
HAL Id: hal-01689071
https://hal.science/hal-01689071

Submitted on 20 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards service orchestration through software
capability profile

Abdelhadi Belfadel, Jannik Laval, Chantal Cherifi, Néjib Moalla

To cite this version:
Abdelhadi Belfadel, Jannik Laval, Chantal Cherifi, Néjib Moalla. Towards service orchestration
through software capability profile. 9th International Conference on Interoperability for Enterprise
Systems And Applications (I-ESA 2018), Mar 2018, Berlin, Germany. �hal-01689071�

https://hal.science/hal-01689071
https://hal.archives-ouvertes.fr


Towards service orchestration through software
capability profile

Abdelhadi Belfadel, Jannik Laval, Chantal Bonner Cherifi, and Nejib Moalla

University Lyon 2, DISP Laboratory
{abdelhadi.belfadel,jannik.laval,

chantal.BonnerCherifi,nejib.moalla}@univ-lyon2.fr

Abstract. Open source solutions offer great reuse opportunities. How-
ever, the difficulty lies on the appropriation of these solutions to meet
specific business requirements. We aim in this work to decompose an
open source application in specific functionalities as a conceptual view
for service orchestration. We provide a solution to characterize a func-
tionality of an open source application in a readable and standardized
way. Then we provide an automated solution for the externalization of
these characterized functionalities as an Application Programing Inter-
face. Our approach uses capability profile provided by ISO 16100 series
which is a standardized methodology for interoperability of manufactur-
ing software. As a result, we generate reusable components for service
orchestration needs.

Keywords: open source application; software reuse; service orchestra-
tion; API; ISO 16100; capability profile; enterprise application integra-
tion;

1 Introduction

Small and Medium-Sized Enterprises (SMEs) are the most common firms in
many countries. In Europe (EU28), 23 million SMEs employ more than 90 mil-
lion people. They represented, in 2015, 99.8% of all enterprises [15], and they
are increasingly doing open innovation to bring ideas in the market to improve
productivity, increase competitiveness and facilitate entrance to new markets
[9]. In order to do so, SMEs need to explore new solutions and integrate new
functionalities quickly. This results in prototyping new business needs in short
time period without cost or engagement with a software vendor. But in most
cases, SMEs operate under limited resources which restrict their innovativeness
[9]. High number of open source solutions results from the Factories of the Future
(FoF) initiatives. This aims to develop the necessary key enabling technologies
and help manufacturing enterprises to adapt to global competitive pressures.

Currently, the development of software applications is based on the reuse of
existing functionalities instead of developing them from scratch [11, 19]. Applica-
tion Programming Interfaces (APIs) are considered as the most commonly used



2 Towards service orchestration through software capability profile

entities supporting software reuse [18, 11]. APIs provide an implemented, tested
and high quality functionalities, and they increase software quality and reduce
the effort spent on coding, testing and maintenance activities [19].

In this context, we provide a framework to facilitate the appropriation of
the open source applications and bring adequate solutions to SMEs. This frame-
work consists of four steps as source code analysis, evaluation, servitization and
orchestration model. In the source code analysis step, we analyze the source
code to detect existing services and potential candidates (functionalities) to ex-
ternalize. In the evaluation step, we qualify existing services of an open source
application and elect reliable and trustworthy candidates. In the servitization
step, we characterize and servitize the elected candidates in an automated pro-
cess. Finally in the orchestration step, we propose an orchestration model for the
externalized functionality to save the business logic offered by the open source
application. For this purpose, we present in this paper one part of the proposed
framework with a proof of concept applied on an open source application re-
sulted from a FoF initiative (FITMAN1). Starting from the characterization of
the functionalities done in a readable and standardized way. Then we provide
an automated solution for the externalization of the characterized functionali-
ties as REST (Representational state transfer) APIs for service orchestration.
Our approach uses capability profile provided by ISO 16100 series which is a
standardized methodology for interoperability of manufacturing software. As a
result, we generate reusable components for service orchestration needs. This
paper is structured as follows. Section 2 focuses on the related work and Sec-
tion 3 presents an overview of some useful standards for our solving approach.
Section 4 is dedicated to the proposed solution and Section 5 presents an im-
plementation of the proposed solution applied on an open source application.
Finally, conclusion and future works are drawn in section 6.

