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We study theoretically the concept of homogenization in optics using an ensemble of randomly distributed
resonant stationary atoms with density ρ. The ensemble is dense enough for the usual condition for
homogenization, viz. ρλ3 � 1, to be reached. Introducing the coherent and incoherent scattered powers, we
define two criteria to define the homogenization regime. We find that when the excitation field is tuned in a broad
frequency range around the resonance, neither of the criteria for homogenization is fulfilled, meaning that the
condition ρλ3 � 1 is not sufficient to characterize the homogenized regime around the atomic resonance. We
interpret these results as a consequence of the light-induced dipole-dipole interactions between the atoms, which
implies a description of scattering in terms of collective modes rather than as a sequence of individual scattering
events. Finally, we show that, although homogenization can never be reached for a dense ensemble of randomly
positioned laser-cooled atoms around resonance, it becomes possible if one introduces spatial correlations in the
positions of the atoms or nonradiative losses, such as would be the case for organic molecules or quantum dots
coupled to a phonon bath.

DOI: 10.1103/PhysRevA.96.013825

I. INTRODUCTION

Homogenization is the procedure by which one replaces
a discrete distribution of particles by a continuous density
distribution. In the framework of the electrodynamics of
continuous media, the standard procedure of homogeniza-
tion, described in many textbooks [1–3], supposes that the
interparticle distance ρ− 1

3 (ρ is the spatial density) is much
smaller than the characteristic length scale associated with
the phenomenon under study, usually the propagation of a
wave through the medium. The characteristic scale being
the wavelength λ, the condition for homogenization is thus
assumed to be ρλ3 � 1. When this condition is satisfied, one
derives the macroscopic properties of an ensemble of scatterers
from the microscopic properties of each of them by means
of an effective medium theory. In the context of optics, for
example, several models exist that relate the (microscopic)
atomic polarizability [4] or the dielectric constants of spherical
nanoparticles in a composite dielectric random medium [5–10]
to the (macroscopic or effective) dielectric constant of the
system.

To derive criteria for homogenization in optics, one usually
decomposes the electric field scattered by an ensemble of scat-
terers (e.g., atoms) into coherent and incoherent (or diffuse)
components, 〈Esc〉 and δEsc, respectively: Esc = 〈Esc〉 + δEsc,
where 〈δEsc〉 = 0. Here 〈.〉 denotes an ensemble average over
many different spatial realizations. The coherent (or average)
monochromatic field 〈Esc〉 follows the Helmholtz equation
with an effective (i.e., ensemble-averaged) dielectric constant
εeff(ω,r) describing the medium [4,7–9]:

∇ × ∇ × 〈Esc〉 − εeff(ω,r)
ω2

c2
〈Esc〉 = 0. (1)

Importantly, one can always associate an effective dielectric
constant (and therefore an effective index of refraction) to
this coherent component, no matter whether the medium is
homogeneous or not, and even in the presence of a strong inco-
herent field. The incoherent scattered field δEsc originates from
the random positions of the scatterers in the ensemble. These

two components lead to the coherent and incoherent scattered
powers, Pcoh and Pincoh. Daily life experience indicates that a
gas of atoms or molecules, such as the atmosphere, scatters
light efficiently away from the direction of the incoming light
beam. However, most of the scattered power is coherent and
in the direction of the incoming beam. This suggests a first,
and weak criterion for homogenization: Pincoh/Pcoh → 0 when
the density of scatterers increases. In this case, the question is
therefore whether the effective dielectric constant is enough to
describe accurately the propagation of light in the ensemble
of scatterers, since coherent light scattering dominates. A
second, stronger criterion comes from the observation that pure
water or an amorphous glass, which are dense materials with
ρλ3 � 1, do not scatter light: there is therefore no incoherent
scattering (Pincoh = 0) in this homogenized situation. From
these examples, it would seem that the condition ρλ3 � 1
leads to homogenization according to at least one of the two
criteria described above.

In this work, however, we show theoretically that this
condition ρλ3 � 1 is not sufficient in the case of dense ensem-
bles of randomly positioned resonant scatterers. Our study is
motivated by recent experimental developments, which now
make it possible to prepare ensembles of resonant scatterers
in volumes comparable or smaller than the wavelength of an
optical transition, such as ensembles of quantum dots [11,12],
clouds of laser-cooled atoms [13,14], or hot atomic vapors in
cells with nanometer thickness [15,16]. In particular, we have
recently measured both the incoherent [13] and coherent [14]
response of a wavelength-sized cold atomic cloud for which
the atomic density can be varied. The main result of the present
work is the finding that this ensemble of atoms submitted to a
near-resonant light field can never be homogenized according
to both criteria presented above. The situation is all the more
striking that, as we have shown in a previous work [17], the
effective index of refraction of the cloud can be as large as 2, a
value even larger than for many condensed matter systems
for which homogenization has been extensively proven to
work. We show that the origin of this feature lies in the
light-induced dipolar interactions between the atoms that are
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very strong when the light is tuned near-resonance. They lead
to a collective response of the medium that has to be described
in terms of modes rather than in terms of individual atoms.

