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Abstract. The population protocol model was introduced by Angluin
et al. as a model of passively mobile anonymous finite-state agents. This
model computes a predicate on the multiset of their inputs via interac-
tions by pairs. The original population protocol model has been proved
to compute only semi-linear predicates and has been recently extended
in various ways.

In the community protocol model by Guerraoui and Ruppert, agents
have unique identifiers but may only store a finite number of the identi-
fiers they already heard about. The community protocol model provides
the power of a Turing machine with a O(n log n) space. We consider vari-
ations on the two above models and we obtain a whole landscape that
covers and extends already known results.
Namely, by considering the case of homonyms, that is to say the case
when several agents may share the same identifier, we provide a hierar-
chy that goes from the case of no identifier (population protocol model)
to the case of unique identifiers (community protocol model). We ob-
tain in particular that any Turing Machine on space O(logO(1) n) can be
simulated with at least O(logO(1) n) identifiers, a result filling a gap left
open in all previous studies.

Our results also extend and revisit in particular the hierarchy provided by
Chatzigiannakis et al. on population protocols carrying Turing Machines
on limited space, solving the problem of the gap left by this work be-
tween per-agent space o(log log n) (proved to be equivalent to population
protocols) and O(log n) (proved to be equivalent to Turing machines).

1 Introduction

Angluin et al. [3] proposed a distributed computation model called population
protocols. It is a minimal model that aims at modeling large sensor networks
with resource-limited anonymous mobile agents. The mobility of the agents is
assumed to be unpredictable (but has to respect some fair scheduler) and pairs
of agents can exchange state information when they are close together.

http://arxiv.org/abs/1602.03540v1


The population protocol model is also considered as a computational model,
in particular computing predicates: Given some input configuration, the agents
have to decide whether it satisfies the predicate. The population of agents has
to eventually stabilize to a configuration in which every agent is in an accepting
state or a rejecting one. This should not depend on the size of the population,
i.e for any size of input configuration.

The seminal work of Angluin et al. [1,3] proved that predicates computed
by population protocols are precisely first-order formula in Presburger arith-
metic (equivalent to a semilinear set). Subsets definable in this way are rather
restricted, as multiplication for example is not expressible in Presburger arith-
metic. Several variants of the original model have been studied in order to
strengthen the population protocol model with additional realistic and imple-
mentable assumptions, in order to improve the computational power. This in-
cludes natural restrictions like modifying the assumptions between agent’s in-
teractions (one-way communications [1], particular interaction graphs [2]). This
also includes the Probabilistic Population Protocol model that makes a random
scheduling assumption for interactions [3]. Also fault tolerance have been taken
account for population protocols [10], including the self-stabilizing solutions [4].
We refer to [6,8] for a survey.

Among many variants of population protocols, the passively mobile (loga-
rithmic space) machine model introduced by Chatzigiannakis et al. [7] gener-
alizes the population protocol model where finite state agents are replaced by
agents that correspond to arbitrary Turing machines with O(S(n)) space per-
agent, where n is the number of agents. An exact characterization [7] of com-
putable predicates is given: this model can compute all symmetric predicates in
NSPACE(nS(n)) as long as S(n) = Ω(log n). Chatzigiannakis et al. establish
that the model with a space in agent in S(n) = o(log logn) is equivalent to
population protocols, i.e. to the case S(n) = O(1).

In parallel, community protocols introduced by Guerraoui and Ruppert [13]
are closer to the original population protocol model, assuming a priori agents
with individual very restricted computational capabilities. In this model, each
agent has a unique identifier and can only store O(1) other agent identifiers,
and only identifiers from agents that it met. Guerraoui and Ruppert [13] using
results about the so-called storage modification machines [15], proved that such
protocols simulate Turing machines: predicates computed by this model with n

agents are precisely the predicates in NSPACE(n logn).

This work aims at obtaining a whole landscape that covers and extends al-
ready known results about community protocol models and population protocols
carrying Turing Machines on limited space.

First, we drop the hypothesis of unique identifiers. That is to say, agents may
have homonyms. We obtain a hierarchy that goes from the case of no identifier
(i.e. population protocol model) to the case of unique identifiers (i.e. community
protocol model). In what follows, f(n) denotes the number of distinct available
identifiers on a population with n agents. Notice that the idea of having less
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identifiers than agents, that is to say of having “homonyms”, has already been
considered in other contexts or with not closely related problematics [9,11,5,12].

Second, our results also extend the passively mobile machine model. In par-
ticular, Chatzigiannakis et al. [7] solved the cases S(n) = o(log logn) (equivalent
to population protocols) and S(n) = O(log n) (equivalent to Turing machines).
We provide a characterization for the case S(n) = O(log logn): the model is
equivalent to

⋃

k∈N
SNSPACE(logk n) (see Table 2).

To sum up, Tables 1 and 2 summarize our results. MNSPACE(S(n)) (re-
spectively: SMNSPACE(S(n))) is the set of f -symmetric4 (resp. also stable
under the permutation of the input multisets) languages recognized by non de-
terministic Turing machines on space O(S(n)).

f(n) identifiers Computational power

O(1) Semilinear Sets
[1,3]

Θ(logr n)
⋃

k∈N
MNSPACE

(

logk n
)

with r ∈ R>0 Theorem 3

Θ(nǫ) MNSPACE(n log n)
with ǫ > 0 Theorem 4

n NSPACE(n log n)
[13]

Table 1. Homonym population protocols with n agents and f(n) distinct identifiers.

Space per agent S(n) Computational power

O(1) Semilinear Sets
[1,3]

o(log log n) Semilinear Sets
[7]

Θ(log log n)
⋃

k∈N
SNSPACE(logk n)
Theorem 6

Ω(logn) SNSPACE(nS(n))
[7]

Table 2. Passively mobile machine model [7] with n agents and space S(n) per agent.

The document is organized as follows. Section 2 introduces the formal defi-
nitions of the different models and main known results. Section 3 introduces the
definition of a new class of Turing Machines that will help for the characterization
of our models. Section 4 is devoted to the case where there is a polylogarithmic
number of different identifiers in the population. Section 5 deals with the case
where the population’s number of identifiers is constant, o(log log n) and ω(nǫ).

4 These classes are defined in Section 4.5.
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Section 6 treats the case S(n) = O(log logn) in the passively mobile machine
model [7] (see Table 2). Finally Section 7 is a summary of our results with some
open questions.

2 Models

Population protocols have been mostly considered up to now as computing pred-
icates: one considers protocols such that starting from some initial configuration,
any fair sequence of pairwise interactions must eventually lead to a state where
all agents agree and either accept or reject. A protocol computes a predicate if it
accepts the inputs verified by this predicate (and refuses the others). Algorithms
are assumed to be uniform: the protocol description must be independent of the
number n of the agents.