2 Related work

In this section, we discuss works related to source code analysis, software reuse
and legacy to SOA migration.

2.1 Source code analysis & software reuse

Metrics are powerful support tools in software development and maintenance.
They are used to assess software quality, to estimate complexity, cost and ef-
fort, to control and improve processes [16]. The metrics that are important to
calculate reusability are related to inheritance, cohesion and coupling. In [16],
the authors measure the association between numbers of classes, check the di-
rect dependencies, indirect dependencies, IO dependencies, number of out and in
metrics in object oriented programming. In [12], the authors propose a method
to display dependencies between modules in reuse-based embedded software de-
velopment, and adding development management property data to each module

1 www.fitman-fi.eu



Towards service orchestration through software capability profile 3

in order to support developers to know which modules will be affected when
some parts of the reused software are modified. Other authors in [13] identify
components from object oriented source code based on quality-centric metrics.

2.2 Legacy to SOA evolution

In the literature, the concept of SOA is interpreted in many different ways. Dif-
ferent approaches to SOA migration are proposed. A brief overview of legacy to
SOA evolution is reported by [7] that divides the legacy to SOA evolution ap-
proaches into four categories: replacement, redevelopment, wrapping and migra-
tion. In [17], the authors report a systematic literature review of SOA migration
approaches. They propose a reference model, called SOA migration frame of ref-
erence, that can be used for selecting and defining SOA migration approaches. In
[6], the authors outline a semi-automated approach to migrate dynamic legacy
web applications to web services-based SOA applications by using two technolo-
gies, Service Component Architecture (SCA) and Service Data Object (SDO).
They used a manual approach to identify the potential service within each func-
tion. Other authors propose a framework and guidelines for the identification
of specific services from legacy code [5]. Their approach focuses on defining the
services based on a Model-Driven Architecture approach.

3 Standards

In order to reach service orchestration using functionalities of open source appli-
cations, we need to know more about the entities that have to inter operate. Two
standards intend to provide this knowledge by offering a way to create profiles of
the selected entities, ISO 15745 (Industrial automation systems and integration -
Open systems application integration frameworks) [1] and ISO 16100 (Industrial
automation systems and integration - Manufacturing software capability profil-
ing for interoperability) [4]. The ISO 15745 defines an Application Integration
Framework (AIP) which is a set of elements and rules for describing integration
models and application interoperability profiles as well as their component pro-
files, process profiles, information exchange profiles, and resource profiles. The
standard defines also the technology specific elements and rules for describing
both communication network profiles and the communication related aspects of
device profiles based upon particular fieldbus technologies. The middle section
of figure 1 shows the AIP, consisting of one process profile, one or more resource
profiles, and one or more information exchange profiles. Underlying the AIP are
the relevant integration models which represent the application requirements
[14]. With its focus on shop floor application, figure 1 shows the next level of
details for the resource profile consisting of communication, device, human, ma-
terial and equipment profiles. On the other hand, the standard ISO 16100 targets
the representation of a software capability profile [4]. It specifies a framework
for assessing the interoperability of a set of software products used in the man-
ufacturing domain, and provides a method which is independent of a particular



4 Towards service orchestration through software capability profile

system architecture or implementation platform for constructing profiles of man-
ufacturing software capabilities [8]. Figure 2 shows the concepts defined in the
different parts of ISO 16100.

