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Abstract

This paper addresses the formulation of adaptive morphological filters based on spatially-variant structuring ele-
ments. The adaptivity of these filters is achieved by modifying the shape and orientation of the structuring elements
according to a multiple orientation vector field. This vector field is provided by means of a bank of directional open-
ings which can take into account the possible multiple orientations of the contours in the image. After reviewing
and formalizing the definition of the spatially-variant dilation, erosion, opening and closing, the proposed structuring
elements are described. These spatially-variant structuring elements are based on ellipses which vary over the im-
age domain adapting locally their orientation according to the multiple orientation vector field and their shape (the
eccentricity of the ellipses) according to the distance to relevant contours of the objects. The proposed adaptive mor-
phological filters are used on gray-level images and are compared with spatially-invariant filters, with spatially-variant
filters based on a single orientation vector field, and with adaptive morphological bilateral filters. Results show that
the morphological filters based on a multiple orientation vector field are more adept at enhancing and preserving
structures which contains more than one orientation.

Keywords: Mathematical morphology, adaptive morphology, adaptive structuring elements, spatially-variant
structuring elements

1. Introduction

Mathematical morphology is a nonlinear image processing methodology useful for solving efficiently many image
analysis tasks [1]. From a mathematical point of view, it is based on two basic operators, dilation and erosion,
which correspond respectively to the convolution in the max-plus algebra and its dual convolution. More precisely,
in Euclidean (translation invariant) mathematical morphology, the pair of adjoint and dual operators dilation (sup-
convolution) ( f ⊕ b)(x) and erosion (inf-convolution) ( f 	 b)(x) of an image f : E ⊂ Rn → R = R ∪ {−∞,+∞} are
given by [2, 3]: {

δb( f )(x) = ( f ⊕ b)(x) = supy∈E { f (y) + b(y − x)} ,
εb( f )(x) = ( f 	 b)(x) = infy∈E { f (y) − b(y + x)} ,

(1)

where b : Rn → R is the structuring function which determines the effect of the operator. The structuring function
plays a similar role to the kernel in classical linear filtering using convolution. By allowing infinity values, the
further convention for ambiguous expressions should be considered: f (y) + b(x − y) = −∞ when f (y) = −∞ or
b(x − y) = −∞, and that f (y) − b(y + x) = +∞ when f (y) = +∞ or b(y + x) = −∞. We easily note that both are
invariant under translations (i.e., commute with the translation operator) in the spatial (“horizontal”) space E and in
the image intensity (“vertical”) space R, i.e.,

f (x) 7→ f(y,α)(x) = f (x − y) + α, (2)

with y ∈ E and α ∈ R, then
δb( f(y,α))(x) = δb( f )(x − y) + α. (3)
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The structuring function is typically a parametric family bt(x), where t > 0 is the scale parameter. In particular, the
canonical structuring function is the paraboloidal shape (i.e., square of the Euclidean distance) [4, 5]:

pt(x) = −
‖x‖2

2t
. (4)

Due to its properties of semigroup, dimension separability and invariance to transform domain, the structuring function
pt(x) plays a similar role to the Gaussian kernel in (linear) covolution-based filtering. The corresponding quadratic
dilation and erosion by pt(x) are related to the following initial-value Hamilton–Jacobi first-order partial differential
equation (Hamilton-Jacobi PDE) [6, 7]: 

∂u
∂t = ± 1

2 ‖∇u‖2, x ∈ Rn, t > 0

u(x, 0) = f (x), x ∈ Rn
(5)

This Hamilton–Jacobi PDE does not admit classic (i.e., everywhere differentiable) solutions but can be studied in the
framework of the theory of viscosity solutions [8]. It is well known that the solutions of the Cauchy problem (5) are
given by the so-called Hopf–Lax–Oleinik formulas [9], for + sign and − sign, respectively:

u(x, t) = sup
y∈Rn

{
f (y) −

‖x − y‖2

2t

}
= ( f ⊕ pt)(x) (for + sign), (6)

u(x, t) = inf
y∈Rn

{
f (y) +

‖x − y‖2

2t

}
= ( f 	 pt)(x) (for − sign). (7)

Such PDE model is fundamental to continuous mathematical morphology, and research on numerical schema for the
solution of spatially-variant counterparts of (5) is still active [10].

The theory of morphological filtering is based on the opening ( f ◦ b)(x) and closing ( f • b)(x) operators, obtained
respectively by the composition product of erosion-dilation and dilation-erosion using the same structurig function,
i.e., {

γb( f )(x) = ( f ◦ b)(x) = (( f 	 b) ⊕ b) (x) = supz∈E infy∈E { f (y) − b(y − z) + b(z − x)} ,
ϕb( f )(x) = ( f • b)(x) = (( f ⊕ b) 	 b) (x) = infz∈E supy∈E { f (y) + b(z − y) − b(x − z)} . (8)

In order to have a better insight of the effect of the opening and the closing of a function, let us rewrite ( f ◦ b)(x) as
follows:

γb( f ) =
∨{

b(y,α) | (y, α) ∈ E × R, b(y,α) ≤ f
}
, (9)

where
∨

denotes the supremum. Therefore, in the product space E × R the subgraph of the opening is generated by
the upper envelope of the horizontally and vertically translated shape function b(x − y) + α under the function f . In
other words, function ( f ◦ b)(x) can be seen as the supremum of the invariants parts of f under-swept by b. Regarding
the closing ( f • b)(x), a similar geometric dual interpretation is obtained:

ϕb( f ) =
∧{

b̌(y,α) | (y, α) ∈ E × R, b̌(y,α) ≥ f
}
, (10)

where
∧

denotes the infimum and b̌(x) = −b(−x). This expression corresponds to the invariant parts of f over-swept
by the horizontally and vertically symmetric structuring function b̌. From (9), it is straightforward to see that the
opening is (i) increasing, (ii) idempotent and (iii) anti-extensive, i.e., ∀x, (i) f (x) ≤ g(x) ⇒ γb( f )(x) ≤ γb(g)(x); (ii)
γb (γb( f )) = γb( f ); and (iii) γb( f )(x) ≤ f (x). From (10), the closing is increasing and idempotent, but being extensive:
ϕb( f )(x) ≥ f (x), ∀x. More complex filters can be obtained by composition of openings and closings [2, 3].