The paper is organized as follows. We first detail the model
used to calculate the coherent and incoherent scattered powers.
In Sec. III, we apply our formalism to the far-off resonance
case and check that the weak criterion for homogenization
applies. Section IV presents the transition from the far-off to
the near-resonant case and the fact that a dense cloud of laser-
cooled atoms can never be homogenized in the latter regime
according to both criteria. We then give a first interpretation
in terms of collective modes (Sec. V) and a second one,
which considers the cloud as an effective medium described
by a dielectric constant (Sec. VI). In Sec. VII, we discuss
the influence of correlations in the positions of the scatterers
and observe that they lead to a recovery of homogenization
according to the two criteria. Finally (Sec.VIII), we show
that introducing a nonradiative decay channel also leads to
a recovery of homogenization.

II. DESCRIPTION OF THE SYSTEM

We study theoretically the scattering of a plane wave
(frequency ω, wave vector k = ω/c = 2π/λ) from a disor-
dered, wavelength-size cloud of cold atoms, as illustrated in
Fig. 1. We idealize the experimental situation of our previous
works [13,14] by assimilating the cloud to a parallelepiped
with dimensions V = 4.8λ0 × 0.6λ0 × 0.6λ0, where λ0 =
780 nm is the resonance wavelength of the D2 transition
of rubidium-87 atoms used in the experiment. The atoms
are uniformly distributed (spatial density ρ = N/V ) and
modeled as pointlike and identical scatterers characterized by
an isotropic polarizability:

α(ω) = 3π	0/k3

ω0 − ω − i 	0+	nr
2

, (2)

with ω0 = 2πc/λ0 the transition frequency, c the speed of
light in vacuum, 	0 and 	nr, respectively, the radiative and

4.8λ0

0.6λ0

Plane wave, ω

|Esc|2

|Esc|2

(a)

(

| Esc |2|δEsc|2

b)

FIG. 1. (a) Scattering pattern |Esc|2 for a single realization of
a cloud of 450 atoms (volume 4.8λ0 × 0.6λ0 × 0.6λ0) illuminated
by a plane wave on resonance with the atomic transition (ω =
ω0). (b) Scattering pattern averaged over 100 realizations of the
distribution of atomic positions (N = 450,ω = ω0). The speckle
structure associated with the incoherent scattering 〈|δEsc|2〉 does not
show a preferred direction, while the forward direction is dominated
by the coherent scattering |〈Esc〉|2.

nonradiative decay rate (	0 = 2π × 6 MHz for Rb). When
	nr = 0, this polarizability model corresponds to a classical
J = 0 → J = 1 atom, where J is the angular momentum.1

This model can also include nonradiative decay channels
(	nr), as would be necessary if we were discussing, e.g.,
systems of quantum dots. However, unless stated differently,
we assume 	nr = 0, which is a good model for a cold
atomic gas. Finally, the scattering cross section is given by
σsc(ω) = k4|α(ω)|2/(6π ) [1].

As we discuss dense atomic systems, i.e., ρ/k3 � 1, we
include the resonant dipole-dipole interactions between the
atoms. As explained, e.g., in Refs. [13,14,17], the dipole pj

of atom j is driven by the laser field and the field radiated
by all the other atoms. This approach leads to a set of
coupled dipole equations, in steady-state: pj = ε0α(ELj +
μ0ω

2 ∑
i �=j [G(ri − rj)]pi), with ELj the field of the laser at

the position of atom j . Here, the Green’s tensor [G(ri − rj)]
describes the resonant dipole-dipole interactions between
atoms i and j , including the 1/r, 1/r2, and 1/r3 terms. As
we deal with a random spatial distribution of atoms, we use
the following stochastic procedure: for a given realization of
the atomic distribution, we solve the set of coupled equations
to get the dipole moment of each atom. We then calculate the
scattered electric field Esc(r) = μ0ω

2 ∑
i[G(r − ri)]pi for this

particular realization (for more details, see Refs. [13,14,17]).
After few hundreds of realizations for which the atomic
positions are changed according to a uniform probability
distribution, we calculate the scattered field Esc, the coherent,
ensemble-average field 〈Esc〉, and the incoherent, fluctuating
field δEsc = Esc − 〈Esc〉. The ensemble-averaged scattering
pattern is then decomposed in its coherent and incoherent parts:
〈|Esc|2〉 = |〈Esc〉|2 + 〈|δEsc|2〉. The coherent scattering pattern
corresponds to the diffraction pattern of a homogeneous object
described by an effective dielectric constant and the incoherent
scattering pattern is a quasi-isotropic speckle originating from
the random positions of the atoms in the cloud (see Fig. 1).

