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Abstract
Whether the reachability problem for branching vector addition systems, or equivalently the
provability problem for multiplicative exponential linear logic, is decidable has been a long-
standing open question. The one-dimensional case is a generalisation of the extensively studied
one-counter nets, and it was recently established polynomial-time complete provided counter
updates are given in unary. Our main contribution is to determine the complexity when the
encoding is binary: polynomial-space complete.
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1 Introduction

Background Vector addition systems, also known as Petri nets (cf., e.g., Reisig’s book [21]),
are one of the longest established, most extensively studied, and most widely applied models
of concurrent computing systems. Their branching generalisation has attracted considerable
attention in recent years from the research community on logic in computer science. In ad-
dition to the simplicity and elegance of the model, this popularity is due to remarkably
close connections with computational linguistics [20, 22], cryptographic protocols [25], lin-
ear logic [8, 16], semi-structured databases [13, 1], recursively parallel programs [5], game
semantics [7], and timed pushdown systems [6].

A central decision problem for branching vector addition systems is reachability: whether
a computation tree exists that has the given root and leaves. Similarly to the simpler setting
of Petri nets, this problem has turned out to be very challenging. However, in contrast to
Petri nets where the challenge is determining the complexity of reachability below a currently
best cubic-Ackermann bound [17], even decidability is still open for the branching vector
addition systems reachability problem. For reasons indicated above, the latter question was
recently highlighted by Bojańczyk as one of a handful of most interesting open problems in
computer science logic [4].1

The decidability of the branching reachability problem is in fact open already in two
dimensions. However, in one dimension, i.e. when there is only one counter, Göller et
al. [10] established decidability, and more precisely polynomial-time completeness provided

∗ Partially supported by EPSRC grant EP/M011801/1 and Royal Society grant IE150122.
1 Although decidability has been stated in a published journal article [2], we believe that claim has not
been accepted by the community due to lack of proof, cf. [23, Footnote 4].
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XX:2 Reachability for Succinct 1BVASS

unary binary
1VASS NL-complete [24, 15] NP-complete [11]

1BVASS P-complete [10] PSpace-complete

Table 1 Complexity of reachability for one-dimensional vector addition systems with states,
depending on the presence of branching and the encoding of counter updates

the numbers that specify the counter updates in the system are given in unary. The precise
complexity with the encoding in binary remained undetermined.

From another point of view, our investigation builds on the voluminous literature on
decision problems for one-counter automata, a ubiquitous class obtained by either dropping
one counter from Minsky (two-counter) machines or restricting pushdown automata to one
stack symbol. In particular, the complexity of the reachability problem for one-counter
systems is known: NL-completeness with the updates given in unary is a classical result [24,
15], and NP-completeness for succinct systems is due to Haase et al. [11] (cf. the latter paper
for further references on the subject).

Contributions Our main result is the closure of the complexity gap for the reachabil-
ity problem on succinct one-dimensional branching vector addition systems with states
(1BVASS), which was between NP hardness inherited from 1VASS [11] and ExpTime mem-
bership that follows from the P membership for unary 1BVASS [10].2 We show that the
problem is in fact PSpace-complete, which fills the little Table 1.

The fact that the complexities for 1BVASS correspond exactly to ‘adding alternation’ to
the complexities for 1VASS makes them easy to remember. However, it is quite misleading in
terms of proofs, at least as far as we can see. The branchings in computations of BVASS are
not alternations: counter valuations at child nodes are summed, not compared for equality.3
Already in the unary case, the proof of P-completeness for 1BVASS [10] is considerably more
involved than of NL-completeness for 1VASS [24, 15]. In our proof of PSpace-completeness
for binary 1BVASS, there are several substantial new insights in comparison to both unary
1BVASS and binary 1VASS [11]:

we introduce a novel notion of implicit reachability witnesses, show that such a witness
of at most an exponential size always exists, and hence argue that it can be guessed and
checked in polynomial space;
for the exponential bound on the size of witnesses, a polynomial bound on their counter
valuations as for unary 1BVASS [10] is not sufficient because trees with exponentially
long branches may be doubly exponentially large;
one of the techniques we employ for establishing the exponential bound involves a novel
rewriting strategy, which may be of wider interest since it transforms fragments of com-
putation trees to a normal form that features principal branches, whereas the lack of such
a structure has hitherto been an obstacle to generalising Kosaraju’s approach [14, 17] to
BVASS;

2 We remark that we write ‘with states’ because stateless (B)VAS are sometimes considered in higher
dimensions since states can be encoded at the expense of three additional counters; and that 1VASS,
i.e. one-counter nets, are as hard as one-counter systems in this context since the ability to zero-test
the counter does not make reachability significantly more complex.

3 Reachability for alternating VASS is actually undecidable, for relatively trivial reasons [19].
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in contrast to the other three hardness results summarised in Table 1, our lower bound
proof is highly intricate, resting on a system of encodings and checks through which
alternation can be simulated by additive branching up to a linear depth.

Organisation After the next section in which we define the systems we consider and observe
some of their basic properties, the two sections that follow contain the PSpace-membership
proof. In the penultimate section, we present the PSpace-hardness construction, and then
finish with some concluding remarks.