At this point, it could be interesting for a general reader to compare these morphological operators to the most
extended family of filters based on the standard convolution of a function f by a translation-invariant kernel k:

( f ∗ k)(x) =

∫
E

f (y)k(y − x)dy, (11)
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and in particular, to the case of canonical kernel in linear filtering, the so-called Gaussian kernel at scale t:

( f ∗ gt)(x) = C
∫

E
f (y) exp

(
−
‖x − y‖2

2t

)
dy, C = (2πt)−n/2 . (12)

One can easily identify that the quadratic dilation (resp. erosion) is just a convolution in a max-plus (resp. min-minus)
algebra instead of the plus-times algebra, and pt(x) is, up to the constant C, just the logarithm of gt(x). However, we
point out that the parallelism with the quadratic opening is more relevant:

( f ◦ pt)(x) =
∨

y∈E,α∈R

{
−
‖x − y‖2

2t
+ α : −

‖x − y‖2

2t
+ α ≤ f

}
. (13)

Thus, the standard regularization of the function by a Gaussian kernel weighted-average in ( f ∗ gt) is replaced in
( f ◦ pt)(x) by a maximal quadratic under-regularization, or an minimal over-regularization in ( f • pt).

The most commonly studied framework, which additionally presents better properties of invariance, is based on
flat structuring functions, called structuring elements. More precisely, let B be a Boolean set defined at the origin, i.e.,
B ⊆ E or B ∈ P(E), which defines the “shape” of the structuring element, the associated structuring function is given
by

b(x) =

{
0 if x ∈ B,
−∞ if x ∈ Bc,

(14)

where Bc is the complement set of B in P(E). Hence, the flat dilation ( f ⊕ B) and flat erosion ( f 	 B) can be computed
respectively by the moving local maxima and minima filters, i.e.,{

δB( f )(x) = ( f ⊕ B)(x) = supy∈B { f (x − y)} =
∨

y∈B f (x − y),
εB( f )(x) = ( f 	 B)(x) = infy∈B { f (x + y)} =

∧
y∈B f (x + y). (15)

A detailed presentation of the principles and applications of morphological image analysis is provided in [1]. Recently,
in [11], the state of the art in mathematical morphology is exposed in a didactic fashion, with original and novel
content.

Traditionally, structuring functions (resp. structuring elements) have been space translation-invariant, applying the
function b (or the same set B, i.e., same shape and orientation) in all pixels of the image. In the last years, the notion
of adaptive morphological operators [12] based on using adaptive structuring elements, which change their shape
and orientation over the space E, according to the local image features, have been proposed. In [13] an overview of
adaptive morphology is detailed, and in [14] a complementary overview is presented as well as the latest developments
and a brief history of adaptive mathematical morphology.

As pointed out in [14], there are two important aspects of adaptive mathematical morphology to address: (1) how
to construct adaptive structuring elements which are suitable for the image analysis task, and (2) how to properly
define morphological operators with adaptive structuring elements. Among the methods of adaptive morphology,
those based on an orientation vector field to adapt the shape and orientation of structuring elements show good ability
to preserve the structures of image. The approach followed in this work for constructing the proposed adaptive
morphological operators is therefore based on adaptivity with respect to “the spatial neighborhood position” or “gray
level image values”, which is referred as input-adaptive mathematical morphology by Roerdink [12]. This category
of adaptiveness is defined as adaptability with respect to the image content, i.e. the position in the image domain as
well as values in the image range. Well founded examples of input-adaptive processing are those based on bilateral
morphological operators [15].

There are several alternative formulations for adaptive morphological operators. Adaptive morphological opera-
tors can be defined using the notion of impulse functions [16], without explicit use of the adjunction property and then
the morphological opening and closing are computed directly without resorting to compositions of the erosion and
dilation, which corresponds just to spatially-variant counterpart of the opening (9). Here we adopt another formulation
based on the composition of adjoint operators in a quite general setting and which is easily used in our case.

In this work, the adaptive structuring elements change their shape and orientation according to the edges of the
objects contained in the image by means of an orientation vector field. The orientation vector field is defined in
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Figure 1: Single orientation vector fields (SOVF): a) image gradient, b) average squared gradient (ASG) [19], c) average squared gradient vector
flow (ASGVF) [20].

(a) Single orientation vector field (b) Multiple orientation vector field

Figure 2: Comparison of orientation vector fields considering (a) a single orientation or (b) multiple orientations at each pixel. The single orientation
vector field has been obtained by the ASGVF method [20] whereas the multiple orientation vector field has been obtained by the method described
in Section 2.1.

all pixels of the image and can provide only one orientation at each pixel (single orientation estimation methods)
or the main orientations existing at that pixel (multiple orientation estimation methods). The first group of methods
shows excellent performance in scenarios where there is only one dominant orientation but does not consider that
a pixel may have associated several predominant orientations, as crossing lines (X-junction), corners (L-junctions)
and junctions (Y-junctions) [17]. These methods are usually based on the image gradient and provide the orientation
by averaging its values. Some of these methods are, e.g., the local structure tensor (LST) [17], principal component
analysis (PCA) [18], the average squared gradient (ASG) [19] and its regularization, the average squared gradient
vector flow (ASGVF) [20]. For sake of clarity, some of them are shown in Fig.1. Note that the LST method, PCA
method and the ASG method provide equivalent single orientation vector fields [21].