To characterize quantitatively the level of homogenization,
we define the integrated scattered powers corresponding,
respectively, to the ensemble-averaged fields |〈Esc〉|2 and
〈|δEsc|2〉 evaluated on a spherical surface � in the far field:

Pcoh = ε0c

2

∮
�

|〈Esc〉|2dS (3)

and

Pincoh = ε0c

2

∮
�

〈|δEsc|2〉dS. (4)

The total scattered power is then Ptot = Pcoh + Pincoh. It does
not include the incident field.

III. FAR-OFF RESONANCE LIGHT SCATTERING

Figure 2 presents the coherent and incoherent scattered
powers as a function of the number of atoms N inside the
fixed volume of the cloud, normalized by the scattered power
of a single atom, for different detunings � = ω − ω0 of the

1Here we neglect the complex internal structure of the rubidium
atom used in the experiment.
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FIG. 2. Coherent (plain symbols) and incoherent (open symbols)
scattered powers calculated for a linearly polarized incident plane
wave propagating along the long axis of the cloud for various
frequency detunings � = ω − ω0, as a function of the number of
atoms N . All powers are normalized to the power scattered by a
single atom at the same detuning. The plain (dashed) line connects the
values of the coherent (incoherent) power for � = −104	0. Circles,
� = −500	0; diamonds, � = −5	0; squares, � = 0.

incoming plane wave with respect to the atomic transition.
This figure allows us to explore the transition between far-off
to near-resonance scattering.

When the laser is very far-off resonance (� = −104	0), we
observe the scalings Pincoh ∝ N and Pcoh ∝ N2. As is recalled
in Appendix A, this result is expected as the wavelength-size
atomic cloud is in the single scattering regime [18]: the mean
free path sc = 1/[ρσsc(ω)] = 3 m for N = 450 atoms is much
larger than the size of the atomic cloud. In this regime of
large detuning, the weak criterion for homogenization applies,
as Pincoh/Pcoh ∝ 1/N → 0 when N increases. We note from
Fig. 2 that the cloud enters the homogenization regime for
N � 20, i.e., ρλ3 > 1.

The fact that, in the single scattering limit, Pincoh ∝ N

is extensively used to calibrate the number of atoms in a
cloud of, e.g., cold atoms in experiments on laser cooling
or quantum degenerate gases [19]. It is also common in these
experiments to measure the index of refraction of the atomic
sample by measuring the coherent optical response of the cloud
using, e.g., absorption or phase contrast imaging. This again
emphasizes the fact that one can always define an index of
refraction (or a dielectric constant) to characterize the coherent
response of the cloud, even in the presence of incoherent
scattering.

IV. FROM FAR-OFF TO NEAR-RESONANCE
SCATTERING: FAILURE OF HOMOGENIZATION

Coming back to Fig. 2, we observe that when the detuning
gets closer to resonance, the scaling laws for both the coherent

FIG. 3. Total scattered power for a single realization (red line)
of a cloud of N = 450 atoms, together with the ensemble averaged
coherent (dashed blue line), incoherent (dotted black line), and total
(thick black line) scattered powers. All quantities are normalized to
the power scattered by a single atom at resonance.

and incoherent scattering as a function of the atom number are
strongly modified with respect to the far-off resonance case.

When � = −500	0, the coherent power still follows
Pcoh ∝ N2. However, and quite unexpectedly, the incoherent
power also features the same N2 dependence for N � 30, de-
spite the fact that the cloud still operates in the single-scattering
limit (sc = 3 mm for N = 1000). When the detuning is close
to resonance (� = −5	0), the coherent and incoherent powers
are nearly identical for N � 30 and saturate when N � 100.
Finally, at resonance (� = 0), in stark contrast with the
off-resonance scattering case, the two powers become rapidly
independent of N and saturate to the approximately same
value when the number of atoms increases. This saturation
of both the incoherent and coherent scattered powers was
actually observed in our recent experimental works [13,14],
although there we could only measure a fraction of the
powers in a given solid angle. As a consequence, as far as
the homogenization of the ensemble of atoms is concerned,
neither the weak (Pincoh/Pcoh → 0) nor the strong criterion
(Pincoh = 0) apply for detunings in the range |�/	0| � 500,
although the condition ρλ3 � 1 is fulfilled. It thus appears
that a dense cloud of cold atoms can never be homogenized
in a broad frequency range around the resonance! In other
words: a dense cloud of cold atoms keeps scattering a lot of
incoherent light, and homogenization is reached very far from
resonance, and only according to the weak criterion.

Before we give a consistent interpretation of this fact in the
next sections, we further explore the resonant case. Figure 1(b)
shows the ensemble-averaged scattering pattern of the cloud.
We observe that the amplitude of the speckle is very low in
the forward direction compared to the coherent scattering. In
other directions, incoherent scattering dominates. From the
figure, the coherent scattered power seems to dominate the
total power. However, as it is scattered in a limited solid angle
as opposed to the incoherent power, after integration over all
directions it turns out that the coherent and incoherent powers
have similar values in our case (see Fig. 2).