2 Preliminaries

1BVASS A one-dimensional branching vector addition system with states (1BVASS for
short) is a triple B = (Q,∆, I) where Q is a non-empty finite set of states, ∆ is a non-
empty finite subset of Q×Q×Z×Q, and I ⊆ Q is a finite set of initial states. An element
δ = (qL, qR, z, q) in ∆ is called a transition, and the integer z is called the displacement
of the transition. In the sequel, the maximal absolute displacement is denoted by M .
A configuration is a pair in Q × N, and a configuration in I × {0} is called an initial
configuration. Since the displacements are given in binary, we define the size of B as |B| =
|Q|+ |∆| log2(M + 1).

Trees We write u � v if u is a prefix of v and u ≺ v if u is a strict prefix. A tree is a
non-empty finite prefix-closed subset T of {L,R}∗ satisfying the property that tL ∈ T if,
and only if, tR ∈ T for every t ∈ T . Elements of T are called nodes. Its root is the empty
word ε. An ancestor s of a node t is a prefix of t. In that case t is called a descendant of s.
By writing strict descendants and ancestors we exclude s = t. A child of a node t is a node
tL or tR in T . A node is called a leaf if it has no child, and it is said internal otherwise.
The sibling of a node t 6= ε in the tree T is the node obtained by swapping the last letter.
The height of a node t is |t|. The size of a tree T is its cardinality |T |. The height of T is
the maximal height of any of its nodes. The subtree of T rooted at a node t in T is the tree
t−1T = {t′ ∈ {L,R}∗ | tt′ ∈ T}. The truncation of T at a node t is the tree T\t{L,R}+.
Notice that t becomes a leaf of that truncated tree.

Runs and Reachability We consider labeled trees T where each node t is labeled by a
state qt ∈ Q and a value nt ∈ N defining a configuration (qt, nt). A run ρ is a labeled
tree such that for every internal node t, there exists an integer z such that (qtL, qtR, z, qt)
is a transition in ∆ and such that nt = ntL + ntR + z. The notions of height, size, subtree
(called subrun in that context), and truncation are extended from trees to runs as one would
expect. Notice that the labels are ignored in the size of a run.

A run is said to be complete if every leaf is labeled by an initial configuration. We write
partial run, instead of run, when we want to emphasize that the run could be not complete.
A configuration is said to be reachable if it is the root configuration of a complete run. We
are mostly interested in the reachability problem: given a 1BVASS B and a configuration
(q, n) decide whether (q, n) is reachable. The size of the input is |B|+ log2(n+ 1).

I Example 1. Fix numbers n, b such that 0 ≤ b ≤ 2n. We define the 1BVASS B = (Q,∆, I),
where Q = {q1 . . . qn} ∪ {qI , qF } and I = {qI}. There are three types of transitions:

(qI , qI , 0, q1), (qI , qI , 1, q1); (qi, qi, 0, qi+1) for all i < n; (qn, qn,−b, qF ).

ICALP 2017
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The first two transitions initialize q1 with 0 or 1; the next n transitions build a full binary
tree below each state qi; and the last transition decreases the value of the counter by b.
Consider the reachability problem of (qF , 0). The complete runs with (qF , 0) in the root
are full binary trees of height n + 1 such that the number of nodes with state q1 is 2n and
exactly b of them have value 1.

Contexts and Concatenation A context π = (ρ, t) is a run ρ equipped with a distinguished
leaf t called the source of π. The label of t is called the source configuration of π. Such a
context is also called a context from the source configuration up to the root configuration
of ρ. Given a node t in a run ρ and an ancestor s of t, i.e. such that t = su for some word
u, we define the context between (s, t) as the subrun rooted at s of the truncation at t of ρ,
equipped with u as the source node. An ancestor of the source t is called a main node of π.
The set of main nodes of π is called the main branch. A dangling node in π is a node that
is a sibling of a main node. A dangling configuration is a configuration of such a node.

The concatenation πρ of a context π with a run ρ is defined if the source configuration
(p,m) of π and the root configuration (q, n) of ρ satisfy p = q and if the natural numbers
labeling the main nodes of π are larger than or equal to m−n. Then πρ is defined by adding
to the main nodes of π the integer n−m, and replacing the leaf node t of that context with
ρ. Notice that πρ is a run. Contexts can be concatenated a similar way. The concatenation
ππ′ of a context π = (ρ, t) with a context π′ = (ρ′, t′) is defined if πρ′ is defined. In that
case ππ′ is the context (πρ′, tt′).

Cycles and Minimal Nodes A context from (p,m) up to (q, n) is called a cycle if the source
is distinct from the root node and p = q. The cycle is said to be simple if on the main branch
only the source and the root have the same states. A main node v is said to be minimal in
a cycle if its value is minimal on the main branch, i.e., nv ≤ nv′ for any other main node v′.
We write d-cycle do emphasize the growth of the cycle, where d = n−m. The cycle is said
to be increasing if d > 0, zero if d = 0, and decreasing if d < 0.