The models we consider are variations of the community protocol model [13].
This latter model is in turn considered as an extension of the population pro-
tocols. In all these models, a collection of agents is considered. Each agent has
a finite number of possible states and an input value, that determines its ini-
tial state. Evolution of states of agents is the product of pairwise interactions
between agents: when two agents meet, they exchange information about their
states and simultaneously update their own state according to a joint transi-
tion function, which corresponds to the algorithm of the protocol. The precise
sequence of agents involved under the pairwise interactions is under the control
of any fair scheduler. The considered notion of fairness for population protocols
states that every configuration that can be reached infinitely often is eventually
reached.

In order to avoid multiplication of names, we will write community proto-
cols for the model introduced by Guerraoui and Ruppert [13], and homonym
population protocols for our version. The main difference between the two is the
following: Let U be the infinite set containing the possible identifiers. We assume
that the possible identifier set U is not arbitrary: we assume that U ⊂ N. We
also assume these identifiers are not necessarily unique: several agents may have
the same identifier. In a population of size n, we suppose that there are f(n)
distinct identifiers.

More formally, a community protocol / homonym population protocol algo-
rithm is then specified by:

1. an infinite set U of the possible identifiers. In the Homonym case, U = N.
2. a function f : N → N mapping the size of the population to the number of

identifiers appearing in this population. In the community protocol case, f
is identity.

3. a finite set B of possible internal states;
4. an integer d ≥ 0 representing the number of identifiers that can be remem-

bered by an agent;
5. some input alphabet Σ and some output alphabet Y ;
6. an input map ι : Σ → B and an output map ω : B → Y ;
7. a transition function δ : Q2 → Q2, with Q = B × U × (U ∪ { })d.
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Remark 1. For sake of clarity, δ is a function, but this could be a relation as in
the community protocol definition [13], without changing our results.

Remark 2. Unlike in the population protocol model, each agent’s state is given
by its identifier and d identifiers stored. If any of the d slots is not currently
storing an identifier, it contains the null identifier 6∈ U . In other words, Q =
B × U × (U ∪ { })d is the set of possible agent states.

The transition function δ indicates the result (state shift) of a pairwise inter-
action: when agents in respective state q1 and q2 meet, they move to respectively
state q′1 and q′2 whenever δ(q1, q2) = (q′1, q

′
2).

As in the community model [13], agents store only identifiers they have
learned from other agents (otherwise, they could be used as an external way
of storing arbitrary information and this could be used as a space for computa-
tion in a non interesting and trivial way): if δ(q1, q2) = (q′1, q

′
2), and id appears

in q′1, q
′
2 then id must appear in q1 or in q2.

The identifiers of agents are chosen by some adversary, and not under the
control of the program.

We add two hypothesis to the community model [13]: agents need to know
when an identifier is equal to 0 and when two identifiers are consecutive (i.e.
id1 = id2+1). More formally, this is equivalent to say that whenever δ(q1, q2) =
(q′1, q

′
2), let u1 < u2 < · · · < uk be the distinct identifiers that appear in any

of the four states q1, q2, q
′
1, q

′
2. Let v1 < v2 < · · · < vk be identifiers such that

u1 = 0 ⇔ v1 = 0 and vi+1 = vi+1 ⇔ ui+1 = ui+1. If ρ(q) is the state obtained
from q by replacing all occurrences of each identifier ui by vi, then we require
that δ(ρ(q1), ρ(q2)) = (ρ(q′1), ρ(q

′
2)).

We also suppose that every identifiers in [0, f(n) − 1] are present in the
population. As we want to be minimal, those are the only hypothesis we make
on identifiers in the following sections.

Remark 3.

– This weakening of the community protocols does not change the computa-
tional power in the case where all agents have distinct identifiers.

– Our purpose is to establish results with minimal hypothesis. Our results
work when identifiers are consecutive integers, say {0, 1, 2, . . . , f(n) − 1}.
This may be thought as a restriction. This is why we weaken to the above
hypothesis, which seems to be the minimal hypothesis to make our proofs
and constructions correct.
We conjecture that without the possibility to know if an identifier is the
successor of another one, the model is far too weak. Without this assumption,
our first protocol (in Proposition 1) does not work.

– Notice that knowing whether an identifier is equal to 0 is not essential, but
eases the explanation of our counting protocol of Proposition 1.

From now on, an agent in state q with initial identifier k and L = k1, . . . , kd
the list storing the d identifiers is denoted by qk,L or qk,k1,...,kd

. If the list L is
not relevant for the rule, we sometimes write qk where k is the agent’s identifier.
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A configuration C of the algorithm then consists of a finite vector of elements
from Q: it is a set of n agent’s states. An input of size n ≥ 2 is given by f(n) non
empty multisets Xi over alphabet Σ. An initial configuration for n agents is a
vector in Qn of the form ((ι(xj), i, , . . . , ))0≤i<f(n),1≤j≤|Xi| where xj is the jth
element of Xi. In other words, every agent xj starts in a basic state encoding
ι(xj), its associated identifier and no other identifier stored in its d slots (since
it met no other agent).

If C = (q(1), q(2), . . . , q(n)) and C′ = (p(1), p(2), . . . , p(n)) are two configura-
tions, then we say that C → C′ (C′ is reachable from C in a unique step) if
C′ is obtained by executing only one step of the transition function. In other
words, there are i 6= j such that δ(q(i), q(j)) = (p(i), p(j)) and p(k) = q(k) for all k
different from i and j. An execution is a sequence of configurations C0, C1, . . . ,

such that C0 is an initial configuration, and Ci → Ci+1 for all i. An execution
is fair if for each configuration C that appears infinitely often and for each C′

such that C → C′, C′ appears infinitely often.

Example 1 (Leader Election). We want to design a protocol that performs a
leader election, with the additional hypothesis that when the election has fin-
ished, all agents know the identifier of the leader.

We adapt here a classical example of Population Protocol (Recall that in the
Population Protocol, this is not possible to store the identifier of the leader and
hence this is not possible to compute the leader’s identifier; Here this is possible
as identifiers can be stored): Each agent with identifier k starts with state Lk, ,
considering that the leader is an agent with identifier k. We want to design a
protocol such that eventually at some time (i.e in a finite number of steps), there
will be a unique agent in state Lk0,k0

, where k0 is the identifier of this unique
agent, and all the other agents in state Ni,k0

(where i is its identifier).
A protocol performing such a leader election is the following: f(n) = n,

U = N, B = {L,N}, d = 1 (only the identifier of the current leader is stored),
Σ = {L}, Y = {True}, ι(L) = L, ω(L) = ω(N) = True, Q = B×U × (U ∪ { })
and δ such that the rules are:

Lk, q →Lk,k q ∀k ∈ N, ∀q ∈ Q

Lk,k Lk′,k′→Lk,k Nk′,k ∀k, k′

Lk,k Ni,k′ →Lk,k Ni,k ∀k, k′, i
Ni,k′ Lk,k →Ni,k Lk,k ∀k, k′, i
Ni,k Ni′,k′→Ni,k Ni′,k′ ∀k, k′, i, i′

By the fairness assumption, this protocol will reach a configuration where
there is exactly one agent in state Lk0,k0

for some identifier k0. Then, by fairness
again, this protocol will reach the final configuration such that only agent is in
state Lk0,k0

and all the other agents are in state Ni,k0
with i 6= k0.