Finally, we calculate the powers scattered coherently and
incoherently as a function of the detuning of the laser, near the
atomic resonance. We plot in Fig. 3 four curves corresponding
to (1) the ensemble-averaged coherent scattered light, (2) the
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ensemble-averaged incoherent scattered light, (3) the sum
of the ensemble-averaged coherent and incoherent scattered
light, and (4) the scattered light for a single realization of the
distribution of atoms in the cloud. First, we observe that the line
shapes are significantly different from a Lorentzian, contrary
to what they would be in the single scattering regime. Second,
the coherent and incoherent powers exhibit similar shapes,
in particular a double structure with a peak for a negative
detuning.

All the features presented in this section indicate that
the interpretation of scattering as a sequence of individual
scattering events breaks down in a broad frequency range
around resonance, despite the fact that for all the atom numbers
used in this work, the mean-free path sc is always at least 10
times larger than the cloud largest size, even on resonance.
We would otherwise observe a Lorentzian line shape only.
This emphasizes that the definition of the mean free path by
sc = 1/[ρσsc(ω)] is not appropriate to describe the scattering
of light in our situation. Instead, the correct length scale is
associated with the decay of the field in the medium and is
given by 1/(n′′k), with n′′ the imaginary part of the effective
refractive index. As n′′ reaches values as high as 2 [17], the
length scale is 100 nm, smaller than the size of the cloud.

In the next two sections, we interpret the above observations
using two different, but complementary points of view.

V. INTERPRETATION IN TERMS
OF COLLECTIVE MODES

As discussed by many authors (for recent works, see,
e.g., Refs. [17,20–30]), the coupling between atoms resulting
from the light-induced dipole-dipole interaction leads to a set
of collective modes β of the atomic dipoles. These modes
are eigenstates of the set of coupled dipole equations. Each
of these 3N , nonorthogonal modes has its own (complex)
eigenfrequency ω̃β = ω0 + �β − i

	β

2 , with �β the collective
shift and 	β the collective decay rate. Some of these modes,
featuring 	β < 	0, are subradiant, while others with 	β > 	0

are superradiant. In Ref. [17], we studied in detail the modes
corresponding to the situation analyzed here and depicted in
Fig. 1. We found that the modes fall in three categories (see
Fig. 2 of Ref. [17]). The first one consists of modes with
collective linewidth 	β ≈ 2	0 (superradiant) and 	β 
 	0

(subradiant). These so-called dimer modes are made of pairs
of atoms and have large collective frequency shifts �β ∼
	0/(kr)3, with r the interatomic distance. The second category
consists of a few polaritonic modes that have four key features:
(i) all atoms have significant contributions to the modes, (ii)
they are robust against disorder (i.e., they depend on density
and geometry but not on the precise positions of the scatterers),
(iii) they are superradiant with 	β � 10	0, and (iv) although
representing less than 1% of the total number of modes, we
calculated that they contribute for a large (>50%) fraction of
the coherent scattering of the cloud. Finally, the last category
consists of modes with the excitation delocalized over many
atoms, but with no regular spatial structure. They can be super-
or subradiant and their frequency shift is on the order of a few
	0.

We can now interpret the transition between far-off to near-
resonance scattering observed in Fig. 2 in terms of collective

modes. First, when the incoming light is very far-detuned,
with |�| larger than the largest shift corresponding to the pair
of closest atoms in the cloud (see Fig. 2 of Ref. [17]), the
light cannot excite any mode. In this regime, the cloud scatters
the light as a collection of independent atoms, with the usual
scaling laws Pincoh ∝ N and Pcoh ∝ N2.

When the detuning becomes small enough that dimer modes
are excited (see Fig. 2 of Ref. [17]), the incoherent scattering
is dominated by the scattering from the superradiant pairs of
atoms, which is essentially isotropic for atoms closer than 1/k.
The incoherent scattered power is, therefore, proportional to
the number of excited pairs, hence ∝N2. As a consequence,
a description in terms of dimer modes naturally leads to a
N2 scaling for the incoherent scattered power. A semiclassical
model, presented in Appendix B, predicts a critical number
of atoms Nc ≈ 25, where the transition between scattering
by individual atoms to scattering by dimers occurs and is in
good agreement with the value observed in Fig. 2. As for
the coherent power, we show in Appendix B that it is still
dominated by the coherent scattering from individual atoms,
with a negligible contribution from the dimers. Therefore, the
coherent power varies as N2 as in the far-off resonance case
(see Sec. III and Appendix A).