Let π be a d-cycle, and let p be the state of its source node. Let ρ = ρ1πρ2 be a context
or a run. By removing π from ρ we obtain ρ′ = ρ1ρ2 (provided there is no drop below 0).
Similarly, let ρ = ρ1ρ2 be a context or a run such that the source of ρ1 has state label p. By
inserting π into v we obtain ρ1πρ2 (provided that there is no drop below 0). Notice that it
is always safe to remove decreasing cycles and to add increasing cycles.

3 d-Coverability

A key role in our polynomial-space algorithm for the reachability problem is played by a
more relaxed notion of ‘coverability modulo d’: instead of reaching a value x exactly, it is
allowed to reach any value which is at least x, provided the difference with x is a multiple
of d. More formally, a configuration (q, n) is said to be d-coverable where d > 0 is a natural
number if there exists a reachable configuration (q, x) with x ∈ n+N.d. A d-coverability run
of a configuration (q, n) is a complete run rooted by a configuration (q, x) with x ∈ n+N.d.
Note that a similar notion of d-reachability was used to show P-completeness for reachability
of unary 1BVASS [10].

This section culminates by establishing that every d-coverable configuration (q, n) admits
a ‘small’ d-coverability run, namely of size bounded by (n+ 5).(d2|B|)6. We present most of
the proof, which is an orchestration of pigeonhole arguments and safe collapses, as a sequence
of lemmas. Let us start with a simple observation about divisibility of subset sums.
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I Lemma 2. Let z1, . . . , zd be a non-empty sequence of integers. There exists a non-empty
finite set J ⊆ {1, . . . , d} such that d divides

∑
j∈J zj.

I Lemma 3. Let (q, n) be a configuration and let ρ be a d-coverability run of (q, n) of
minimal size. If the size of ρ is larger than |Q|.2|Q|.d2 then ρ contains an increasing cycle.

Proof. Let ρ be a d-coverability run of (q, n). Suppose: (1) the height of ρ is smaller than
|Q|.d; and (2) for every height ` ≥ 1 the number of nodes in ρ of height ` is smaller than
2|Q|.d. Then it follows that the number of nodes of ρ is bounded by 1 (the root) plus |Q|.d
times 2|Q|.d− 1 (the remaining nodes). Hence the size is bounded by |Q|.2|Q|.d2. It remains
to show that if (1) or (2) does not hold then ρ is not minimal or contains an increasing cycle.

In the first case (1) assume that the height of ρ is at least |Q|.d. In that case, there
exists a node t such that |t| = |Q|.d. The nodes on the branch from the root to t are the
prefixes of t. It follows that the number of nodes on that branch is equal to |Q|.d+1. Notice
that if every state of Q occurs at most d times on that branch, then the number of nodes
of that branch is bounded by |Q|.d and we get a contradiction. It follows that some state
q occurs at least d+ 1 times as a label of a node in that branch. If ρ does not contain any
increasing cycle, then all repetitions induce zero or decreasing cycles. Lemma 2 shows that
by removing at most d such cycles in that branch we get another d-coverability run of (q, n),
smaller than ρ.

In the second case (2) assume that there exists a level ` ≥ 1 such that the number of
nodes in ρ of height ` is at least 2|Q|.d. It follows that ` ≥ |Q|. Notice that these nodes
have ancestors in level `− |Q|. Since the number of elements in level ` that have the same
ancestors in level ` − |Q| is bounded by 2|Q|, it follows that the level ` − |Q| contains at
least d distinct nodes t1, . . . , td such that, for some words u1, . . . , ud of length |Q|, we have
tiui ∈ ρ for every 1 ≤ i ≤ d. The pigeon-hole principle shows that we can extract a cycle
in the context between (ti, tiui) for every i. If ρ contains no increasing cycles, then these
cycles are zero or decreasing. Lemma 2 shows that by removing at most d such cycles we
get another d-coverability run of (q, n), smaller than ρ. J

Small d-coverability runs are obtained thanks to the class of witnesses of d-coverability
defined as follows. A witness of d-coverability of a configuration (q, n) is a partial run ψ

with the root labeled (q, x), where x ∈ n+N.d. Every leaf labeled by a configuration (p,m)
that is not initial is equipped with a complete run with root label (p, y) with y ≡ m mod d

and containing an increasing cycle. A node of ψ is said to be modular when it is an ancestor
of such a leaf. We show in the sequel that the existence of d-coverability runs implies the
existence of small witnesses of d-coverability. Moreover we provide a way to forge small
d-coverability runs from small witnesses of d-coverability.

I Lemma 4. Every d-coverable configuration (q, n) has a witness ψ such that:
the subruns of ψ rooted at non-modular nodes have size at most |Q|.2|Q|.d2, and
the complete runs attached to modular leaves have size at most 2|Q|.2|Q|.d2 + 1.

Proof sketch. We truncate a minimal d-coverability run, bottom-up, at the first increasing
cycles. The bounds follow from Lemma 3. J

To reduce the number of modular nodes, we introduce an operation on d-coverability
witnesses that collapses cycles between modular nodes, as follows. Given a modular leaf `
and two ancestors u, v satisfying u ≺ v � ` such that qu = qv, we transform the witness as
follows. First, we introduce the minimal k ≥ 0 such that r = kd− nu + nv is non-negative.
Second, we relabel the branch from the root to the leaf ` by adding r on nodes s such that

ICALP 2017



XX:6 Reachability for Succinct 1BVASS

ε � s � u and by adding kd on nodes s such that v � s � `. It is readily seen that the
new labels of u and v are equal. Third, we remove the cycle between u and v by collapsing4
the nodes u ≺ v. Notice that after this transformation we get a witness of d-coverability for
(q, n+ r) where (q, n) was the root label of the original witness of d-coverability. We obtain
the following lemma whose proof is along the same lines as that of Lemma 3.