Fig. 1. Context of ISO 15745 [1]
Fig. 2. Context of ISO 16100 [3]

3.1 API Documentation

An API is the published interface and a service is the concrete implementation
of an API running in the back-end. It is typically a black box, which means that
source code is not publicly accessible. API documentation is very important for
the successful adoption of an API. APIs expose data and services and should
be designed with an interface that the consumer can understand. The docu-
mentation should help developers to learn the functionalities offered by an API
and enable them to start using it quickly. The API document should provide
all necessary information to developers or API consumers in a human-readable
format and help them assess its suitability for use in their client app. It should
provide information about its licensing policy and usage requirements-input and
output parameters, message format, error messages, and more. Similarly, the
API interface should be documented such that its interface can be parsed by
a machine to generate client stubs and server-side skeleton code that can be
further developed. To make API documentation effective, it should include the
following aspects about the API [10]: title, endpoint, method, URL parameters,
message payload, header parameters, response code, error code. Many tools and
technologies are available for API documentation. We can find RESTful API
Modeling Language (RAML) 2, API Blueprint 3 and Swagger 4 (was renamed
the OpenAPI Specification when it was donated to the Open API Initiative).

2 http://raml.org/
3 https://apiblueprint.org/
4 https://www.openapis.org/



Towards service orchestration through software capability profile 5

4 Contribution

As outlined in the previous sections, our goal is to help companies select the
most suitable open source application, and its reusable components to meet
their business requirements which is composed by user and service type tasks.
The final choice of reusing an open source application depends on the precision
of the expression of the needs. The more the needs are precise, the more the
selection of the open source application is easy. As a result, the company will
choose the application which answers most in term of reuse to service tasks of
the new business application. Figure 3 shows the proposed framework, composed
by 4 main parts. The first step is the code extraction and analysis. In this step,

Fig. 3. Proposed Framework

we transform the extracted source code into a model, allowing us, with the help
of visualization techniques, to detect the existing services and identify potential
candidates (methods) to expose as a service. The second step is the Evaluation
part. This step focuses on the technical aspect by applying some metrics helping
to elect reliable candidate to externalize (next step process), and qualify exist-
ing services of the open source application to explore their capabilities, system
properties, conditions of use and limits. All these informations are gathered in
a single catalog for discovery, maintenance and reuse purpose. In the third step,
we characterize the candidate functionality in a readable and standardized way,
and an automatic process is applied to generate the API to be deployed on the
Cloud. The last part represents the orchestration model generation. In this step,
we generate an orchestration template when the candidate method belonging
to the core of the application and depend on another service. An orchestration
template is generated to not modify the business logic offered by the application.
The originality of this work is to transform a servitized, semi-servitized or legacy



6 Towards service orchestration through software capability profile

application into SOA application. For (semi-)servitized applications, it allows to
qualify, give visibility and secure existing services with APIs in order to ease
the reuse. It provides also a way for semi-servitized applications to character-
ize the functionalities to expose, and automate the steps to reach the service.
For non-servitized applications, the goal is to come out with a full service ap-
plication that facilitates its reuse. In this paper, we focus only on the third
step of the proposed framework which is composed by the characterization and
servitization steps (detailed in Figure 4). In order to reach our objective of the

Fig. 4. Servitization steps

service orchestration, we have selected the framework offered by ISO 16100 for
the characterization part because it focuses on the interfacing requirements for
interoperability, instead of ISO 15745 which identifies a larger set of elements
needed to support interoperability between application components.
Our contribution is the proposal of an ISO 16100 capability template with its
capability class described with XML Schema. We propose also an automated
way to reach a reusable component based on OpenAPI Specification, which is
one of the most popular API documentation framework. OpenAPI Specification
provides standard, language-agnostic way of defining a REST API Interface, and
allows the consumer to understand the capabilities of the REST API without any
prior access to the service implementation code or network inspection [10]. We
expose in the following (section 4.1), the capability profile process as described
in ISO 16100 standard. Then we propose in section 4.2, the steps to reach the
API documentation from the capability profile allowing to get the desired API.

