étant le modèle de sortie avec comme équation :
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et le vecteur de paramètres  sont données par :
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u et f y sont respectivement l'entrée et la sortie filtrée, alors :
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On observe ici que l'erreur du modèle filtré est égale à l'erreur de prédiction de l'OE. Donc en mettant à jour itérativement le regresseur linéaire on minimise l'erreur généralisée, donc l'erreur de modèle.

Structures avec modèle du bruit (ARMAX)

Ces structures sont basées sur l'hypothèse selon laquelle le bruit sur la sortie est un bruit blanc filtré par un filtre d'ordre fini. L'idée est d'identifier simultanément le modèle du procédé et le modèle de la perturbation, pour pouvoir obtenir une erreur de prédiction asymptotiquement "blanche" [4].

Pour cette structure, la sortie mesurée s'écrit :
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Cette structure, qui considère un terme de moyenne glissante (moving average) pour le bruit
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(quand on multiplie les deux côtés de l'équation par
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) en plus du terme autorégressif, est très utilisée pour l'identification de systèmes dynamiques dans le domaine de l'automatique. Mais le prédicteur basé sur cette structure est non linéaire par rapport au vecteur des paramètres à identifier [START_REF] Larminat | Analysis and control of linear systems[END_REF].

Comme les deux fonctions de transfert possèdent le même dénominateur, ce modèle est utile lorsque le bruit agit en amont du processus.

L'équation de prédiction de la sortie pour le modèle ARMAX est :
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L'erreur de prédiction pour le modèle ARMAX s'écrit donc :
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L'erreur de prédiction est non linéaire par rapport au paramètres du modèle du processus et du bruit. L'erreur de prédiction sera blanche si la structure du vrai modèle est ARMAX et appartient à l'ensemble des modèles candidats.

ARMAX par moindres carrés étendus

Rappelons d'abord que la structure ARMAX rajoute un jeu de coefficients, provenant de l'ajout d'un numérateur au filtre du bruit. Donc ce type d'identification est plus compliqué, moins stable numériquement par ce que plus on a des coefficients à identifiés plus on a besoin de mesures pour arriver à capturer les dynamiques du système, et à ceci rajouter le fait que la régression n'est pas linéaire.

Quelle que soit la procédure d'identification, la fonction erreur ne sera en général pas nulle à cause des erreurs de caractérisation et des perturbations de mesure. La validation d'un modèle passe par la minimisation de la distance Objet-Modèle prédéfinie [START_REF] Zegrari | Identification par la méthode du modèle des paramètres d'une machine à courant continu[END_REF] et [START_REF] Larminat | Analysis and control of linear systems[END_REF]. L'article [4], parle de la méthode de minimisation de l'erreur quadratique par moindre carré étendu (MCE), dont nous rappelons les équations permettant sa mise en oeuvre : Ces équations sont non linéaires. Le système linéarisé au point d'équilibre est donné par :
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En choisissant  l'angle entre le pendule et la verticale comme sortie du système sachant que u est l'entrée, et en appliquant la transformé de Laplace, on exprime la fonction de transfert du système par :
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Simulation et validation

Pour valider notre approche d'identification on partira d'un modèle connu, ensuite on généra des données à partir de ce système connu. On utilise enfin les outils d'identification pour reconstruire le modèle de départ.

Pour illustrer la méthode, on considère la fonction de transfert du pendule avec comme valeurs de coefficients :

-

kg m 1  - kg M 5  - 2 / 10 s m g  - m l 1 
Les essais sont réalisés avec un bruit de mesure blanc puis coloré. L'acquisition des données entréesortie se fait sur 10000 échantillons avec une période d'acquisition de 100 ms.

Le signal d'entée choisi est une séquence binaire pseudo-aléatoire (SBPA). En effet, une démarche classique en identification stipule que l'obtention d'un modèle identifié reflétant le plus fidèlement possible le comportement du système nécessite que ce système soit sollicité par une entrée relativement riche, de façon à exciter le plus grand nombre de modes propres. Le meilleur signal candidat est alors le bruit blanc, malheureusement non déterministe. Une séquence binaire pseudo-aléatoire est un signal déterministe à approcher d'une réalisation d'un bruit blanc [1].

Identification en présence du bruit blanc

On considère ici le cas où le bruit est blanc. Dans un tel contexte le modèle approprié pour l'identification est donc un modèle à erreur de sortie. Pour ne pas surdimensionné la structure, le principe de parcimonie veut qu'on commence par la structure du modèle la plus simple.

En simulant le système avec un bruit sur la mesure de 10% de variance et en utilisant comme modèle du processus un ARX avec comme critère d'optimisation la méthode des moindres carrés on récursif, on obtient comme fonction de transfert du système : peut rema e estimé es ape de valid on peut ob t que les ré 
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