The second group of orientation estimation methods considers more than one orientation existing at each pixel.
These methods are mainly based on a bank of filters, see, e.g. [22, 23, 24]. A visual comparison between single
orientation and multiple orientation estimation method can be observed in Fig.2. It is important to note that the
orientation provided by single orientation estimation methods is the local average of the orientations existing at each
pixel of the image. On the other hand, multiple orientation estimation methods deal independently each one of the
existing orientations, since these methods are more complex and can model this situation.

The aim of this paper is to provide adaptive morphological filters whose structuring elements are spatially-variant
based on the information given by a multiple orientation vector field. To this end, the paper is organized as follows:
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after this introduction, Section 2 contains the theoretical part of the paper. Firstly, in Section 2.1 the proposed frame-
work to estimate multiple orientations is detailed. Then, in Section 2.2, spatially-variant morphological operators are
formulated in the general case, and in Section 2.3, when flat adaptive structuring elements are used. Later, Section 2.4
addresses the definition of the spatially-variant adaptive structuring elements proposed in this work. We also formulate
the corresponding metric structuring function and the Hamilton–Jacobi PDE associated to those operators. Results
of the proposed filters are shown in Section 3, as well as the comparison with morphological bilateral operators and
filters based on a single orientation vector field. Finally, Section 4 closes the paper with the conclusions.

2. Methodology

2.1. Multiple orientation estimation framework

The orientation vector field considered in this work is based on a decomposition of the information of the contours
by a bank of orientated linear openings, as shown in Fig.3. Let f (x) : E → R be a gray-level image, where the support
space is E ⊂ Z2 and the pixel coordinates are given by x ∈ E. The edges of the objects in f (x) are provided in g(x) by
an edge detector method (e.g. thresholded gradient [25] or Canny method [26]).

The contours are then decomposed by means of a bank of filters. In our approach, these filters are directional
openings γLθi ,l [1]. The directional opening of g(x) by a linear and symmetric structuring element (SE) of length l and
direction θi, Lθi,l, is defined as the directional erosion of g by Lθi,l followed by the directional dilation with the same
flat structuring element:

γLθi ,l (g)(x) = δLθi ,l
(
εLθi ,l (g)

)
(x), (16)

where the definitions of the directional erosion and dilation of f by Lθi,l are, respectively,

εLθi ,l ( f )(x) =
∧

h∈Lθi ,l
{ f (x + h)} , (17)

δLθi ,l ( f )(x) =
∨

h∈Lθi ,l
{ f (x − h)} . (18)

The proposed orientation model is based on a decomposition of the contour information by families of linear openings,
{γLθi ,l }i∈I , according to a particular discretization of the orientation space {θi}i∈I . In the next step of the proposed
method, a filtering is performed at each one of the directional openings (depicted as Hσ in Figure 3). The filtering
extends the orientation information and reduces angle mismatches due to noise. The kernel Hσ is the sampling of a
Gaussian low-pass filter, where σ is the spatial standard deviation of the filter.

Once the directional openings have been filtered, the directional signature at pixel x is defined as the gathering of
all responses g̃θi (x), i.e.,

sx;l(i) = g̃θi (x), (19)

providing at each pixel an unidimensional signal over the discrete angles θi. Then, in order to determine its peaks,
sx;l(i) is interpolated using cubic b-splines [27]:

ŝx;l(θ) =

N∑
i=1

sx;l(i) b3(θ − θi), (20)

ŝx;l(θ) becoming a continuous and differentiable signal and θ being a continuous variable denoting the angle. Note
that we are interested in the orientation of the contours and not in the direction, this is achieved by the symmetry
of the orientated structuring elements used in the openings, consequently ŝx;l(θ) is a periodic signal, whose period
is 180 degrees. The peaks of ŝx;l(θ) are found by searching the angles θp where the first derivative equals zero and
checking that the second derivative is negative at these angles. Only those angles θp whose peak value is greater than a
given threshold will be considered. These maxima correspond to the multiple orientations existing at pixel x. Finally,
collecting all the orientations estimated at all the pixels in the image provides the multidimensional vector field ~θ(x).

Figure 4 shows the images and signals involved in the multiple orientation estimation framework. In this visual
example, the length of the orientated linear structuring element is l = 9. When dealing with discrete images, it is
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Figure 3: Block diagram of the multiple orientation estimation framework.

important to remember the effects of discretization. As described in [20], the angular resolution of a structuring
element of length l is ∆θ = 90

l−1 degrees, therefore the angles that can be used are θi = i ∆θ, i ∈ I = [0, N − 1], with
N = 2(l − 1). It is important to remark that a long structuring element allows for a larger angular resolution (i.e.,
more directions) but the structures to be detected have to be bigger. On the other hand, a smaller structuring element
offers fewer directions but it allows get into small details in the image. In this example, the number of branches in the
bank filter is N = 16, the angular resolution is ∆θ = 11.25 degrees and the spatial standard deviation of the Gaussian
low-pass filter is σ = 5. Fig. 4(z)-Fig.4(ab) show the directional signature for three selected pixels in Fig. 4(a), where
the detected maxima in the directional signature correspond to the multiple orientations existing at those pixels.

2.2. Abstract formulation for spatially-variant morphological operators

As discussed above, morphological operators are classically defined for images supported on Euclidean spaces.
Recent works have extended mathematical morphology for real valued images whose support space is a Riemannian
manifold [28], or more generally, a length space [29, 30]. Let us introduce a formulation which is compatible with
Euclidean, Riemannian and length-space settings as well as with the adaptive approach of structuring elements. This
abstract setting is based on the theory max-plus mathematics (also known as idempotent analysis [31, 32, 33]).