4.1 Capability profile process

First, we have to identify candidate methods to externalize and expose as an
API. In this paper, we do not present this step. We will deal with it during our
future work. In the following, we take the output of the evaluation step, which
are candidate methods, and we apply the next step of the framework which is
the characterization step allowing to get the ISO 16100 capability profile of the
method. Each application is represented as an activity tree structure that is



Towards service orchestration through software capability profile 7

hierarchical. And an activity is considered as a software unit in the ISO 16100
specification. The interoperability of software units can be described in terms of
their capabilities that are associated with the aspects of functionality, interface
and structure. The profiling of a software unit involves the generation of a concise
statement of capabilities enabled by the software unit in terms of the functions
performed, the interfaces provided, and the protocols supported. The part of
the concept of capability profile for software interoperability shown in figure 2
related to the capability profiling process is detailed in figure 5. A software unit
to be profiled shall be analyzed and a template shall be filled to make a profile. In
this work, we have formed a new capability class and a new capability template
in XML Schema, helping to retrieve information needed to externalize a feature
of an application. Figure 6 shows an example of informations contained in the
specific part of a capability profile.

Fig. 5. Capability profiling process [2]

Fig. 6. Example of a Specific part of capa-
bility profile

4.2 Capability profile to an API

Once the common and the specific part of a capability profile are filled, the dif-
ficulty resides on how to reach a service from this formal structure (xml file).
The solution that we propose is to transform the capability profile to an Ope-
nAPI Specification, allowing to generate the interfaces of the new service. The
following table 4.2 shows the correspondence to be carried out, and a proof of
concept is presented in section 5 applied on an open source application.

5 Use case

In order to validate our approach, we applied characterization and servitization
process on an application called Collaborative Asset Manager (CAM) from FIT-



8 Towards service orchestration through software capability profile

Table 1. Capability profile to an API

Capability Profile XML Tag OpenAPI Specification property

<Owner> <ComputingFacilities>
<Performance>

API Description

<Function id=””> API Path

<Function action=””> Method of API

<InformationExchange>
<InputDataTypes>

Parameters of the API

<InformationExchange>
<OutputDataTypes>

Response Objects Parameters of
API

MAN 5 Project. The FITMAN-CAM app is a web-based, integrated platform
for the management of virtualized Assets in the scope of service-oriented Man-
ufacturing Ecosystems (the term asset represents any item of economic value
owned by an Enterprise). This application offers CRUD operations of virtual-
ized assets (Create, Read, Update, Delete) using the user interface, and exposes
its own REST-based APIs to retrieve information about assets from database.
For matter of reusing this application for new business requirements, there is a
need to create assets without going through the user interface and orchestrate
this action with other services. Our implementation of the servitization step
helps to generate project skeleton in order to expose the REST-Based API of
any functionality already characterized by the proposed ISO 16100 capability
profile. The characterization step (which is done manually for now) of the create
asset method gives the profile on the left of figure 7.

Fig. 7. Application screen shot : Capability profile to Swagger

5 http://www.fitman-fi.eu/



Towards service orchestration through software capability profile 9

The content of the capability profile reflect the signature of Java method
public void createAsset(String name, String modelName, String ownerName).
Once the profile filled, the next step is to upload the capability profile to our
developed application, in order to transform it into an Open API Specification
following the steps described in section 4.1. The generated Open API Specifica-
tion is described using YAML, a data serialization standard. From this stage,
we generate the server stubs and client SDKs, by using Swagger Codegen pro-
cess. The last step is the implementation of the business side and deployment
of the generated API on an API Manager running on Cloud to get a reusable
component for service orchestration.

6 Conclusion and future work

In this paper, we have presented the characterization and servitization steps of
the proposed framework with a proof of concept applied on a open source appli-
cation. Starting from the characterization of a functionality done in a readable
and standardized way, using a proposed ISO 16100 capability template with its
capability class described with XML Schema. Then we provide an automated
solution for the externalization of the characterized functionality as a REST-
Based Application Programing Interface for service orchestration. As a result,
we generate reusable components for service orchestration. As future work, we
plan to focus on the source code analysis step. The aim of this step is to trans-
form the source code of the open source application into a queryable model, and
generate a visual to explore and qualify the existing services. The analysis step
is followed by the evaluation step, where the use of metrics will help to elect
reliable candidates to characterize and expose as presented in this work.

7 Acknowledgment

This paper presents work developed in the scope of the project vf-OS. This
project has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement no. 723710. The content of
this paper does not reflect the official opinion of the European Union. Respon-
sibility for the information and views expressed in this paper lies entirely with
the authors.