A configuration has an Interpretation y ∈ Y if, for each agent in the popu-
lation, its state q is such that ω(q) = y. If there are two agents in state q1 and
q2 such that ω(q1) 6= ω(q2), then we say that the configuration has no Interpre-
tation. A protocol is said to compute the output y from an input x if, for each
fair sequence (Ci)i∈N starting from an initial condition C0 representing x, there
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exists i such that, for each j ≥ i, Cj has the interpretation y. The protocol is
said to compute function h if it computes y = h(x) for all inputs x. A predicate
is a function h whose range is Y = {0, 1}. As usual, a predicate can also be
considered as a decision problem, and a decision problem is said to be decided
if its characteristic function is computed.

Observe that population protocols [1,3] are the special case of the protocols
considered here where d = 0 and f(n) = 1. The following is known for the
population protocol model [1,3]:

Theorem 1 (Population Protocols [1]). Any predicate over N
k that is first

order definable in Presburger’s arithmetic can be computed by a population pro-
tocol. Conversely, any predicate computed by a population protocol is a subset of
N

k first order definable in Presburger’s arithmetic.

For the community protocols, Guerraoui and Ruppert [13] established that
computable predicates are exactly those of NSPACE(n logn), i.e. those of the
class of languages recognized in non-deterministic space n logn.

Notice that their convention [13] of input requires that the input be dis-
tributed on agents ordered by identifiers.

Theorem 2 (Community Protocols [13]). Community protocols can com-
pute any predicate in NSPACE(n logn). Conversely, any predicate computed
by such a community protocol is in the class NSPACE(n logn).

Notice that Guerraoui and Ruppert [13] established that this holds even with
Byzantine agents, under some rather strong conditions. We now determine what
can be computed when the number of identifiers f(n) is smaller than n. This
will be done by first considering some basic protocols.

3 Definitions

Our main aim is to determine exactly what can be computed with homonym
population protocols. We first need to introduce Turing Machines that has inputs
analog to homonym protocols. To perform it we will define the notion of (f, n)-
symmetry language, and the class MNSPACE.

A multiset of elements from some set Σ is also seen as a word over alphabet
Σ: list the elements of the multiset in any order, and consider the list as a word.
Of course, any permutation of this word corresponds to the same multiset.

We focus on languages made of f(n) multisets over alphabet Σ. From the
above remark, this is seen as words over alphabet Σ ∪ {#}, and hence as (f, n)-
Symmetric languages in the following sense:

Definition 1 Let f : N → N be a function. A Language L over alphabet Σ∪{#}
is (f, n)-Symmetric if and only if:

– # 6∈ Σ;
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– Words of L are all of the form w = x1#x2#. . .#xf(n), with |x1| + |x2| +
. . .+ |xf(n)| = n and ∀i, xi ∈ Σ+;

– If, ∀i, x′
i is a permutation of xi, and if x1#x2#. . .#xf ∈ L, then

x′
1#x′

2#. . .#x′
f ∈ L;

The complexity class associated to (f, n)-symmetric languages is :

Definition 2 (MNSPACE(S(n))) Let S be a function N → N. The set of
(f, n)-symmetric languages recognized by Non Deterministic Turing Machines
on space O(S(n)) is the class MNSPACE(S(n), f(n)) or MNSPACE(S(n))
when f is unambiguous.

Remark 4. NSPACE(S(n)) = MNSPACE(S(n), n) since each multiset must
then contain exactly one element. SNSPACE(S(n)) = MNSPACE(S(n), 1)
as accepting a multiset is exactly being stable under input permutation.

Now, we will define a collection of languages called Included Language in
MNSPACE(logn).

Definition 3 Let I be a positive integer and let (Xi)i≤I be a finite sequence of
multisets of elements from Σ. (Xi)i≤I is a included language, if and only if, for
all i < I, ∅ 6= Xi+1 ⊂ Xi.

This corresponds to finite sequences of non-empty multisets where each mul-
tiset is included in the previous one. Using the above representation trick (rep-
resenting a multiset by a word up to permutation) this can also be considered
as a (I, n)-Symmetric language.

Proposition 1. Any included language (Xi)i≤I is in MNSPACE(logn) where

n =
∑

1≤i≤I

|Xi|.

Proof. Let I be a positive integer and let (Xi)i≤I be an included language. |Xi|s
denotes the number of s in a multiset Xi.

To check whetherXi+1 ⊂ Xi is equivalent to check, whether |Xi+1|s−|Xi|s ≤
0 for each s ∈ Σ. This can be performed on a space O(log n). In other words,
the language is accepted if and only if there do not exist i and s such that
|Xi+1|s − |Xi|s ≤ 0. ⊓⊔

Proposition 2. Let I be a positive integer and let (Xi)i≤I be an included lan-

guage and let n =
∑

1≤i≤I

|Xi|.

(Xi)i≤I can be decided by a homonym population protocol of n agents having
f(n) = I distinct identifiers.

Proof. The high-level description of the protocol is described in order to check
whether Xi+1 ⊂ Xi for every i. Thus, Xi+1 ⊂ Xi implies that each agent in
Xi+1 manages to ”delete” an agent with the same input in Xi.

In our protocol, each agent with an identifier i > 0 looks for an agent of
identifier i− 1 with the same input to ”delete” it. More formally, consider:
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– B = Σ × {ND,D} × {ND,D} × {T , t,F ,F}.
– d = 0.
– Y = {True, False}.
– ∀s ∈ Σ, ι(s) = (s,ND,ND,F).
– ∀s ∈ Σ, ∀a, b ∈ {ND,D}2, ω(s, a, b, T ) = ω(s, a, b, t) = True, ω(s, a, b,F) =

ω(s, a, b,F) = False.
– δ is such that the non trivial rules are:

(s,ND, b,F)0 q →(s,D, b, T )0 q ∀b, q
(s, a,ND, c)i (s,ND, b, c′)i+1→ (s, a,D, c)i (s,D, b, T )i+1 ∀a, b, c, c′

(s, a, b,F)i (s′, a′, b′, c′)j → (s, a, b,F)i (s′, a′, b′,F)j ∀a, b, a′, b′, c′

(s, a, b, T )i (s′, a′, b′,F)j → (s, a, b, T )i (s′, a′, b′, t)j ∀a, b, a′, b′, c′

The state of each agent is composed of four elements:

1. The first element corresponds to its input symbol.
2. The second is equal toND if the agent with id identifier has not yet ”deleted”

an agent with the same input and with id − 1 identifier. It is equal to D if
the deletion has already been performed.

3. The third element is equal to ND if it has not been deleted yet by an
agent with the successor identifier. It is D as soon as the deletion has been
performed.