I Lemma 5. Let (q, n) be a configuration. By iteratively collapsing cycles, every witness
of d-coverability of (q, n) can be simplified into a witness with at most |Q|.2|Q|.d2 modular
nodes and where the height of each modular node is smaller than |Q|.d.

I Lemma 6. We may relabel modular nodes of any witness of d-coverability of (q, n) in such
a way that n` < n+ d+ |Q|.d.M for every modular leaf `.

I Theorem 7. Every d-coverable configuration (q, n) admits a d-coverability run of size at
most (n+ 5).(d2|B|)6.

Proof. By applying Lemmas 4, 5, and 6 in succession, we get a witness of d-coverability
for (q, n) satisfying the bounds in these lemmas. Assume first that the root node of that
witness is not a modular node. In that case the witness of d-coverability of (q, n) is in fact
a d-coverability run of (q, n) and by Lemma 4 the size of this run is bounded by |Q|.2|Q|.d2.

Now, suppose that the root node of the witness is a modular node. Let µ be the number
of all modular nodes, and ζ the number of all non-modular nodes. By Lemma 5 we get
µ ≤ |Q|.2|Q|.d2. We bound ζ as follows. A non-modular node t is called a side node if it is
the sibling of a modular node. Observe that non-modular nodes are descendant of side nodes
and by Lemma 4 subruns rooted in side nodes have sizes bounded by |Q|.2|Q|.d2. Since the
number of side nodes is bounded by µ, we derive that ζ ≤ µ.|Q|.2|Q|.d2.

To build a d-coverability run from the witness we iterate the following process for each
modular leaf ` in the witness. As a first step, we transform the attached complete run ρ` of `
in such a way its root label (q`, x) satisfies x ∈ n`+Nd. Recall that ρ` contains an increasing
cycle π. The above-mentioned transformation simply amounts to iterating this cycle d.n`
times. By Lemma 4 the size of ρ` is bounded by 2.|Q|.2|Q|.d2 +1, which also bounds the size
of π. The size of the resulting complete run ρ′` is bounded by 2.|Q|.2|Q|.d2 +1 (the size of ρ`)
plus d.n`.2.|Q|.2|Q|.d2 (the result of iterating the increasing cycle). It follows that the size
of ρ`′ is bounded by 2.(d.n`+ 1).|Q|.2|Q|.d2 + 1. By Lemma 6 we have n` < n+d+ |Q|.d.M ,
so we get that the size of ρ`′ is bounded by 2(n+ 3).M.|Q|2.2|Q|.d4 + 1.

Let (q`,m`) be the configuration of the root of ρ′`. Observe that m` ∈ n` + Nd. In the
second step we add m` − n` to each node on the branch from ` to the root of the witness.
After this step, the new label of ` is equal to the root label of ρ′`. As a third step, we simply
replace the leaf ` by the complete run ρ′`.

We obtain a d-coverability run ρ for (q, n) of size µ+ ζ, plus the sum of the sizes of the
complete runs ρ′` for each modular leaf `. This is bounded by

µ+ µ.|Q|.2|Q|.d2 + µ.(2(n+ 3).M.|Q|2.2|Q|.d4 + 1) ≤ (2n+ 9).M.|Q|3.4|Q|.d6.

Since M.2|Q| ≤ 2|B|, we get that the size of ρ is at most (n+ 5).(d2|B|)6. J

4 Collapsing two nodes u ≺ v consists in replacing the labeled subtree rooted in u by the labeled subtree
rooted in v.
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4 Reachability

This section is devoted to the proof of the following theorem.

I Theorem 8. The reachability problem for 1BVASS is in PSPACE.

The complexity is w.r.t. the sizes of the input 1BVASS and root configuration, both
encoded in binary. Our proof relies on the following small witness property5.

I Lemma 9. If c is a reachable configuration with a value bounded by 2|B| in a given 1BVASS
B then there exists a complete run of size at most 260|B|3 with root configuration c.

Indeed, Lemma 9 implies Theorem 8. First, notice that for configurations with value
bigger than 2|B| it suffices to solve the problem for value 0 with an auxiliary step in the
given BVASS. More precisely, if we ask for reachability of (q, n) we can add two states r, r′
such that r is initial, a new transition (q, r,−n, r′), and change the question to reachability
of (r′, 0). To verify if a configuration c with a value bounded by 2|B| is reachable, we guess a
complete run for c in nondeterministic polynomial space. Since it is impossible to maintain,
in polynomial space, all nodes of the run in the memory, we only maintain the ancestors of
the currently processed node whose other child was not processed yet. For every processed
node v if it is an initial configuration then we go back to the closest ancestor a whose other
child was not verified and proceed with that child. In this case we remove the ancestor a
from the memory. Otherwise, we guess nondeterministically two children of v such that their
triple satisfies some transition in ∆ and continue with one of the children. The procedure
nondeterministically guesses to proceed with the child whose subtree contains at most half
of the leaves in the complete run. It remains to observe that the procedure does not need
to remember more than 60|B|3 ancestors, otherwise the complete run would require more
than 260|B|3 nodes. Notice that it is possible that a node has an exponential number of
ancestors, but the procedure does not need to remember them all. The rest of this section
is devoted to prove Lemma 9.