Metric Maslov measure space. The theoretical foundations of Maslov idempotent measure theory [32] are based
on replacing in the structural axioms of probability theory the role of the classical semiring S(+,×) = (R+,+,×, 0, 1,≤)
of positive real numbers by the idempotent semiring: S(max,+) = (R̄,max,+,−∞, 0,≤). In this context, a change of the
measure involves a consistent counterpart to the standard probability theory.

Let (X, d) be a (Hausdorff topological) metric space and letm be a Maslov idempotent measure on X, i.e., mapping
from X in the max-plus semiring such that for every function f : X → R̄, we have A ⊂ X,

m f (A) = sup
x∈A

f (x). (21)

The triple (X, d,m) is called a metric Maslov measure space.
Admissible structuring function. A Maslov idempotent measurable function b : X × X → R̄ defined in (X, d,m)

is said to be an admissible structuring function if the following conditions are satisfied ∀x, y ∈ X,

• Nonpositivity and total mass inequality:

m (b(x, ·)) = sup
y∈X
b(x, y) ≤ 0⇔ b(x, y) ≤ 0. (22)
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(a) f (x) (b) g(x) (c) gθ0 (x) (d) gθ1 (x) (e) gθ2 (x)

(f) gθ3 (x) (g) gθ4 (x) (h) gθ5 (x) (i) gθ6 (x) (j) gθ7 (x)

(k) gθ8 (x) (l) gθ9 (x) (m) gθ10 (x) (n) gθ11 (x) (o) gθ12 (x)

(p) gθ13 (x) (q) gθ14 (x) (r) gθ15 (x) (s) g̃θ0 (x) (t) g̃θ1 (x)

(u) g̃θ2 (x) (v) g̃θ3 (x) (w) g̃θ4 (x) (x) g̃θ5 (x) (y) g̃θ6 (x)

(z) g̃θi (P1) (aa) g̃θi (P2) (ab) g̃θi (P3)

Figure 4: Estimation of the multiple orientation vector field. (a) Input image f (x), (b) contours of the input image given by the absolute value of
the gradient, Fig. 4(c) - Fig. 4(r) gθi with the decomposition of the contours by directional openings using an orientated linear structuring element
of length l = 9. The value of l determines the number of branches, N = 16, and the angular resolution, ∆θ = 11.25 degrees. Fig. 4(s) - Fig. 4(y)
show some of the low-pass filtered images g̃θi for illustrative purposes. Fig. 4(z) - Fig. 4(ab) show the directional signature of three selected pixels
P1, P2 and P3 depicted in Fig. 4(a) with a red dot. The values of sP j;l(i), j = [1, 2, 3], are plotted with dots whereas the interpolated signals ŝP j;l(θ)
are plotted with continuous red lines. The detected maxima, which correspond to the multiple orientations existing at those pixels, are depicted
with blue circles. The threshold considered to decide if a peak is a maximum is the 50% of the maximum peak value.
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• Completeness (or conservative):
m (b(x, x)) = 0⇔ b(x, x) = 0. (23)

This axiomatic formulation of the notion of admissible structuring function provides us the minimal mathematical
requirements to use the function in a pair of adjoint dilation and erosion. In fact, as the name implies, the two axioms
are the counterpart of those of a heat kernel in a measure metric space.

Dilation and Erosion operators on (X, d,m). We have now the ingredients to introduce the pair of dilation and
erosion for any image f according to b. Given an admissible structuring function b(x, y) in (X, d,m), the dilation and
erosion of a function f : X → R̄ by b are given respectively by

δb( f )(x) = sup
y∈X
{ f (y) + b(x, y)} , (24)

εb( f )(x) = inf
y∈X
{ f (y) − b(y, x)} . (25)

Both operators are increasing. In addition, the non-positivity and completeness of b(x, y) imply that the dilation is
extensive and commutes with supremum, and the erosion is anti-extensive and commutes with the infimum, i.e., for a
family of functions fi : X → R̄, i ∈ I, and any admissible structuring function, one has ∀x ∈ X

fi(x) ≤ δb( fi)(x); and δb

∨
i

fi

 (x) =
∨

i

δb ( fi) (x),

fi(x) ≥ εb( fi)(x); and εb

∧
i

fi

 (x) =
∧

i

εb ( fi) (x).

The previous properties are naturally required for any dilation and erosion, even if they are unrelated between them.
In addition, we can easily check that the pair (εb, δb), defined with the convention of change of sign in the convolution
and symmetric admissible structuring function,

• are dual by involution, i.e., for any function f (x) and ∀x ∈ X, one has that

δb( f )(x) = −εb(− f )(x);

• forms an adjunction, i.e., for any two functions f and g on (X, d,m), the pair (εb, δb) satisfy that ∀x ∈ X

δb( f )(x) ≤ g(x)⇔ f (x) ≤ εb(g)(x).

Consequently, their composition leads to the opening and closing of f according to the admissible structuring function
b, given respectively by:

γb( f )(x) = δb ◦ εb( f )(x) = sup
z∈X

inf
y∈X
{ f (y) − b(y, z) + b(z, x)} , (26)

ϕb( f )(x) = εb ◦ δb( f )(x) = inf
z∈X

sup
y∈X
{ f (y) + b(z, y) − b(x, z)} . (27)

More precisely, their construction by adjunction property involves that the opening (26) (resp. the closing (27)) can
be again rewritten as a maximal lower envelope of structuring functions (resp. minimal upper envelope of negative
symmetric structuring functions), i.e.,

γb( f ) =
∨{
b(x, y) + α | (x, y, α) ∈ X × X × R, b(x, y) + α ≤ f

}
, (28)