4. The fourth element corresponds to the output. State F means that the agent
needs to perform a deletion. The agent knows that the input has to be False

as long as it has not deleted an agent with the previous identifier. State F

means the agent believes that at least one deletion needs to be performed.
State T means that the agent made its deletion and since did not meet agent
needing to perform a deletion. State t means that the agent believes that no
deletions need to be done.

Rule 1 handles that agents with identifier 0 does not need to do a deletion.
Rule 2 handles a deletion.

If we project on the fourth element, the stable configuration are T ∗t∗ and
F∗F∗.

Rule 3 spreads the output False to each agent. It can only come from an
agent still waiting for a deletion. If a deletion needs to be done and cannot be,
the output False will be spread by fairness.

Rule 4 spreads the output True from T to F agents. If there are no longer
deletions to do, there is at least one T in the population, being from the agent
that has performed the last deletion. It will spread the output True by fairness.

⊓⊔

4 A Polylogarithmic Number of Identifiers

In this section, the case where the population contains f(n) ≥ logn distinct
identifiers is considered. First, a protocol is designed in order to compute the
size of the population. When the population reaches a stable configuration (i.e.
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agents will no longer be able to fin another one that will change its state), the
size will be encoded in binary on logn agents. We will then show how to ”read
the input” and how to simulate a tape of length logn. To perform that, we will
explain a process that ensures that the protocol will at some point do exactly
what is expected.

4.1 Organization As a Chain

The first step is to organize f(n) agents in a chain: We design a protocol that
creates a chain containing all the existing identifiers such that an agent with
identifier Idk+1 is a successor of an agent with identifier Idk. This protocol
consists of the execution of several leader Election protocols. The classical Leader
Election protocol for population protocols distinguishes one agent from all the
others, usually by having all agents but one in state N , the leader being in
state L by using the simple rule L L → L N . Here, instead of having a unique
agent different from all the others, it distinguishes one agent for each distinct
identifier, by the simple trick that two agents truly interact only if they have the
same identifier. Here is the protocol:

– B = {L,N}.
– d = 0.
– Σ = L, Y = {True}, ι(L) = L and ω(L) = ω(N) = True.
– δ has only one difference from the usual Leader Election: the first rule is

split according to the identifiers.

Lida
Lida

→Lida
Nida

Lida
Lidb

→Lida
Lidb

with ida 6= idb

At some point, there will be exactly one Lid agent for each id ≤ f(n). We
will denote the leader with identifier id by Lid. Moreover, we focus on the leader
with identifier 0 denoted by L0 and called the Leader.

For the remaining of this section, the Chain will refer to these particular
agents. We will often see these agents as a tape of f(n) symbols in B sorted
according to the identifiers.

4.2 The Size of the Population

In many classical population protocols, integers are encoded in unary. Here,
we will compute the size of the population on logn agents in binary. The size
of the population will be encoded in binary on a chain (it will be possible as
f(n) ≥ logn in this part), using the concept of chain of previous section.

Proposition 3. When the population has f(n) ≥ logn distinct identifiers, there
exists an homonym population protocol that computes the size n of the population:
At some point, all agents are in a particular state N except f(n) agents having
distinct identifiers. If we align these agents from the highest identifier to the
lowest one, then they encode the size of the population n written in binary.
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Proof. In a high-level description, the protocol initializes all agents to a particu-
lar state A. This protocol will implicitly include the chain construction (instead
of being in state L, potential leaders will have their state in {A, 0, 1, 2}). This
protocol counts the number of agents in state A. An agent in state 1 (respectively
0, or 2) with identifier k represents 2k (respectively 0, or 2k+1) agents counted.
Interactions between agents are then built to update those counts.

More formally, we have Bc = {A, 0, 1, 2, N} . The rules δc are the following:

A0 qk→10 qk ∀q, k 0k 1k → Nk 1k ∀k
Ak 00→0k 10 ∀k ≥ 1 1k 1k → Nk 2k ∀k
Ak 10→0k 20 ∀k ≥ 1 0k 0k → Nk 0k ∀k
0k+1 2k→1k+1 0k ∀k
1k+1 2k→2k+1 0k ∀k

This protocol is split into 3 steps. (i) At the beginning, all agents are in state
A. A state A is transformed into a state 1, by adding 1 to an agent of identifier
0 corresponding to the 3 first rules of the left column. (ii) The remaining rules
of the left column correspond to summing together the counted agents, carrying
on to the next identifier the 1. (iii) Rules of the right column are here to perform
in parallel the chain protocol.

Let v be the function over the states defined as follows for any k: v(Ak) = 1,
v(0k) = v(Nk) = 0, v(1k) = 2k, v(2k) = 2k+1. We can notice that the sum of v
values over all the agents remains constant over the rules. Thus the sum always
equals the number of agents in the population.

By fairness, all the agents in state A will disappear, the chain will finish, and
the agent in state 2k will disappear. Hence, the protocol writes the size of the
population on the chain in binary. ⊓⊔

Remark 5. The previous counting protocol also works with f(n) = Ω(log n).
Indeed, if for some α < 1 we have f(n) ≥ α logn, then, using a base ⌈e1/α⌉
instead of a base 2 allows that n can be written on f(n) digits.

Remark 6. The previous counting protocol works if the population can detect
that an identifier is equal to 0. This protocol can be adapted to a population with
identifiers in [a, a+f(n)−1]. For this, agents store an identifier Idm correspond-
ing to the minimal one they met (called here Idm). An agent with identifier Id
and state i ∈ {0, 1, 2} stores i · 2Id−Idm . When it meets an identifier equals to
Idm − 1, it looks for a leader with identifier Id− 1 to give it its stored integer.

Once a chain is constructed, as above, it can be used to store numbers or
words. Thus it can be used as the tape of a Turing Machine. We will often
implicitly use this trick within the rest of the paper.

4.3 Resetting a Computation

The computation of the size n (encoded as above) is crucial for the following
protocols. We call leader an agent not in state N with identifier 0 from the
previous protocol (or the chain protocol).
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We will now provide a Reset protocol. This protocol has the goal to reach a
configuration such that (i) the Counting protocol is finished, (ii) all agents except
the leader are in state R, and (iii) the leader knows when this configuration is
reached (i.e. the leader is on a state R making him the belief the reset is done.
The last time the protocol turn the leader’s state into R, the reset will be done).

This protocol will then permit to launch the computation of some other
protocols with the guarantee that, by fairness, at some point, all agents were
counted, and hence covered.

Definition 4 A Reset Protocol is a homonym protocol that guarantees to reach
a configuration where:

– The size of the population has been computed. In particular, the population
has a unique leader at this point.

– There exists a mapping function map : Q → {R,R} such that leader’s state
is mapped to R and all other agents’ states are mapped to R.

This configuration will be the beginning of the next computation step. All agents
will be ready, at this point, to start a next computation.

Proposition 4. There exists a Reset Protocol.