References

1. Iso 15745, industrial automation systems and integration open systems application
integration frameworks, iso/tc/184/sc5, 2000.

2. Iso 16100-2:2003 industrial automation systems and integration manufacturing
software capability profiling for interoperability part 2: Profiling methodology,
2003.



10 Towards service orchestration through software capability profile

3. Iso 16100-3:2005 industrial automation systems and integration manufacturing
software capability profiling for interoperability part 3: Interface services, protocols
and capability templates, 2005.

4. Iso 16100-1:2009 industrial automation systems and integration manufacturing
software capability profiling for interoperability part 1: Framework, 2009.

5. S. Alahmari, E. Zaluska, and D. De Roure. A service identification framework
for legacy system migration into soa. In 2010 IEEE International Conference on
Services Computing, pages 614–617, July 2010.

6. Asil A. Almonaies, Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. To-
wards a framework for migrating web applications to web services. In Proceedings
of the 2011 Conference of the Center for Advanced Studies on Collaborative Re-
search, CASCON ’11, pages 229–241, Riverton, NJ, USA, 2011. IBM Corp.

7. Asil A Almonaies, James R Cordy, and Thomas R Dean. Legacy system evo-
lution towards service-oriented architecture. In International Workshop on SOA
Migration and Evolution, pages 53–62, 2010.

8. Abdelhadi Belfadel, Jannik Laval, Chantal Bonner Cherifi, and Néjib Moalla. Ca-
pability Profile for Enterprise Application Integration. In 2017 International Con-
ference on Engineering, Technology and Innovation (IEEE/ICE/ITMC), 2017.

9. Jean-Claude Boldrini, Guy Caverot, and Maxime Ezequel. The journey in Open
Innovation to develop a SME: A longitudinal case study in a French robotics com-
pany. working paper or preprint, April 2017.

10. Brajesh. API management : an architect’s guide to developing and managing APIs
for your organization. Apress, New York, 2017.

11. W. B. Frakes and Kyo Kang. Software reuse research: status and future. IEEE
Transactions on Software Engineering, 31(7):529–536, July 2005.

12. Hidetoshi Kambe, Shinji Kitagami, Jun Sawamoto, Hiroyasu Mitsui, and Hisao
Koizumi. A method for analyzing and visualizing intermodule relations to support
the reuse-based embedded software development. 100(7):18–31.

13. Selim Kebir, Abdelhak-Djamel Seriai, Sylvain Chardigny, and Allaoua Chaoui.
Quality-centric approach for software component identification from object-
oriented code. In Software Architecture (WICSA) and European Conference on
Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on,
pages 181–190. IEEE, 2012.

14. Kurt Kosanke and R Martin. Enterprise and business processes-how to interoper-
ate? the standards view. In Workshop on Standards for Interoperability, 2008.

15. Patrice Muller, Shaan Devnani, Jenna Julius, Dimitri Gagliardi, Chiara Marzocchi,
and Editor Karen Hope. ANNUAL REPORT ON EUROPEAN SMEs 2015/2016
SME recovery continues.

16. K Patidar, R Gupta, and Gajendra Singh Chandel. Coupling and cohesion mea-
sures in object oriented programming. International Journal of Advanced Research
in Computer Science and Software Engineering, 3(3), 2013.

17. Maryam Razavian and Patricia Lago. A systematic literature review on soa mi-
gration. Journal of Software: Evolution and Process, 27(5):337–372, 2015. JSME-
14-0028.R2.

18. Anas Shatnawi, Abdelhak-Djamel Seriai, Houari Sahraoui, and Zakarea Alshara.
Reverse engineering reusable software components from object-oriented apis. J.
Syst. Softw., 131(C):442–460, September 2017.

19. M. F. Zibran, F. Z. Eishita, and C. K. Roy. Useful, but usable? factors affecting
the usability of apis. In 2011 18th Working Conference on Reverse Engineering,
pages 151–155, Oct 2011.