ϕb( f ) =
∧{
−b(y, x) + α | (x, y, α) ∈ X × X × R, −b(y, x) + α ≥ f

}
, (29)

and therefore they are increasing idempotent and anti-extensive (resp. extensive) operators. Remarkably, the symme-
try of the admissible structuring function is not a necessary condition for the adjunction. Nevertheless, in the case of
symmetry, i.e., b(x, y) = b(y, x), the formulation is obviously simplified.
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2.3. Adaptive flat morphological operators

In the case of adaptive flat morphological operators in the Euclidean space E, the admissible structuring function
b(x, y) is associated to a space-variant adaptive structuring element, denoted by A(x). The mapping A assigns a
possibly different subset of E to each point x of space E according to local features of the image, such that the
corresponding admissible structuring function is defined as

b(x, y) =

{
0 if y ∈ A(x),
−∞ if y ∈ Ac(x). (30)

Expressions of operators (24) and (25) are therefore simplified to obtain the adaptive flat dilation and erosion of f by
A(x) as follows:

δA(x)( f )(x) =
∨

y∈AT (x)

f (y), (31)

εA(x)( f )(x) =
∧

y∈A(x)

f (y). (32)

where the transposed setAT (x) is defined by the relationship

y ∈ AT (x) ⇐⇒ x ∈ A(y), (33)

or using the admissible structuring function:

y ∈ AT (x) if b(y, x) = 0.

The operators δA(x) and εA(x) are adjunct once the same structuring element mapping A(x) is used [12]. Hence, the
adaptive flat opening and closing can be defined, respectively, as

γA(x)( f ) =
(
δA(x) ◦ εA(x)

)
( f ) =

∨{
Cylα(x) | Cylα(x) ≤ f

}
, (34)

ϕA(x)( f ) =
(
εA(x) ◦ δA(x)

)
( f ) =

∧{
CylTα (x) | CylTα (x) ≥ f

}
, . (35)

where Cylα(x) is a cylinder of base A(x) and height α and CylTα (x) is the complement of a cylinder of base AT (x)
and height α. In addition, the adjunction property allows us to make up more complex filters by means of combining
adaptive openings and closings, providing for instance sequential filters, which have shown excellent results to restore
images corrupted by dark and bright artefacts [1]. More precisely, in this paper we used the adaptive close-open filter,
i.e.,

COA(x)( f )(x) = (ϕA(x) ◦ γA(x))( f )(x), (36)

and the open-close filter, i.e.,
OCA(x)( f )(x) = (γA(x) ◦ ϕA(x))( f )(x), (37)

which remove small structures while keeping sharp edges of the remaining ones. It is important to remember that
the adaptive structuring elements A are computed in a way that near the edges of structures the image is filtered
preserving these edges and minimizing inter-region filtering whereas far from the edges the structuring elements are
designed to maximize the intra-region filtering.

2.4. Sets of ellipses as adaptive structuring elements

Let us focus on two-dimensional images: E ⊂ R2. We consider in this study an elliptical shape kernel Eθ,a,b to be
used by the proposed spatially-variant adaptive filters. In the case of orientation vector fields that take into account
only a single orientation at each pixel, the multiscale structuring element is defined as

At(x) = Eθ(x),at(x),bt(x), (38)
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where θ(x), at(x) and bt(x) are, respectively, the orientation, major semi-axis and minor semi-axis of the ellipse Eθ,a,b

centered at pixel x. The value of θ(x) is given by the orientation vector field, whereas the values of at(x) and bt(x) can
be provided by the absolute value of this vector field or also by the distance to the nearest edge, and a scale parameter
t, which is typically related to the size of the semi-axis.

In the case of considering a multiple orientation vector field, the adaptive multi-scale structuring element at pixel
x is given by the set union of multiple ellipses of same shape/size

At(x) =
⋃

1≤i≤Mx

Eθi(x),at(x),bt(x), (39)

where θi(x) corresponds to each one of the Mx detected orientations at pixel x. Fig. 5 shows an example of an image
with structuring elements at some pixels according to previous definitions. In Fig. 5(a) the elliptical structuring
elements are provided using the single orientation vector field of Fig.2(a), whereas Fig. 5(b) shows the multiple-
elliptical structuring elements considering the proposed multiple orientation vector field (shown in Fig.2(b)).

From the viewpoint of implementation, it is easy to see that the dilation and the erosion by the proposed adaptive
structuring elements as the union of a set of ellipses can be computed in parallel for each ellipse and then, combined
by supremum or infimum, i.e., from (39),

δAt(x)( f )(x) = δ⋃
i∈M E

θi (x),at (x),bt (x) ( f )(x) =
∨

i

δEθi (x),at (x),bt (x) ( f )(x), (40)

εAt(x)( f )(x) = ε⋃
i∈M E

θi (x),at (x),bt (x) ( f )(x) =
∧

i

εEθi(x),at (x),bt (x) ( f )(x). (41)
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(a) Structuring elements based on SOVF
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(b) Structuring elements based on MOVF

Figure 5: Comparison of the elliptical structuring elements At(x) provided by the single orientation vector field (SOVF) of Fig.2(a), and the
elliptical structuring elementsAt(x) provided by the multiple orientation vector field (MOVF) of Fig. 5(b).

2.5. Elliptical structuring functions and metric Hamilton–Jacobi PDE

The previous flat adaptive morphological operators can be related to a family of structuring functions and more
theoretically to a metric partial differential equation. The goal of this part is to outline such a preliminary framework
which will developed in ongoing work.