Finally, when the detuning becomes very close to reso-
nance, many delocalized (nonpolaritonic) modes are excited.
Incoherent scattering comes from many of these modes, which
have no regular spatial structure. In our intermediate regime
V ∼ λ3, we could not derive any simple scaling law for
the incoherent scattering as a function of the atom number.
However, qualitatively, the saturation of the incoherent power
observed in Fig. 2 indicates that, when the number of atoms
increases beyond ρ/k3 � 1, the product of the number of
modes excited in a bandwidth of the order of 	0 by the power
they radiate has to become independent of the number of
atoms. As for the coherent scattered power, few polaritonic
modes have important contributions. Their collective shifts
and widths are mainly set by the geometry of the cloud and
hardly depend on the number of atoms [17], leading to a
saturation of the coherent power. Finally, we have checked
that the saturation of the coherent and incoherent powers
at comparable values (see Fig. 2) is a consequence of the
particular dimensions of cloud.

VI. INTERPRETATION IN TERMS
OF EFFECTIVE MEDIUM

In this second approach, we forget about the discrete
atomic distribution and consider instead the cloud as an
effective homogeneous medium with a dielectric constant
εeff(ω) = ε′

eff(ω) + iε′′
eff(ω). In this macroscopic description,

the absorbed power is given by the imaginary part of the
dielectric constant and the macroscopic, ensemble-averaged
field 〈E(r)〉 inside the medium [1]:

P macro
abs =

∫
V

1

2
Re[〈J〉 · 〈E∗〉] dV

= ω

2
ε0ε

′′
eff(ω)

∫
V

|〈E(r)〉|2 dV, (5)
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with 〈J〉 = −iωε0[εeff(ω) − 1]〈E〉. A detailed balance derived
in Appendix C shows that the total power Pext taken from the
incident field is the sum of the power absorbed by the cloud
and of the scattered power P macro

sc , i.e., Pext = P macro
abs + P macro

sc .
Now, in a microscopic description, this same power Pext

is also the sum of the coherent and incoherent scattered
powers, defined after ensemble averaging by Eqs. (3) and (4):
Pext = Pcoh + Pincoh.2 Finally, the coherent scattered power
defined by Eq. (3) is the power scattered in the macroscopic
approach, Pcoh = P macro

sc , leading to the identification of the
absorbed power P macro

abs with the power Pincoh incoherently
scattered by the cloud, i.e.,

ε0c

2

∮
�

〈|δEsc|2〉 dS = ω

2
ε0ε

′′
eff(ω)

∫
V

|〈E(r)〉|2 dV. (6)

As a consequence, the homogenization criteria Pincoh = 0
requires that the imaginary part of the dielectric constant is
negligible.3

We can now discuss the behavior of the coherent and
incoherent scattered powers as a function of the detuning
shown in Fig. 3. As we studied in Ref. [17], once we know
the effective dielectric constant εeff(ω), we can calculate the
electric field inside the cloud considered as a continuous
medium. We find resonances for certain values of the frequency
ω, precisely corresponding to the polaritonic modes. When
hitting a resonance, the electric field 〈E〉 inside the medium
is large. Consequently, the scattered field, and therefore the
coherent power, is large as well. The variation of the coherent
scattered power shown in Fig. 3 thus reflects the mode structure
of the effective homogeneous particle equivalent to the cloud.
We have, for example, checked numerically that the frequency
corresponding to the maximum of the broad peak on the red
side of the resonance is proportional to the length of the cloud,
a signature of a shape resonance in an object of finite size.

The fact that the incoherent and coherent scattered powers
show similar behavior as a function of ω is a direct conse-
quence of Eq. (6): if ε′′

eff(ω) were independent of ω, then the
two powers would vary identically with ω. As we showed in
Ref. [17], ε′′

eff(ω) is in fact a broad, resonant function, and the
incoherent scattered power combines the shape resonance of
〈E〉 with the resonant behavior of ε′′

eff(ω).
Finally, we can also understand why the coherent and

incoherent scattered powers saturate when the number of
atoms increases. For large atom numbers, the cloud behaves
like a sharp object. The coherent scattering corresponds to the
diffraction pattern of this object [3,31] and is only dependent
on its shape.4 To understand why the incoherent power also

2We have assumed here that the atoms are elastic scatterers that do
not absorb light as, e.g., particles in China ink would.

3Care must be taken that the fact that we can describe the incoherent
power by the imaginary part of the effective (i.e., ensemble-averaged)
dielectric constant does not imply that the incoherent field itself is
described by an effective dielectric constant.

4As an example, the scattering cross section of an homogeneous
particle with a size larger than the wavelength of the scattered light
is twice the geometrical cross section perpendicular to the incoming
wave direction and is therefore independent of the number of atoms
in the particle.

saturates at large atom numbers, we rely on the expression of
the coherent power scattered by an object of volume V and
dielectric constant εeff(ω) [3]:

Pcoh = ε0ω
4

32π2c3
|εeff(ω) − 1|2 (7)

∣∣∣∣
∫

4π

d� er ×
∫

V

d3r′〈E(r′)〉 e−ik·r′
∣∣∣∣
2

,

with er the unit vector in a given scattering direction. If the
coherent scattered power saturates for large atom numbers,
as it should based on the diffraction argument above, this
formula indicates that the coherent field inside the object and
the dielectric constant must saturate. Therefore, according to
Eq. (6) the incoherent power must saturate as well.