Proof. The high-level description of the protocol relies on starting back the reset
protocol each time the leader sees that the counting protocol (of the previous
proposition) has not finished yet.

The leader turns agents in state R. The chain lets the leader count the number
of agents it turns into state R. If it has turned the same number of agents that
the number computed by the Counting protocol, then it turns its state into R.
The protocol handles two counters in parallel. The first counter corresponds to
the size of the population and the second counter counts the number of agents
that have been reset. We can notice that the leaders for each identifier will be
the same on the first and second element, and hence the chains will be the same
for the two counters.

This mechanism is not as simple as it could look: the protocol uses the fair-
ness to be sure that at some point, it will have turned the right number of agents
into state R.

More formally, the set of states is

Bc ×Bc × {A,B,C, D,Dp, D′p, E,R, R,S,W},

where Bc is the set of states of the counting protocol (and δc its interaction
function). The first element of the triplet is for the counting protocol, the sec-
ond for the counting of agents turned into state R, and the third part is for
the reset itself. At the beginning, all agents are in state (A, 0,A). The second
counting protocol will work a bit differently for the carry over. The leader per-
forms it by itself, walking through the chain, contrarily to the process described
in Proposition 3.
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This protocol uses two identifiers slots. The first will be attached to the
first counter: the leader stores the greater identifier it heard about (each time it
updates it, we consider it has updated its state). The second is attached to the
second counter.

Sometimes, rules will be of the form:

(q1, q2, q3) (q4, q5, q6)→(q′1, q
′
2, q

′
3) (q′4, q

′
5, q

′
6).

We will implicitly assume that δc(q1, q4) = (q′1, q
′
4). If we write q1 (resp q4)

instead of q′1 (resp q′4), then it implies that q′1 = q1 (resp q′4 = q4). We will note
q1,id if the identifier id attached to q1 is relevant (same for q2).

We will describe δ according to the steps of the process of resetting:

1. First, the leader needs to know when the counting protocol evolved. For this,
as soon as an interaction occurred, agents not being a leader go into state
W to warn the leader to restart the reset. The leader L0 then goes into
state A on its third element. (We can notice that in δc, there is a non trivial
interaction with a leader if and only if the leader is the second element. We
can also notice that an agent with identifier 0 in state q1 6= N is a leader.)

(q1, q2, q3) (q4, q5, q6)→ (q′1, q2,W ) (q′4, q5, q6) with q′1 6= q1 or q′4 6= q4
(q1, q2, q3)0 (q4, q5,W )→(q′1, q2,A)0 (q′4, q5,S) with q1 6= N

2. In state A, the leader knows that the counting protocol is not finished yet.
It turns all agents into state S. At some point (when the leader is the second
element of an interaction), it stops and goes to state B.
The idea is that by fairness, if we repeat again and again this process, at
some point, the leader will manage to have all other agents turned into state
S.

(q1, q2,A)0 (q4, q5, q6) →(q1, q2,A)0 (q4, q5,S) with q1 6= N

(q1, q2, q3) (q4, q5,A)0→ (q1, q2,S) (q4, 10,B)0 with q4 6= N

3. In state B, the leader clears the second chain corresponding to the swith
econd counter of the reset agents. This way, after the last change from the
counting protocol, we are sure that the chain will be cleared and will effec-
tively count all the agents. The identifier attached to the first state gives to
the leader the highest identifier it saw. This way, it knows the last element’s
identifier in the chain.
The leader just keeps its own bit at 1, as it needs to count itself. After that,
the leader goes to state C.

(q1i , 1j,B)0 (q4, q5, q6)j+1→(q1, 1j+1,B)0 (q4, 0, q6)j+1 with j < i-1
and q5 6= N

(q1i+1, 1i,B)0 (q4, q5, q6)i+1→ (q1, 1 ,C)0 (q4, 0, q6)i+1 with q5 6= N

4 In state C, the leader looks only for S agents. When it finds one it turns it
into a R and adds 1 to the second counter (by going to state D). If it meets
another state, it goes back to state A, in order to try to turn again all agents
into S and to reset the counter.
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(q1, q2,C)0 (q4, q5,S)→(q1, q2, D)0 (q4, q5, R)
(q1, q2,C)0 (q4, q5, q6)→(q1, q2,A)0 (q4, q5,S) with q6 6= S

5 In state D, the leader increases the second counter by 1. If it has a carry, it
goes in state Dp as long at it is needed. When the incrementation is over it
goes back to state D until it reaches the end of the chain or find a difference.
If it finds a difference, and if it still has to propagate the carry, then it goes
in state D′p.
Here, we see why the agents need another slot of identifier: the leader needs
to remember what was the last bit he saw (to identify easily the next one to
find). The identifier on the first state allows to know until which identifier
it has to compare the two counters.
If it reaches the last bit of the chain and the two counters are equal, then the
leader believes the reseting is over and goes to state R (until the counting
protocol on the first element gets an update, if it happens). If the counter is
not yet equal, then it looks for another S to turn into a R.

(0i, 0 , D)0 (q4, q5, q6) → (1i, 0 ,C)0 (q4, q5, q6)
(1i, 0 , D)0 (q4, q5, q6) → (1i, 10, D)0 (q4, q5, q6)
(1i, 1 , D)0 (q4, q5, q6) → (1i, 00, D

′p)0 (q4, q5, q6)
(0i, 1 , D)0 (q4, q5, q6) → (0i, 00, D

p)0 (q4, q5, q6)

(q1,i, q2,j , D)0 (a, a, q6)j+1 → (q1,i, q2,j+1, D)0 (a, a, q6)j+1
with a ∈ {0, 1}
and j < i-1

(q1,i, q2,j , D)0 (a,1-a, q6)j+1→ (q1,i, q2, ,C)0 (a,1-a, q6)j+1 with a ∈ {0, 1}
(q1,i+1, q2,i, D)0 (a, a, q6)i+1 → (q1,i+1, q2, ,R)0 (a, a, q6)i+1 with a ∈ {0, 1}
(q1,i, q2,j , D

′p)0 (q4, 0, q6)j+1 → (q1,i, q2, ,C)0 (q4, 1, q6)j+1

(q1,i, q2,j , D
′p)0 (q4, 1, q6)j+1 →(q1,i, q2,j+1, D

′p)0 (q4, 0, q6)j+1

(q1,i, q2,j , D
p)0 (0, 0, q6)j+1 → (q1,i, q2, ,C)0 (0, 1, q6)j+1

(q1,i, q2,j , D
p)0 (1, 0, q6)j+1 → (q1,i, q2,j+1, D)0 (1, 1, q6)j+1 with j < i-1

(q1,i, q2,j , D
p)0 (0, 1, q6)j+1 → (q1,i, q2,j+1, D

p)0 (0, 0, q6)j+1

(q1,i, q2,j , D
p)0 (1, 1, q6)j+1 →(q1,i, q2,j+1, D

′p)0 (1, 0, q6)j+1

(q1,i+1, q2,i, D
p)0 (1, 0, q6)i+1 → (q1,i+1, q2, ,R)0 (1, 1, q6)j+1

To prove that this protocol will succeed, we know by fairness that the count-
ing protocol will finish at some point. There will be several agents in state W .
By fairness, the leader will have seen all of them at some point.