Let us initially write the centered ellipse E in R2 as the quadratic form

E =
{
x : xT Sx ≤ 1

}
, (42)

where x ∈ R2 is the vector referring the coordinate axes and S is a symmetric positive definite 2 × 2 matrix, which
can be seen as the shape matrix. More precisely, the eigenvalues of S, λ1 ≥ λ2, are related to the semi-minor and
semi-major axes of the ellipse:

a = λ−1/2
2 , b = λ−1/2

1 ; (43)
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and the angle of the first eigenvector with axis x corresponds to θ in our notation. The ellipse centered at point y is
just given by

{
x : (x − y)T S(x − y) ≤ 1

}
. The reader can easily identify the expression of the squared anisotropic

Euclidean distance, well known in statistics as the Mahalanobis distance [34]:

dΣ(x, y) =

√
(x − y)TΣ−1(x − y), (44)

where the covariance matrix is the inverse of the elliptical shape matrix, i.e., Σ = S−1. In other words, each ellipse will
provide an anisotropic metric which can be then used similarly to the Euclidean distance in the parabolic structuring
function pt(x). Thus, we introduce the multiscale anisotropic quadratic structuring function of shape Σ as:

pt; Σ(x) = −
1
2t

xTΣ−1x. (45)

Because E ⊂ R2 endowed with the metric distance dΣ is a length space, we may straightforwardly use the theory of
morphological PDE on length spaces [29] to this spatially-invariant anisotropic case. First, we introduce the metric
subgradient of f at x defined as

|∇− f |(x) = lim sup
y→x

[ f (y) − f (x)]−
dΣ(x, y)

= lim sup
y→x

[ f (x) − f (y)]+

dΣ(x, y)
, (46)

where a+ = max(a, 0) and a− = max(−a, 0). The expression |∇− f |(x) is called descending slope since it measures
the downward pointing component of f near x: local variation of f taking into account only values less than f (x).
Second, we set the morphological PDE on the metric space (E, dΣ) as the following initial-value Hamilton–Jacobi
first-order equation: 

∂
∂t u(x, t) ± 1

2 |∇
−u(x, t)|2 = 0, in E × (0,+∞),

u(x, 0) = f (x), in E,
(47)

where the initial condition f : E → R is a continuous bounded function. Then, the semigroup solutions of (47) are
given by the metric Hopf–Lax–Oleinik formulas [29]:

u(x, t) = sup
y∈E

 f (y) −
d2

Σ
(x, y)
2t

 = ( f ⊕ pt; Σ)(x) (for − sign), (48)

u(x, t) = inf
y∈E

 f (y) +
d2

Σ
(x, y)
2t

 = ( f 	 pt; Σ)(x) (for + sign). (49)

Coming back to our spatially-variant framework, each ellipse i at x involves a scaled local metric associated to the
shape matrix S(i; x):

Eθi(x),at(x),bt(x) 7→
1
2t

S(i; x),

in such a way that, associated to the set of ellipses at point x, we can introduce the following admissible structuring
function:

pt(x, y) = −
1
2t

Mx∑
i=1

(x − y)T S(i; x)(x − y). (50)

Function pt(x, y) is the counterpart of the flat setAt(x) given in (39). Using this admissible structuring function (50),
the corresponding adaptive dilation and erosion:

δpt ( f )(x) = sup
y∈X

 f (y) −
1
2t

Mx∑
i=1

(x − y)T S(i; x)(x − y)

 , (51)

εpt ( f )(x) = inf
y∈X

 f (y) −
1
2t

My∑
i=1

(y − x)T S(i; y)(y − x)

 , (52)
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lead to anisotropic multiple orientation unflat operators that behave more regularly than the flat ones. In comparison
to the spatially-invariant anisotropic case, since at each x the metric is different, i.e., S(i; x) , S(i; y), the term (x −
y)T S(i; x)(x − y) lacks of symmetry and therefore does not lead to a distance between x and y. We can nevertheless
introduce a local pseudo-metric gradient:

|∇−x f |(x) = lim sup
y→x

[ f (y) − f (x)]−(∑Mx
i=1(x − y)T S(i; x)(x − y)

)1/2 , (53)

which can be used to formulate the following inhomogeneous initial-value first-order differential equation problem:
∂
∂t u(x, t) ± 1

2 |∇
−
x u(x, t)|2 = 0, in E × (0,+∞),

u(x, 0) = f (x), in E.
(54)

There is not a viscous solution of (54) under the form of an analytic expression. However, we conjecture that an
appropriate numerical solution of this PDE model can provide significant results.

3. Results

In this section, the proposed spatially-variant adaptive filters based on a multiple orientation vector field (MOVF)
are compared to spatially-invariant morphological filters, spatially-variant adaptive filters based on single orientation
vector field (SOVF) and adaptive bilateral morphological filters. In order to provide a fair comparison, the different
operators are applied to synthetic and real images in several application scenarios.

3.1. Spatially-invariant operators vs spatially-variant operators

Firstly, in order to show the advantages of spatially-variant morphological filters, the spatially-invariant morpho-
logical filters are compared to their respective spatially-variant counterparts considering a single orientation vector
field (given by the ASGVF [20]) and the multiple orientation vector field described in Section 2.1. The input image
used in this comparison is a 256 × 400 grey level chequerboard pattern. For the spatially-invariant operators, the
structuring element b is a disk of 11 pixel of diameter, whereas for the spatially-variant operators the structuring ele-
ments A(x) are based on ellipses which change their shape and orientation according to the orientation vector field.
Specifically, the elliptical adaptive structuring elements Eθ(x),a(x),b(x) are designed as follows: the major semi-axis is
a = 11 pixels long and the minor semi-axis is b = 1 pixel long near the edges and the elliptical structuring elements
change gradually their eccentricity until both semi-axes are 6 pixels long in homogeneous areas far from the edges.
On the other hand, the operators based on the multiple orientation vector field use the same elliptical function but the
adaptive structuring elements are formed by the union of M single orientated ellipses, where M is the number of main
orientations detected at each pixel.