VII. INFLUENCE OF THE CORRELATIONS
IN THE POSITIONS OF THE ATOMS

The impossibility to reach homogenization for an ensemble
of cold atoms presented in Fig. 2 makes us wonder if there
exists any resonant system that can reach the homogenization
regime. In this section, we show that a way to make this
ensemble of scatterers homogenized consists in introducing
spatial correlations in the positions of the atoms to reduce the
fluctuations of the spatial distribution [4,8,9]. We are guided
here by the well-known fact that a pure liquid scatters less
light than a gas, although being much denser: the presence
of position correlations in the liquid inhibits incoherent
scattering. Another situation is the transparency of the cornea,
which is due to spatial correlations [32].

Here we implement spatial correlations by introducing
a spherical exclusion volume with diameter d around each
scatterer.5 This diameter sets the minimum distance between
nearest-neighbor scatterers. Figure 4 presents the coherent and
incoherent scattered powers as a function of the diameter d of
the exclusion volume for N = 100 and various detunings. We
observe that for � ranging from −104	0 to ∼ −10	0, incoher-
ent light scattering is reduced by introducing spatial order in
the system, while the coherent scattering is weakly affected.
As a consequence, this procedure leads to homogenization
according to the stringent criterion Pincoh = 0. Qualitatively,
this suppression comes from the fact that the exclusion volume
thwarts the formation of dimer modes.

Closer to resonance, the behavior is more complex. For
detunings in the range −5 � �/	0 < 0, we observe an
increase of the coherent power, while the incoherent decreases.
At resonance (� = 0), coherent power still increases with d,
while the incoherent power remains approximatively constant.
These findings seem to indicate that the spatial correlations
lead to at least the weak homogenization criterion, with
a decrease of the ratio Pincoh/Pcoh. We could not explore
exclusion diameters larger than 0.2λ0, while maintaining the

5In this calculation, the number of atoms N is kept constant. If for
a given distribution we find that two atoms are distant by less than d ,
we draw a new configuration with the same number of atoms.
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FIG. 4. Influence of position correlations on incoherent (blue
open symbols) and coherent (red plain symbols) scattering calculated
for N = 100 as a function of the diameter d of the spherical
exclusion volume around each atom, for various detunings �. Circles,
� = −104	0; diamonds, � = −5	0; triangles, � = −2	0; squares,
� = 0.

number of atoms constant,6 and therefore could not check the
point when the stringent criterion starts to be valid.

VIII. EFFECT OF NONRADIATIVE LOSSES
ON NEAR-RESONANCE LIGHT SCATTERING

In this last section, we discuss the influence of nonradiative
losses on light scattering. We know that, for example, a
suspension of nonresonant absorbing particles, such as a
droplet of China ink consisting of a suspension of colloidal
carbon nanoparticles, does not scatter light if the absorption
cross section is much larger than the scattering cross section of
each particle. In this case, all the energy gets absorbed by the
particles, converted into heat, and scattering can be neglected.
Guided by this example of a nonresonant situation, we
introduce here nonradiative losses and study if homogenization
according to the strong criterion (Pincoh = 0) is reached in the
resonant case as well. Although this procedure would not apply
to a cold atomic ensemble, it would be relevant for ensembles
of, e.g., molecules or quantum dots coupled to phonons.

We report in Fig. 5 the coherent and incoherent powers
calculated for resonant light scattering for different values
of the ratio of the nonradiative loss rate 	nr relative to
the radiative loss rate 	0. We observe that as the amount
of nonradiative losses increases, the incoherent power gets
significantly reduced, whereas the coherent power is only
slightly affected.

This observation can be understood by using the col-
lective mode picture. By introducing nonradiative losses
characterized by the rate 	nr, the only change to the (com-
plex) eigenfrequency of a collective eigenmode β is to
replace its value ω̃β = ω0 + �β − i

	β

2 by ω̃β − i 	nr
2 . As a

consequence, the modes with radiative decay rates 	β <

	nr damp in a time 1/	nr, irrespective of their radiative
damping rate. Therefore, when 	nr > 	0, the subradiant modes

6When increasing the diameter d , the probability to find an exclusion
volume with only one atom becomes too small.

FIG. 5. Coherent (red plain circles) and incoherent (blue open
circles) scattered powers on resonance (� = 0) for N = 450 atoms
as a function of the non-radiative decay rate 	nr. All powers are
normalized by the power scattered by a single atom at resonance.