Let consider a configuration appearing infinitely often. We will show that the
reset point can be reached from it (and then will be reached by fairness).

– If the leader has its third state equal to A, then we have it met all the agents
to turn them into S. Then, we go into state B in a population where all other
agents are in state S.

– If the leader is in state B, it can only do an interaction one after another:
clearing the chain by following the leaders one identifier after another. We
then reach C, keeping the number of S in the population.

– If the leader is in state C, we have two cases:
• All agents are in state S. It can be the case only if the leader’s last
operation was becoming a C from a B, hence the second counter is equal
to 1. Then, if the leader repeats the actions (turn an agent from S to
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R + increment the counter), at some point the two counters will match,
and the leader will reach the state R.

• At least one agent is not in state S. We have the leader interacts with
it to go in state A.

– If the leader is in state {D,Dp, D′p}, we can finish Step 5. The leader will
then be in state C or R.

– If the leader is in state R, then the two counters must be equal. Hence, the
leader turned exactly the right number of agents from state S to R, the reset
is performed.

The population will reach at some point the desired configuration. ⊓⊔

To run the computations of the following protocols, we first reach the end
of this protocol. More precisely, the leader will start the next steps after having
reached the state R. If at some point the leader replaces the R with a A using
the reset protocol, then it knows it has to restart the next steps. While the leader
will turn into S all the other agents, it will also reset the computations elements
from the next steps.

The last time the leader will turn into R and will know that all agents are
ready to start the next steps. It also knows that the size of the population is
encoded correctly on the chain.

This protocol ensures that the leader has access to all the input at some
point. With population protocols, the leader will never be able to know if it has
turned every agent into some state S, because it has not the ability to know the
size of the population.

4.4 Access to the Input

We now introduce a protocol that computes the number of agents that had the
input s ∈ Σ and were given the identifier Id.

This is a sub-protocol that can be used by the main protocol at any moment.
Hence, the information cannot be definitively kept and has to be precisely given
at the requested moment. We cannot accept any error as it could not be detected
on time to correct the computation.

Proposition 5. If we have f(n) = Ω(log n) identifiers and if the reset protocol
has finished, for all input s ∈ Σ and for all Id ≤ f(n), there exists a protocol
that writes on the chain the number of agents initialized as sId.

Proof. We assume that the population is already reseted to state R using a Reset
Protocol.

We do not give here the formal description of protocol, only a description of
its process:

0. The agents will have a state corresponding to a 4-tuples:
– the first element of the 4-tuple is assumed to implement the counting

protocol of previous subsection. We assume that the reset protocol has
finished, so the counting protocol on this first element is over.
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– the second element of the 4-tuple will be used to count the agents with
input sId.

– the third element of the 4-tuple will be used to implement another count-
ing protocol, similar to the one of previous section. This will be used to
recount the population to check that every agent has met the leader
since the beginning of this process (by checking that the value encoded
by first elements is equal to the value encoded by third elements).

– the last fourth element of the 4-tuple is here to determine whether the
agent has already been counted by the leader yet (for the counters corre-
sponding to the second and third element of the 4-tuple). It is in {Y,N}
and is equal to Y if and only if the leader already counted it.

1. The leader looks for an agent it has not recounted again (i.e. with its 4th
state equals to N). When it meets one, it switches this agent’s internal state
fromN to Y , and it looks if its input was sId or not. If it is, then it increments
the second and the third counter, otherwise it only increments the third.

2. The leader then looks if the first and the third counter are equal. If not, it
goes back to step 1, if yes the computation is over.

Since the counting protocol is over (if not, the population will be reseted
again and again until the counting is over), the size is known. With that, we are
sure to have counted each agent started in state sId, as the leader must have
seen each agent in this protocol before finishing it. ⊓⊔

Remark 7. In other words, if at some moment, the population needs to know
the number of agents which started in the state sId, then this is possible.

4.5 Turing Machine Simulation

With all these ingredients we will now be able to access to the input easily. We
will also use the chain to simulate a tape of a Turing Machine.

The result obtained in this section is a weaker bound than the one we will
obtain latter. The principle of this proof helps to understand the stronger result.

Proposition 6. Any language in MNSPACE(logn, logn) can be recognized by
an homonym population protocol with logn identifiers.

Proof. The main key of this proof is to use the chain as a tape for a Turing
Machine. To simulate the tape of the Turing Machine, we store the position
where the head of the Turing machine is by memorizing on which multiset the
head is (via the corresponding identifier) and its relative position inside this
multiset: the previous protocol will be used to find out the number of agents
with some input symbol in the current multiset, in order to update all these
information and simulate the evolution of the Turing Machine step by step.

More precisely, let M ∈ MNSPACE(logn, logn). There exists some k ∈ N

such that M uses at most k logn bits for each input of size n. To an input
x1#x2#. . .#xf(n), we associate the input configuration with, for each s ∈ Σ
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and for each i ≤ f(n), |xi|s agents in state k with the identifier (i − 1), |xi|s
being the number of s in xi.

The idea is to use the chain as the tape of the Turing Machine. We give k bits
to each agent, so that the protocol has a tape of the correct length (the chain
is of size logn). We just need to simulate the reading of the input (the writing
will be intuitively be performed by the leader keeping track of the identifier of
the agent where the machine’s head is). The protocol starts by counting the
population and resetting agents after that.

We assume that symbols on Σ are ordered. Since the language recognized
by M is logn-symmetric, we can reorganize the input by permuting the xi’s such
that the input symbols are ordered (i.e.Σ = {s1, s2, . . .} and xi = s1s1 . . . s1s2 . . .).

Here are the steps that perform the simulation of reading the tape:

0. The chain contains two counters. The leader also stores an identifier Id and
a state s. The first counter stores the total of sId computed at some point
by the protocol of Proposition 5. The second counter c2 is the position the
reading head. The simulated head is on the c2th s of xId+1.

1. At the beginning of the protocol, the population counts the number of agents
with input s1 and identifier 0, where s1 is the minimal element of Σ. c2 is
initialized to 1.

2. When the machine needs to go to the right on the reading tape, c2 is incre-
mented. If c2 equals c1, then the protocol looks for the next state s′ in the
order of Σ, and count the number of s′Id. If this value is 0, then it takes the
next one. If s was the last one, then the reading tape will consider to be on
a #.
If the reading head was on a #, then it looks for the successor identifier of
Id, and counts the number of s1. If Id was maximal, then the machine knows
it has reached the end of the input tape.

3. The left movement process is similar to this one.

This protocol can simulate the writing on a tape and the reading of the input.