Fig.6 displays the spatially-invariant erosion, dilation, opening and closing as well as the spatially-variant coun-
terparts provided by a single and a multiple orientation vector field. The first row shows some structuring elements
which are orientated according to the respective vector fields. Fig.6(d)-(f) show the erosion obtained by each struc-
turing element (invariant, based on a single orientation and based on multiple orientations). Fig.6(g)-(i) show the
analogue results for dilation. Fig. 6(j)-(l) and Fig. 6(m)-(o) show, respectively, the openings and closings. According
to the results, the spatially-invariant operators can not preserve the image structures since the structuring elements
always keep the same shape and orientation. The spatially-variant operators based on a single orientation show good
results preserving the contours with only one associated orientation but these operators fail when the contours possess
multiple orientation like corners or bifurcations. Finally, the spatially-variant operators based on the multiple orienta-
tion vector field preserve the image structures in corners, crossing lines and junctions better than operators based on a
single orientation because the structuring elements can adapt to these situations with multiple orientations.
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PSNR(dB) SSIM(%)
Input Noisy image 18.23 68.75

Close-Open filter: COA(x)( f )(x)
SOVF 18.41 63.59
Bilateral 18.30 63.50
Proposed MOVF 20.91 77.42

Open-Close filter: OCA(x)( f )(x)
SOVF 20.14 67.07
Bilateral 20.20 70.11
Proposed MOVF 21.39 76.66

AAF: ΞA(x)( f )(x)
SOVF 20.72 70.38
Bilateral 20.94 71.84
Proposed MOVF 22.48 80.66

Table 1: Quantitative analysis in term of PSNR [40] and SSIM [41] of the visual outcomes in Fig. 7 considering Gaussian noise. This analysis com-
pares adaptive morphological filters based on a single orientation vector fields (SOVF), morphological bilateral filters and adaptive morphological
filters based on a multiple orientation vector field (MOVF).

3.2. Spatially-variant morphology in denoising applications

In this comparison, the spatially-variant operators are studied in a denoising application. The aim is to evaluate the
ability of these operators to reduce the noise while preserving the image contours. The spatially-variant approaches
used in this comparison are: spatially-variant operators using the local structure tensor (LST) [35], spatially-variant
operators based on the multiple orientation vector field (MOVF) as was obtained in Section 2.1, and adaptive morpho-
logical bilateral filters [15]. The structuring elements used by the operators based on LST and MOVF are the same that
were used in the previous comparison. The bilateral approach uses a structuring element based on a disk of 11 pixel
of diameter. The filters evaluated are the adaptive sequential morphological filter formed by a closing followed by an
opening COA(x)( f )(x), the adaptive sequential filter formed by a opening followed by an closing OCA(x)( f )(x) and the
average of the previous operators, the averaged alternate filter (AAF), ΞA(x) ( f )(x), which presents skilful properties to
remove Gaussian and impulsive noise [36]. These filters use predefined shapes as structuring elements unlike other
methods, as i.e. general adaptive neighbourhoods [37] or morphological amoebas [38], which impose less restrictions
on the shape of the structuring elements. Note that the proposed filters for image denoising are non iterative, unlike,
e.g. anisotropic diffusion [39], based on the iterative approximation of the solution of a PDE.

Figure 7 shows the visual outcomes of this comparison in a scenario with Gaussian noise. The input image is a
194 × 152 real image of a building corrupted with Gaussian noise whose variance is σ = 0.01. Numerical results
of this comparison have been gathered in Table 1 in terms of the peak signal-to-noise ratio (PSNR) (see, e.g. [40])
and the structural similarity index (SSIM) [41]. As can be seen, the proposed adaptive filters based on a multiple
orientation vector field achieve the best results reducing the image noise while preserving the contours with multiple
orientations compared to the space-variant filters based on a single orientation vector field and the morphological
bilateral operators. The key of this improvement is the use of a combination of elliptical structuring elements according
to the multiple orientations of the image structures.

Figure 8 shows the comparison of spatially-variant operators in a scenario with impulsive noise. The input image
is the same as in the previous case, but now the 5% of its pixels has been corrupted by impulsive noise. Table 2 gathers
the numerical results in terms of PSNR and SSIM. Once again, the filters based on MOVF provide the best results
since the structuring elements based on multiple orientations can adapt their shape much better to the existing edges.
As can be seen, the bilateral filters show the poorest results removing impulsive noise.

3.3. Study of the influence of the size of structuring elements on spatially-variant operators

One of the most interesting applications of spatially-variant filters consists in using orientated structuring elements
to erode, dilate, remove or link only the image structures with a particular orientation feature. An example of this idea
can be found in Figure 9, where orientated closings of different sizes have been used to link elongates structures of a
cell image. In addition, the results are compared to invariant and bilateral closings in order to illustrate the advantages
of the spatially-variant operator based on the orientations in this kind of applications.
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PSNR(dB) SSIM(%)
Input Noisy image 19.01 70.42

Close-Open filter: COA(x)( f )(x)
SOVF 18.75 70.13
Bilateral 18.88 65.50
Proposed MOVF 19.52 77.73

Open-Close filter: OCA(x)( f )(x)
SOVF 19.07 73.33
Bilateral 28.20 65.11
Proposed MOVF 19.92 79.37

AAF: ΞA(x)( f )(x)
SOVF 21.85 74.94
Bilateral 20.94 71.84
Proposed MOVF 22.96 81.45

Table 2: Quantitative analysis in term of PSNR [40] and SSIM [41] of the visual outcomes in Fig. 8 considering impulsive noise. This analysis com-
pares adaptive morphological filters based on a single orientation vector fields (SOVF), morphological bilateral filters and adaptive morphological
filters based on a multiple orientation vector field (MOVF).