Small complete runs are forged from the so-called witnesses of reachability. Formally, the
class of witnesses of reachability is defined inductively as follows. A witness of reachability
w of a configuration c is a partial run with root labeled by c and such that every leaf
labeled by (p,m) that is not an initial configuration is a reachable configuration equipped
with an implicit decreasing simple cycle up to the configuration (p, 0). Implicit means that
only the main branch and the dangling nodes of the decreasing cycle are given explicitly.
Each dangling configuration is equipped with a witness of reachability. Notice that every
configuration admiting a witness is reachable since the leaves of the top most partial run of
that witness are labeled by reachable configurations. The depth of a witness of reachability
is defined as follows. The depth of a complete run is zero, and the depth of a witness of
reachability that is not a complete run is one plus the maximal depth of the witnesses of
reachability defining the dangling configurations of the decreasing cycles. The depth of a
witness of reachability w is denoted by depth(w). Figure 1 shows an example witness of
reachability, suggesting how we turn it into a complete run. To bound the sizes of complete
runs obtained from reachability witnesses we introduce the value maxsize(w) denoting the
size of the biggest partial runs occuring in a witness of reachability w. The following lemma
shows that maxsize(w) provides a simple way to bound values occuring in w.

5 In [6] it is proved that reachable configurations of 1BVASS admit complete runs with at most expo-
nential values, but this is not enough to prove the PSPACE upper bound.
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XX:8 Reachability for Succinct 1BVASS

Figure 1 A witness whose topmost partial run has two leaves that are not initial. Decreasing
cycles are attached, and the dangling configurations are provided with their subwitnesses.

I Lemma 10. For every witness of reachability w of a configuration with a value bounded
by 2|B|, the root values of the partial runs used by w are bounded by 2|B|. Moreover, any
value occuring in w is bounded by 22|B|.maxsize(w).

Proof. The maximal root values can be bounded by observing that, except for the top most
partial run of w, partial runs provide root configurations that are dangling configurations
of simple decreasing cycles. It follows that these values cannot exceed |Q|.M ≤ 2|B|. We
bound the other values as follows. Observe that the total sum of displacements plus the
leave values of a partial run is equal to its root value. It follows that every value of w is
bounded by 2|B| + maxsize(w).M ≤ 22|B|.maxsize(w). J

I Lemma 11. Let w be a witness of reachability of a configuration (q, n) satisfying n ≤ 2|B|
in a 1BVASS B. There exists a complete run ρw with root label (q, n) and size bounded by
(210|B|.maxsize(w))2(depth(w)+1).

Proof. We associate to s, ` ∈ N the set Cs,` of configurations (q, n) such that n ≤ 2|B|
and such that there exists a witness of reachability w of (q, n) such that maxsize(w) ≤ s

and depth(w) ≤ `. We also define f(s, `) = maxc∈Cs,`
(|ρc|), where |ρc| is the minimal size

of a complete run rooted at c. Such a run always exist since c is reachable. Notice that
f(s, 0) ≤ s since a witness of reachability of depth 0 is a complete run.

We provide a bound for f(s, ` + 1) using f(s, `). Consider a configuration c ∈ Cs,`+1.
There exists a witness of reachability of c with depth bounded by `+1 such that maxsize(w) ≤
s. Let ρ be the top most partial run of w. Suppose there is a leaf labeled by a non-
initial configuration (p,m) that is provided with an implicit simple decreasing cycle up to
(p, 0). Let us denote by −d the effect of that cycle. As the cycle is simple, it follows that
d ≤ |Q|.M ≤ 2|B|. The dangling configurations c1, . . . , ck of that cycle are given by witnesses
of reachability w1, . . . , wk such that depth(wj) ≤ ` and maxsize(wj) ≤ s. It follows that
c1, . . . , ck ∈ C`,s. By induction, the dangling configurations c1, . . . , ck can be replaced by
complete runs of size bounded by f(s, `). Since the cycle is simple, k ≤ |Q|. After these
replacements we obtain an (explicit) simple cycle π of size at most |Q|+|Q|.f(s, `). Moreover,
since (p,m) is reachable, it is d-coverable. Theorem 7 shows that there exists a d-coverability
run for (p,m) of size at most (m+5).(d.2|B|)6. Lemma 10 shows thatm ≤ 22|B|.maxsize(w).
Since 5 ≤ 23|B|.maxsize(w) we get m + 5 ≤ 24|B|.maxsize(w). We derive that there is a
d-coverability run ρ of (p,m) of size bounded by λ = 216|B|.maxsize(w) ≤ 216|B|.s.