To simulate the non deterministic part, each time the leader needs to make
a non deterministic choice between two possibilities, it looks for an agent. If the
first agent the leader meets has its identifier equal to 1, then the leader makes
the first choice, otherwise it makes the second one. When the computation is
over, if it rejects, it reset the simulation and starts a new one.

By fairness, if there is a path of non deterministic choices for the machine,
the protocol will at some point use it and accept the input, as would do M . If
not, as all the agents will stay in a rejecting state, the protocol will reject the
input.

This protocol simulates M . ⊓⊔

Corollary 1. Let f such that f(n) = Ω(log n).
Any language in MNSPACE(f(n), f(n)) can be recognized by an homonym

population protocol with f(n) identifiers.
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Proof. We use the same protocol (which is possible as the size of the population
can be computed). Since the chain of identifiers has a length of f(n), we have
access to a tape of size f(n). ⊓⊔

4.6 Polylogarithmic Space

We prove now the exact characterization of what can be computed by our model:
functions computable by Turing Machines on polylogarithmic space. To prove
it, we first prove several propositions. The combination of the three following
results permit to conclude the main theorem.

Proposition 7. Let f such that f = Ω(log n). Let k be a positive integer.

Any language in MNSPACE
(

logk n, f(n)
)

can be recognized by a protocol

with f(n) identifiers.

Proof. The idea here is that, by combining several identifiers together, we get
much more identifiers available, increasing the chain and space of computation:
Indeed, if we combine m identifiers together in a m-tuple, then we get f(n)m

possible identifiers. The basic idea is to count in base f(n): the leader finds
f(n)m agents and distribute to each of them a unique new identifier (encoding
as a m-tuple of original identifiers).

To do so, first the population performs the computation of the size of the
population. This also builds a chain of all the identifiers. Then, the leader creates
a counter of m identifiers, initialized at (0, 0, . . . , 0) (seen as the number 0 . . . 0
written in base f(n)). It looks for an agent in state N (i.e. N corresponds to the
state of a agent which has not been given a m-tuple identifier yet) and transmits
its new identifier: that is the current m-tuple stored in the leader. The leader
then increments his counter by 1. As soon as it has finished (by giving f(n)m or
n identifiers, depending on what happens first), the protocol can then work on
a tape of space f(n)m.

Since f(n) = Ω(log n), there exists some m such that f(n)m ≥ logk n. ⊓⊔

Proposition 8. Let f such that there exists some real r > 0 such that we have
f(n) = Ω(logr n).

Any language in
⋃

k≥1 MNSPACE(logk n, f(n)) can be recognized by an
homonym population protocol with f(n) identifiers.

Proof. We only need to treat the counting protocol when r < 1 (the case r = 1 is
treated in Proposition 7, the case r > 1 is a direct corollary of this proposition).

In previous constructions, to count the population, we needed at least logn
identifiers. The idea is to use ℓ-tuples to encode identifiers, when the number of
identifiers is too low.

By taking ℓ = ⌈ 1
r ⌉ we have f(n)

ℓ = Ω(logn), and a counting protocol can be
implemented after distributing these new identifiers (using a process similar to
previous proposition).
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More precisely, in the counting protocol, when agents realize that f(n) might
be reached and they need more identifiers, they use the tuple, storing the max-
imal identifier Id1. If at some point, they realize that a higher identifier Id2
exists, they just do an appropriate update of the numbers stored in the chain.

⊓⊔

Proposition 9. Consider a predicate computed by a protocol with f(n) identi-
fiers. Assume that f(n) = O(logℓ n) for some ℓ ≥ 1.

The predicate is in MNSPACE(logk n, f(n)) for some positive integer k.

Proof. We need to prove that there exists a Turing Machine that can compute,
for any given input x, the output of protocol P .

From definitions, given some input x, P outputs the output y on input x if and
only if there exists a finite sequence (Ci)i∈N, starting from an initial condition
C0 representing x, that reaches at some finite time j some configuration Cj

with interpretation y, and so that any configuration reachable from Cj has also
interpretation y.

This latter property can be expressed as a property on the graph of config-
urations of the protocol, i.e. on the graph whose nodes are configurations of n
agents, and whose edges corresponds to unique step reachability: one must check
the existence of a path from C0 to some Cj with interpretation y so that there
is no path from Cj to some other C′ with interpretation different from y.

Such a problem can be solved in NSPACE(logN) where N denotes the
number of nodes of this graph of configurations. Indeed, guessing a path from
C0 to some Cj can easily be done in NSPACE(logN) by guessing intermediate
nodes (corresponding to configurations) between C0 and Cj . There remains to
see that testing if there is no path from Cj to some other C′ with interpretation
different from y can also be done in NSPACE(logN) to conclude.

But observe that testing if there is a path from Cj to some other C′ with in-
terpretation different from y is clearly in NSPACE(logN) by guessing C′. From
Immerman-Szelepcsnyi’s Theorem [14,16] we know that one hasNSPACE(logN) =
co−NSPACE(logN). Hence, testing if there is no path from Cj to some other
C′ with interpretation different from y is indeed also in NSPACE(logN).

It remains now to evaluate N : For a given identifier i, an agent encodes
basically some basic state b ∈ B, and d identifiers u1, u2, . . . , ud. There are at

most n agents in a given state (i, b, u1, u2, . . . , ud). Hence N = O(n|B|·f(n)d+1

).
In other words, the algorithm above in NSPACE(logN) is hence basically in
MNSPACE((|B| · f(n)d+1) logn, f(n)). As a consequence, this is included in
MNSPACE(logk n, f(n)) for some k. ⊓⊔

Theorem 3. Let f such that for some r, we have f(n) = Ω(logr n). The set
of functions computable by homonym population protocols with f(n) identifiers
corresponds exactly to

⋃

k≥1 MNSPACE(logk n, f(n)).
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5 The Rest of the Hierarchy

5.1 Population with n
ǫ Identifiers

One can go from nǫ (with ǫ > 0) to a space of computation equivalent to the case
where f(n) = n: We just need to use a k-tuple of identifiers, as in Proposition 7.

Theorem 4. Let f such that there exists some k ∈ N such that f(n) ≥ n1/k.
The set of functions computable by homonym population protocols with f(n)
identifiers corresponds exactly to MNSPACE(n logn, f(n)).

Remark 8. This result does not need the two restrictions of knowing if an iden-
tifier is equal to 0 or if two identifiers are consecutive. The result holds when the
set of possible identifiers U is chosen arbitrarily and when the restrictions over
the rules are those in [13].

5.2 Population with o(logn) Identifiers

This time, we consider we have really few identifiers. To write the size of the
population in binary, we need to differentiate logn agents. With o(log n) iden-
tifiers, it is no longer possible. Because of that, the counting protocol and the
reset protocol can no longer be used to simulate Turing Machines.

In this section, we consider two cases: f(n) = o(logn) and a constant number
of identifiers. We have a characterization when this number is constant: it leads
to population protocols. In the general case, the population is more powerful,
but we do not have any exact characterization.