The first row of Figure 9 shows an invariant closing with circular structuring elements of r = 6 pixels of radius, a
bilateral closing based on circular structuring elements of r = 6 pixels of radius and a spatially-variant closing based
on MOVF with elliptical structuring element of a = b = 6 pixels of major and minor semi-axis in homogeneous
areas and a = 6 pixel of major semi-axis and b = 2 pixel of minor semi-axis near the image structures. The second
row shows an invariant closing and a bilateral closing with circular structuring elements of r = 12 pixels and an
orientated closing with elliptical structuring elements of a = b = 12 pixels in homogeneous areas and a = 12, b = 2 in
pixels belonging to the image structures. Finally, the third row displays invariant and bilateral closings with circular
structuring elements of r = 18 pixels and an orientated closing with elliptical structuring elements of a = b = 18
pixels in homogeneous areas and a = 18, b = 2 in image structures. As observed in Fig.9, the invariant and bilateral
openings can not adapt to the image contours yielding deformations in the elongated structures. On the other hand,
the closing based on MOVF can adapt much better to the elongated objects preserving the structures and removing
the discontinuities.

4. Conclusions

This work has presented a novel formulation and implementation of adaptive spatially-variant morphological
filters. The proposed filters use a multiple orientation vector field to adapt the shape and orientation of the structuring
elements to the image structures. The numerical and visual outcomes show the excellent performances of the proposed
filters and illustrate the ability of the proposed spatially-variant filters to reduce artefacts and noise in images while
the main structures with multiple orientation (e.g. bifurcation, crossover or junctions) are preserved.
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(a) Spatially-invariant SE b (b) Spatially-variant SEA(x) with SOVF (c) Spatially-variant SEA(x) with MOVF

(d) εb( f )(x) (e) εA(x)( f )(x) considering SOVF (f) εA(x)( f )(x) considering MOVF

(g) δb( f )(x) (h) δA(x)( f )(x) considering SOVF (i) δA(x)( f )(x) considering MOVF

(j) γb( f )(x) (k) γA(x)( f ) considering SOVF (l) γA(x)( f ) considering MOVF

(m) ϕb( f )(x) (n) ϕA(x)( f ) considering SOVF (o) ϕA(x)( f ) considering MOVF

Figure 6: Comparison of spatially-invariant morphological operators versus their spatially-variant counterparts. First row shows the spatially-
invariant structuring element b in (a), the spatially-variant structuring element A(x) provided by a single orientation vector field in (b), and
provided by a multiple orientation vector field in (c). First column contains (d) the spatially-invariant erosion εb( f )(x), (g) dilation δb( f )(x), (j)
opening γb( f )(x) and (m) closing ϕb( f )(x). Second and third columns contain (e)-(f) the spatially-variant erosion εA(x)( f )(x), (h)-(i) dilation
δA(x)( f )(x), (k)-(l) opening γA(x)( f )(x) and (n)-(o) closing ϕA(x)( f )(x) considering, respectively, single and multiple orientation vector fields.
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(a) Input image with Gaussian white noise

(b) COA(x)( f )(x) considering SOVF (c) OCA(x)( f )(x) considering SOVF (d) ΞA(x)( f )(x) considering SOVF

(e) COA(x)( f )(x) considering MOVF (f) OCA(x)( f )(x) considering MOVF (g) ΞA(x)( f )(x) considering MOVF

(h) Bilateral COA(x)( f )(x) (i) Bilateral OCA(x)( f )(x) (j) Bilateral ΞA(x)( f )(x)

Figure 7: Comparison of adaptive morphological filters. The first row shows the input image corrupted with additive white Gaussian noise whose
variance is σ = 0.01. The second row shows the filtered images using operators based on a single orientation vector field (SOVF), the third row
contains the output of these filters considering a multiple orientation vector field (MOVF) and the fourth row shows the output of these filters
considering the morphological bilateral approach. First column contains the outcomes of the adaptive close-open filter COA(x)( f )(x), second
column shows the results of the adaptive open-close filter OCA(x)( f )(x), and third column shows the alternate filter ΞA(x)( f )(x).
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(a) Input image

(b) COA(x)( f )(x) considering SOVF (c) OCA(x)( f )(x) considering SOVF (d) ΞA(x)( f )(x) considering SOVF

(e) COA(x)( f )(x) considering MOVF (f) OCA(x)( f )(x) considering MOVF (g) ΞA(x)( f )(x) considering MOVF

(h) Bilateral COA(x)( f )(x) (i) Bilateral OCA(x)( f )(x) (j) Bilateral ΞA(x)( f )(x)

Figure 8: Comparison of adaptive morphological filters. The first row shows the input image where the 5% of its pixels has been corrupted by
impulsive noise.The second row shows the filtered images using operators based on a single orientation vector field (SOVF), the third row contains
the output of these filters considering a multiple orientation vector field (MOVF) and the fourth row shows the output of these filters considering
the morphological bilateral approach. First column contains the outcomes of the adaptive close-open filters COA(x)( f )(x), second column shows
the results of the adaptive open-close filters OCA(x)( f )(x), and third column shows the alternate filters ΞA(x)( f )(x).
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(a) Input image

(b) Invariant closing, r = 6 (c) Bilateral Closing (d) Closing considering MOVF

(e) Invariant closing, r = 12 (f) Bilateral Closing (g) Closing considering MOVF

(h) Invariant closing, r = 18 (i) Bilateral Closing (j) Closing considering MOVF

Figure 9: Comparison of closings with different sizes. (a) Input image: 256 × 256 gray level image of a cell. First column shows the results
of the spatially-invariant closing ϕb( f )(x) using disk with radius r equal to (b) 6 pixels, (e) 12 pixels and (h) 18 pixels. The second and third
columns show, respectively, the results of the morphological bilateral closings and the spatially-variant closings considering a MOVF (the size of
the adaptive structuring elements is detailed for each case in Section 3.3.
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