There exists k ∈ N such that (p,m+k.d) is the root configuration of ρ. In order to obtain a
complete run with root configuration (p,m), we just have to consider πkρ. Notice that we can
never reach a value below zero since π is a decreasing cycle up to (p, 0). As m+ k.d ≤ λ.M ,
it follows that k ≤ λ.M . We have proved that there exists a complete run with root
configuration (p,m) and of size bounded by λ.M.(|Q| + |Q|f(s, `)) + λ ≤ 219|B|.s.f(s, `).
Finally, by replacing every non-terminal leaf by a complete run as performed previously, we
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get a complete run with root configuration c and size bounded by 219|B|.s2.f(s, `). We have
proved that f(s, `+ 1) is bounded by that value. An immediate induction shows that

f(s, `) ≤ (219|B|.s2)`.f(s, 0) ≤ (219|B|.s2)`.s ≤ (210|B|.s)2(`+1). J

By Lemma 11, to prove Lemma 9 it suffices to find a witness w such that maxsize(w)
is bounded exponentially and depth(w) is bounded polynomially in the size of the given
1BVASS. Before we prove that we introduce some notation and two auxiliary lemmas.

Before the next lemma we introduce an operation that intuitively moves increasing cycles
from left branches to right branches. By applying that operation as many times as possible,
we obtain a so-called saturated partial run. Formally, a partial run ρ is said to be reducible
in a node s if there exists an increasing cycle π between (sL, t) for some node t � sL, and
a minimal node v in π such that qv is the state of some descendant of sR. A partial run
that is not reducible is said to be saturated.

I Lemma 12. For every partial run ρ there exists a saturated partial run ρ′ with the same
root configuration, the same number of nodes, and the same mutiset of leaf configurations.

Proof. Assume that a partial run ρ is reducible on a node s. Let us denote by π an
increasing d-cycle between (sL, t) in ρ for some node t � sL and a minimal node v in π

such that qv = qv′ for some v′, a descendant of sR. Let π = π1π2 be such that π1 is the
fragment of π with the source node v. We define π′ = π2π

′
1, where π′1 is obtained from π1

by decreasing all values on the main branch by nv. Since v is minimal, notice that π′ is
an increasing d-cycle from (qv, 0) up to (qv, d) such that the multiset of configurations of
nodes not on the main branch in π and π′ are equal. By removing from ρ the increasing
cycle π, and inserting the increasing cycle π′ into v′, we get a partial run ρ′ such that the
root configuration, the number of nodes, and the mutiset of leaf configurations remain the
same as in ρ. Notice that by removing π we decrease the value of s by d, but by inserting
π′ its value is increased by d, therefore, these operations do not cause a drop below 0. Since
this transformation can be performed only a finite number of times, at some point, we get
a saturated run satisfying the lemma. J

I Lemma 13. The number of nodes of a saturated run with root labeled (q, n) with n ≤ 2|B|
that does not contain any decreasing or zero cycles is bounded by 25|B|2 .

To prove Lemma 9 we will decompose partial runs that contain a decreasing cycle. Since
such cycles are not necessarily simple, we provide the following lemma.

I Lemma 14. For every decreasing cycle π there exists a state p that labels a main node of
π and a simple decreasing cycle π′ up to (p, 0) such that the set of dangling configurations
of π′ is included in the set of dangling configurations of π.

Proof of Lemma 9. We consider a reachable configuration c with a value bounded by 2|B|.
Obviously c admits a witness of reachability because every complete run is a witness. By
Lemma 11 we need to find a witness w of c such that maxsize(w), depth(w) have proper
bounds. To do so, we associate to every witness w the sequence of natural numbers s(w) =
(sj)j≥1, where sj is the number of partial runs of size j in w, called the rank of w. These
sequences are ordered colexicographically by the total order v defined by (sj)j≥1 v (s′j)j≥1
if the two sequences are equal or there exists j ≥ 1 such that sj < s′j and si = s′i for every
i > j. Notice that sequences s(w) have finite support, i.e., {j | sj 6= 0} is finite. When
restricted to sequences with finite support the order v is well-founded, i.e., there are no
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infinite decreasing sequences. We consider for the remainder of the proof a reachability
witness w with a minimal rank (for v).

Suppose w has depth ` > |Q|. Then there exists a sequence π1 . . . π` of implicit decreasing
simple cycles such that πi+1 is a cycle equipped to the partial run of a dangling node in
πi. Then there exist i < j such that πi and πj have the same state in the root. We
replace πi with πj . In particular we remove all cycles πi . . . πj−1 and all partial runs that
were associated to them. The resulting witness has a smaller rank which contradicts our
minimality assumption on w.