(	β < 	0) decay nonradiatively very quickly and therefore
hardly contribute to the scattering in steady state. As they
are in particular responsible for the incoherent scattering, this
one is suppressed. By contrast, light scattered by a polaritonic
(superradiant) mode is not affected by the nonradiative decay
as long as 	β > 	nr > 	0. These polaritonic modes lead to
coherent scattering. Finally, when the radiative decay rate of
the most superradiant mode gets smaller than 	nr, even the
coherent scattering is suppressed. Therefore, the introduction
of nonradiative losses appears as an efficient way to achieve
homogenization in the sense of suppressing incoherent light
scattering.

IX. CONCLUSION

As a conclusion, we have studied theoretically the concept
of homogenization in optics using an ensemble of resonant
scatterers dense enough for the usual condition for homog-
enization, viz. ρλ3 � 1, to be reached. We have introduced
two criteria to define the homogenization regime in terms of
incoherent and coherent scattered powers. When the excitation
field is tuned very far from the resonance of the scatterers,
we recovered the well-known scaling laws as a function of
the atom number N , leading to a suppression of the ratio
Pincoh/Pcoh at large N . However, when excited in a broad
frequency range around the resonance, we observed that
none of the criteria for homogenization apply, meaning that
the condition ρλ3 � 1 is not sufficient to characterize the
homogenized regime. We interpreted this result as an effect
of the dipole-dipole interactions between the atoms, which
implies a description of scattering in terms of collective modes
rather than as a sequence of individual scattering events.
Finally, we showed that, although homogenization can never
be reached for a dense ensemble of randomly positioned
laser-cooled atoms, it becomes possible if one introduces
spatial correlations in the positions of the atoms or nonradiative
losses, such as would be the case for organic molecules or
quantum dots coupled to a phonon bath.
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APPENDIX A: SCATTERING BY AN ENSEMBLE
OF ATOMS IN THE SINGLE-SCATTERING LIMIT

In this appendix, we summarize textbook arguments about
scattering from ensemble of scatterers in the single-scattering
limit, valid when the mean-free path sc = 1/[ρσsc(ω)] is much
larger than the size of the ensemble. The power scattered at
a distance r in the direction k by the ensemble of N atoms
placed at positions rj is then proportional to

|Esc(k)|2 = |E0,sc(k)|2 S(k − kL), (A1)

where kL is the wave vector of the incident plane wave, E0,sc(k)
the field scattered by a single atom, and

S(q) =
∣∣∣∣∣∣

N∑
j=1

eiq·rj

∣∣∣∣∣∣
2

(A2)

the structure factor of the cloud. The ensemble-average power
in the direction k = kL + q is then proportional to 〈S(q)〉 and,
thus,

〈|Esc(k)|2〉 ∝ N (1 − 〈eiq·(r−r′)〉) + N2〈eiq·(r−r′)〉. (A3)

Here, the average phase factor is given by

〈eiq·(r−r′)〉 =
∫

V

d3rd3r′P (r,r′)eiq·(r−r′), (A4)

with P (r,r′) the joint probability distribution to find a particle
at position r and r′. When the positions are not correlated,
P (r,r′) = ρ(r)ρ(r′)/N2, with ρ(r) the spatial density distri-
bution, and the term 〈eiq·(r−r′)〉 is the diffraction pattern of the
cloud:

〈eiq·(r−r′)〉 =
∣∣∣∣ 1

N

∫
V

d3rρ(r)eiq·r
∣∣∣∣
2

. (A5)

The N2 term in Eq. (A3) is the coherent component and
dominates in the solid angle corresponding to diffraction.
In the other directions, the power is proportional to N and
corresponds to the incoherent scattering. It is almost isotropic.

APPENDIX B: CONTRIBUTION OF THE DIMER MODES
TO INCOHERENT SCATTERING IN THE INTERMEDIATE

DETUNING REGIME

Here we derive a semiclassical model to calculate the
critical number of atoms Nc where the transition between
scattering by individual atoms to scattering by dimers occurs
(Sec. V). This model is inspired by the one used to calculate the
rate of light-assisted collisions in cold atomic samples [33,34].

As explained in Sec. V, in the intermediate detuning regime
the incoherent scattering is due to the superradiant pairs
of atoms. We first note that when two atoms are separated
by r 
 1/k, their interaction energy is dominated by the
dipolar (near-field) term: U (r) ∼ h̄	0/(kr)3. To estimate the
incoherent scattered power, we start by calculating the number
of excited pairs as follows: for a given detuning |�|, the light
is resonant with the excitation of a pair of atoms located
at a relative distance rex such that |�| ∼ 	0/(krex)3. The
number of excited dimers is then the product of the atom
number N with the number of atoms in a shell of radius
rex,(N/V )4πr2