Theorem 5. Let f such that for some k ∈ N, we have, for all n, f(n) ≤ k.
The set of functions computable by homonym population protocols with f(n)

identifiers corresponds to the semilinear sets over Σ × [0, k − 1].

Proof. Each agent tries to put in its internal state the value of its identifier by
using the following algorithm:

– If the identifier is 0, then the agent puts 0.
– If an agent knowing its identifier id meets an agent with identifier Next(id),

then the second knows its identifier by incrementing id.

From this, it is possible to compute semilinear predicates. Indeed, agents know
now their initial state and can run the corresponding population protocol.

The proof that only semilinear sets can be computed is quite simple: we see
a community protocol as a population protocol where the identifiers are directly
included in the states. More precisely, Q′ = B × [1, k] × ([1, k] ∪ { })d+1, and
δ′ = δ. ⊓⊔

Proposition 10. There exists some non semilinear predicates over Σ × [1, k]
and some function f = o(log n) such that there exists a homonym population
protocols with f(n) identifiers that computes this predicate.
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Proof. For example, it is possible to compute the predicate asking if the agents
with an even identifier are in majority.

To compute this it suffices to determine for each agent if its identifier is even
or odd. The way to compute it is as follows:

– If the identifier is 0, then the agent remembers its identifier is odd.
– If an agent knowing its parity meets an agent with an identifier that is the

directly next one, then the second knows its parity by switching the other’s
one.

We then run the protocol [xeven identifier > xodd identifier]. ⊓⊔

Remark 9. Another counter-example is that we can compute the following pred-
icate





∑

id≤idmax/2

aixsi,id −
∑

id>idmax/2

bixsi,id ≥ c





where xsi,id is the number of agents with input si and identifier id. This predicate
corresponds to a threshold predicate when we take into consideration whether
the identifier of the agent is in the first or second half of the present ones.

This protocol computes the threshold predicate with first value bi for each
agent with non 0 identifier and input si, and ai for the agents with identifier 0
and input si.

To compute the medium identifier, we have d = 2. For an agent qi,j,k, imeans
agent’s own identifier, j is the medium candidate and, k represents 2j or 2j+1.
At the beginning, if the identifier is 0, then we have q0,0,0, otherwise, we get
qi, , . The state q means ”I need to increment k if k + 1 is present”. The state
q++ means ”I need to increment both j and k if k+ 1 is present”. The state q+

means ”I need to increment j if k+1 is present”. Hence, each time we increment
twice k, we increment once j.

The rules are:

qi, , q′0,j′,k′ → qi,0,0 q′0,j′,k′

qi,j,k q′k+1,j′,k′→q++
i,j,k+1 q′k+1,j′,k′

q++
i,j,k q′k+1,j′,k′→q+i,j,k+1 q′k+1,j′,k′

q+i,j,k q′j+1,j′,k′→qi,j+1,k q′j+1,j′,k′

As soon as an agent in input si realizes its identifier is smaller or equal to its
j, it adds ai − bi to its state if possible (otherwise, it waits an occasion to add
it to another agent).

By fairness, all agents will determine at some point if their identifier is greater
or smaller to half the highest one, and then the leader will be able to compute
the right output.

6 Passively Mobile Machines

We now show how previous constructions improve the results about the passively
mobile protocol model [7]. This section treats the case where S(n) = O(log logn)
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in the passively mobile protocol model. Table 2 gives a summary of this hierarchy.
PMSPACE(f(n)) corresponds to the class of languages recognized by Passively
Mobile Agents using space O(f(n)).

Theorem 6. PMSPACE(log logn) =
⋃

k≥1 SNSPACE(logkn).

Proof. 1.
⋃

k≥1 SNSPACE(logkn) ⊂ PMSPACE(log logn).

The idea of this proof is quite simple: Let M ∈ SNSPACE(logkn). We can
notice that SNSPACE(logkn) ⊂ MNSPACE(logkn, logn) (as the space of
computation is the same and symmetric is equivalent to be a single multiset).
From Theorem 3, there is a population protocol computing M. We will sim-
ulate it. With space O(log logn), we can simulate a population protocol with
O(2log logn) = O(log n) identifiers.

Indeed, we adapt a bit the counting protocol. At the beginning, each agent
has identifier 0 in order to create logn identifiers. When two agents with the
same identifier meet, if each one contains the integer 1, then the first switch its
integer to 0 and, the other increases its own identifier.

We then just need to simulate the behavior of each agent as if they have
started with their created identifier. It requires a space of size |B|+(d+1) log logn
plus some constant, which is enough.

2. PMSPACE(log log n) ⊂
⋃

k≥1 SNSPACE(logkn): The proof is similar
to the one of Theorem 9: It is a question of accessibility in the graph of the con-
figurations. We need to compute the number of possible configurations denoted
by N .

For each agent, there are |Q| possible states and 4 tapes of length α log logn
for some α. Hence, there are |Q| × |Γ |4α log logn possible states for each agent.

Now |Γ |4α log logn = |Γ |log(log
4α n) =

(

log4α n
)log |Γ |

For each possible state, there are at most n agents sharing it.

Hence, N = O
(

n|Q|×(log4α n)log |Γ |
)

.

The accessibility can be computed by a machine in space complexityO(logN),

which means a space O
(

|Q| ×
(

log4α n
)log |Γ |

logn
)

= O(logk n) for some k ∈ N.

⊓⊔

With a similar proof, we can get the following result that gives a good clue
for the gap between log logn and logn:

Corollary 2. Let f such that f(n) = Ω(log logn) and f(n) = o(logn).

SNSPACE(2f(n)f(n)) ⊂ PMSPACE(f(n)) ⊂ SNSPACE(2f(n) logn).

7 Summary

From the model given by Guerraoui and Ruppert [13], we introduced a hierarchy
according to the number of distinct identifiers in the population:
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– The existence of identifiers is useless with a constant number of the identi-
fiers.

– Homonym population protocols with Θ(logr n) identifiers can exactly recog-

nize any language in
⋃

k∈N
MNSPACE

(

logk n
)

.

– Homonym population protocols with Θ(nǫ) identifiers have same power that
homonym population protocols with n identifiers.

It remains an open and natural question: is the knowledge of consecutive val-
ues of two identifiers crucial or not? Our guess is that this knowledge is essential
to compute the size of the population. Protocols without this assumption have
not been found yet.

Chatzigiannakis et al. [7] started a hierarchy over protocols depending on
how much space of computation each agent has. The paper left an open ques-
tion on the gap between o(log logn) and O(log n). We provided an answer, by

proving that with Θ(log logn) space, exactly
⋃

k∈N
SNSPACE

(

logk n
)

is com-

puted. However, it remains the gap between O(log logn) and O(log n), where we
currently just have the following bounds:

SNSPACE(2f(n)f(n)) ⊂ PMSPACE(f(n)) ⊂ SNSPACE(2f(n) logn).
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5. S. Arévalo, A. Fernández Anta, D. Imbs, E. Jiménez, and M. Raynal. Failure
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