Now, suppose that w contains partial runs of size bigger than 25|B|2 . Let σ be a partial
run having the maximal size and such that its depth is maximal (with respect to others
of the same size). Notice that all partial runs of larger depth are smaller than σ. Using
Lemma 12 we turn σ into a saturated run without changing the multiset of configurations
of the leaves. Lemma 10 shows that the run σ has root value at most 2|B| and thus by
Lemma 13 there exists a decreasing or a zero cycle π in σ. If π is a zero cycle then we
just remove it obtaining a smaller rank which contradicts our minimality assumption on
w. Otherwise, π is a decreasing cycle. By Lemma 14 there exists a state p that labels a
main node u of π and a simple decreasing cycle π′ up to (p, 0) such that the set of dangling
configurations of π′ is included in the set of dangling configurations of π. Since π is a cycle,
we can assume w.l.o.g. that u is distinct from the source of π. Let v be the original node of
u in σ. By assuption on u, notice that v is an internal node of σ. We define σ′ as the partial
run truncated at v and equip it with the simple decreasing cycle π′. Since v is an internal
node, σ′ is smaller from σ. The configurations of dangling nodes in π′ are also configurations
of dangling nodes in π, which come from σ. We use the partial subruns of σ as partial runs
for dangling nodes in π′. These subruns come with implicit simple decreasing cycles and
additional partial runs of smaller depth. Notice that, possibly, we have introduced double
copies of partial runs of smaller depth. Let us show that the resulting witness w′ has a
smaller rank which will contradict our minimality assumption on w. Recall that all partial
runs of bigger depth are smaller than σ. Since we have decreased the size of σ, and all
introduced partial runs are of smaller size than σ it follows that s(w′) @ s(w).

We have proved that depth(w) ≤ |Q| and maxsize(w) ≤ 25|B|2 . From Lemma 11, we get
a complete run rooted by (q, n) with size bounded by 260|B|3 . J

5 Hardness

We prove that the reachability problem for 1BVASS is PSpace-hard. Intuitively, one would
like to encode runs of an alternating PTime Turing machine: the tape configuration is main-
tained as the binary representation of the counter value, and alternation is represented by
the branching structure of the run. At first sight, binary rules of BVASS are not compatible
with any sort of alternation: the value ` of a node may come from two arbitrary values `1, `2
from children with the sole restriction that ` = `1 + `2. It thus seems pointless to pretend
to replicate information encoded in ` into both `1 and `2. However, we show that one can
enforce —in a highly restricted setting— that transitions behave in a regular way, where
` = 2 · `1 = 2 · `2. Using this, child nodes can recover information from the parent node: the
i-th bit of the child has a 1 iff the i+ 1-th bit of the parent has a 1. In this way information
can be ‘copied’ into different branches, and we can benefit from some form of alternation.

I Theorem 15. The reachability problem for 1BVASS is PSpace-hard.

Proof idea. The proof goes by reduction from the PSpace-complete problem of validity for
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Quantified Boolean Formulas. Given a QBF sentence, such as

ϕ = ∀P1 ∃P2 ∀P3 (P1 ∨ ¬P2 ∨ P3) ∧ (¬P1 ∨ P2),

we define a polynomial size 1BVASS B, in such a way that the configuration (q1, 0) is
reachable if, and only if, ϕ is valid. Transitions in B enforce that any complete run for
(q1, 0) encodes a ‘certificate’ of the validity of ϕ. In particular, this certificate contains

nondeterministic choices for the valuation of existentially quantified variables such as P2;
one branch for each of the exponentially-many valuations for universally quantified vari-
ables, such as P1 and P3;
for each branch encoding a valuation, a sub-branch for each disjunctive clause, certifying
that the clause is true under that valuation.

Levels. For this reduction, it is natural to think of runs as proceeding top-down instead
of bottom-up as done hitherto. That is, we start with a configuration (q1, 0) at the root,
and we build valuations going downward until eventually finding an initial configuration
on every branch. From this perspective, transitions of B ‘increment’ a value c > 0 before
‘splitting’ the value into children with states q′, q′′ with a transition of the form (q′, q′′,−c, q).
The behaviour of B ensure that any complete run for (q1, 0) can be divided into ‘levels’, so
that the i-th level of the tree contains encodings for the choices of valuations for the first i
variables of ϕ. For the purpose of this sketch, the level i is the set of all nodes of height 2 · i
in the run (e.g., in the run of Figure 2, nodes at level i are those labelled qi+1).

Valuation encoding. Variable valuations are encoded in the counter value by exploiting
its compact binary representation, which throughout the run remains always a bitstring of
quadratic length in the size of the sentence ϕ. The counter value bitstring can be split into
equal length segments, one for each variable, so that the i-th segment is a 2m substring
encoding the valuation of the i-th variable of ϕ, where m is the number of universally
quantified variables plus the log2 of the number of conjuncts of ϕ —in our running example,
m = 3. The encoding of a valuation for a variable will evolve along the run, for example
the encoding for P1 being true at nodes at different levels may differ. This is because
branchings change the counter value and thus its binary representation. For a node at level
j, the encoding for a true (>) valuation of a variable Pi with i ≤ j is through a bitstring
0u(j)−1102m−u(j) at the i-th segment, where u(j) is the number of universally quantified
variables Pi with i ≤ j in the input sentence —in our example, u = {(1, 1), (2, 1), (3, 2)}.
Similarly, the way to encode a false (⊥) valuation is through the bitstring 0m+u(j)−110m−u(j).
For ϕ as above, where m = 3, the valuation {(P1,>), (P2,⊥), (P3,⊥)} at level 3 (i.e., j = 3,
u(j) = 2) is represented by the bitstring z = (010|000)(000|010)(000|010) (parentheses and
pipes are only to improve readability). Let us call the ‘(i, j)-bit’ the j-th most significant bit
of the i-th most significant segment in the bitstring, and let ci,j ∈ N be the number whose
sole (i, j)-bit is 1 in its binary representation (e.g., for z as above, z = c1,2 + c2,5 + c3,5).