ex�r , with V the cloud volume, N the atom
number, and �r the thickness of the shell. The latter one
is determined by writing that the collective width 2	0 of
a superradiant pair is U ′(rex)�r/h̄ = 3	0/(krex)3(�r/rex).
As a consequence, assuming that approximatively half the
dimers are superradiant, the number of superradiant pairs is
Np ∼ (N2/2)[8π/(3k3V )](	0/�)2. The power scattered by a
superradiant pair (decay rate 2	0, saturation intensity of the
dimer transition 2Isat, with Isat the atomic saturation intensity)
irradiated by a light with intensity I 
 Isat is Pdimer =
h̄ω0(2	0)I/(4Isat). Finally, the power scattered by a single
atom irradiated by the same light detuned by |�| with respect
to the atomic transition is P0 ≈ h̄ω0	0I/(2Isat)(	0/2�)2.
Combining the expressions above, we find the ratio of the total
incoherent power scattered by the cloud to the power scattered
by a single atom: Pincoh/P0 ∼ N2[16π/(3k3V )]. The critical
number of atoms Nc, where the transition between scattering
by individual atoms to scattering by dimers occurs, is thus
Nc ∼ 3k3V/(16π ). The transition point is thus predicted to
be independent of the detuning, in agreement with numerical
calculations performed for various detunings. Also, for our
parameters, Nc ≈ 25, in good agreement with the value
observed in Fig. 2, considering the simplicity of the model.

We now calculate the coherent power P dim
coh scattered by

the dimers and compare it to the coherent scattering due to
individual atoms P at

coh. This latter one is given by P at
coh =

N2P0 �/(4π ), as for the intermediate detunings, the cloud
is still in the single scattering regime. Here, �/(4π ) is the
solid angle of the diffraction pattern. The power coherently
scattered by the dimers is P dim

coh = N2
p Pdimer �/(4π ) as the

dimers are spread in a dilute way in the same volume as the
atoms. Finally, we get P dim

coh /P at
coh = [8π/(3k3V )]2N2(	0/�)2.

For N � 500 and |�|/	0 = 100–500, P dim
coh /P at

coh 
 1, thus
making the contribution of the dimers to coherent scattering
negligible.

APPENDIX C: DERIVATION OF THE DETAILED
BALANCE USED IN SEC.VI

Here we give an explicit derivation of Eq. (6). We consider
the ensemble (volume V ) of discrete atoms and a spherical
surface � with a radius r � 1/k. The conservation of energy
in steady-state state tells us that the flux of the time-averaged
Poyting vector through � compensates for the time-averaged
power dissipated by the current in the volume V :

1

2
Re

[∮
�

E × H∗ · dS +
∫

V

J · E∗ dV

]
= 0, (C1)
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with H = B/μ0 (non magnetic medium) and J the current
density in the ensemble. This expression is valid in a
microscopic model. We now decompose the fields into the
incoming component, the coherent scattered component and
the incoherent part: E = Ei + 〈Esc〉 + δEsc and H = Hi +
〈Hsc〉 + δHsc, with 〈.〉 denoting an ensemble average. We also
decompose the current density into an ensemble average and
a fluctuating part: J = 〈J〉 + δJ. As

∮
�

Ei × H∗
i · dS = 0, the

extinction power Pext taken from the incident field is, after
expansion and ensemble average,

Pext = −1

2
Re

[ ∮
�

(Ei × 〈H∗
sc〉 + 〈Esc〉 × H∗

i ) · dS
]

= −1

2
Re

[ ∮
�

〈Esc〉 × 〈H∗
sc〉 · dS +

∮
�

〈δEsc × δH∗
sc〉 · dS

+
∫

V

〈J〉 · 〈E∗〉 dV +
∫

V

〈δJ · δE∗〉 dV

]
, (C2)

with 〈E〉 = Ei + 〈Esc〉. For a cloud of cold atoms, no energy is
dissipated in the medium as all incident power is rescattered.

Therefore,∫
V

〈J · E∗〉 dV =
∫

V

〈δJ · δE∗〉 dV +
∫

V

〈J〉 · 〈E∗〉 dV = 0.

(C3)

In this case, Pext = Pcoh + Pincoh using the definitions of the
coherent [Eq. (3)] and incoherent [Eq. (4)] scattered powers.

Now, for the homogeneous medium with an effective
permittivity equivalent to the ensemble of atoms, δJ = 0,
δE = δEsc = 0, and δHsc = 0, and Eq. (C2) yields

Pext = −1

2
Re

[ ∮
�

(Ei × 〈H∗
sc〉 + 〈Esc〉 × H∗

i ) · dS
]

= 1

2
Re

[ ∮
�

〈Esc〉 × 〈H∗
sc〉 · dS +

∫
V

〈J〉 · 〈E∗〉 dV

]
.

(C4)

As Pcoh = 1
2 Re[

∮
�
〈Esc〉 × 〈H∗

sc〉 · dS], we get by identifica-
tion

Pincoh = 1

2
Re

[ ∫
V

〈J〉 · 〈E∗〉 dV

]
, (C5)

or equivalently, Pincoh = P macro
abs .
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