As discussed before, for this reduction to work we need that already defined valuation are
somehow ‘replicated’ in all the subtrees, that is, when a configuration branches, information
on the valuations is preserved in both children configurations and remains uncorrupted. For
this, we enforce that, for every internal node t inside a complete run for (q1, 0) of B, either:
(1) t has a right child with the initial configuration (qI , 0), or, otherwise,
(2) both children of t have the same value, that is, nt = 2 · ntL = 2 · ntR.
Assuming such a property (as verified by the run of Fig. 2), information can be ‘spread’
along branches of a run: at any node t of type (2) the i-th least significant bit of nt is 1 iff
the (i − 1)-th least significant bit of ntL and ntR are 1. We use transitions of type (1) to
generate a new valuation for the i-th variable, and transitions of type (2) to split the current
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q1, (000|000)(000|000)(000|000)

q>1 , (000|000)(000|000)(000|000) q?1 , (000|000)(000|000)(000|000)

q2, (100|000)(000|000)(000|000) q2, (000|100)(000|000)(000|000)

q>2 , (100|000)(000|000)(000|000) q?2 , (000|100)(000|000)(000|000)

q3, (100|000)(100|000)(000|000)

q>3 , (010|000)(010|000)(000|000) q?3 , (010|000)(010|000)(000|000) q>3 , (000|010)(000|010)(000|000)

q4, (010|000)(010|000)(010|000) q4, (010|000)(010|000)(000|010) q4, (000|010)(000|010)(010|000)

q3, (000|100)(000|100)(000|000)
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. . .
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qI , 0
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qI , 0

qI , 0

. . .
Figure 2 Clipping of a complete run for (q1, 0). Values are represented by 3 segments of 6 bits.

valuation into two branches. For example, a configuration containing a true segment with
bitstring 0i−1102m−i is split into two children whose segment value is now 0i102m−i−1, which
still codes a true value for the next level i+ 1. The choice of m is such that it corresponds
to the maximum number of transitions of type (2) in any root-to-leaf branch of the run. In
other words, m is the maximum distance that a 1-bit can ‘travel’ along the run.

Here we only show how to build B for our running example ϕ. We use the statespace
Q = {qj , q>i , q⊥i , sψ, r

j
A, qI | 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, ψ : clause, A : atom}. For each universally

quantified variable Pi (i.e., for i = 1, 3) we include a transition (q>i , q⊥i , 0, qi), which splits the
run into a subtree where Pi is true (q>i ) and another where it is false (q⊥i ). On the other hand,
for each existentially quantified variable Pi (i.e., for i = 2), we include non-deterministic
transitions (q>i , qI , 0, qi) and (q⊥i , qI , 0, qi), which choose one valuation for Pi. Each state q>i
and q⊥i has a transition incrementing the corresponding bit in the encoding: (qi+1, qI ,−c, q>i )
for c having its (i, u(i))-bit in 1, and 0’s elsewhere; and (qi+1, qI ,−c̄, q⊥i ) for c̄ having its
(i,m+u(i))-bit in 1, and 0’s elsewhere. Finally, B checks for the satisfaction of both clauses
by splitting the computation through the transition (sP1∨¬P2∨P3 , s¬P1∨P2 , 0, q4). For each
clause, B chooses the atom which will witness its satisfaction, with transitions (r1

A, qI , 0, sψ)
for every disjunctive clause ψ of ϕ and atom A of ψ (e.g., for ψ = ¬P1 ∨ P2 and A = ¬P1).
Finally, the job of r1

A is to decrement the (i,m)-bit for verifying that Pi holds true, or the
(i, 2m)-bit otherwise. However, this choice between the (i,m)- and the (i, 2m)-bit must be
consistent with the choice of the atom A (e.g., if A = ¬P2 then we must verify that P2 is
false and thus we shouldn’t allow the decrement of the (i,m)-bit). Concretely, we include a
transition (ri+1

A , qI , ci,m, r
i
A) if and only if A is not ¬Pi; and we include (ri+1

A , qI , ci,2m, r
i
A)

iff A is not Pi. Finally, the initial states I is defined as all states r4
A for an atom A, as well

as qI . Figure 2 contains a depiction of a possible complete run witnessing the validity of
ϕ. The description of the reduction in full generality, as well as the proof of its correctness
(crucially, that properties (1), (2) hold on all complete runs), are in the Appendix. J

6 Conclusion

An interesting next question is the complexity of the reachability problem for two-dimensional
BVASS, which we conjecture decidable. One approach to establishing decidability could
be by generalising the classical algorithm of Hopcroft and Pansiot for two-dimensional
VASS [12]. To determine the precise complexity, investigating branching extensions of the
flatness notion (cf. [18, 3]) and the cutting technique (cf. [9]) seem like promising directions.
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A Missing proofs of Section 3

Proof of Lemma 2. We introduce the remainder rj of z1 + · · · + zj by d. Notice that
rj ∈ {0, . . . , d − 1} for every 0 ≤ j ≤ d. The pigeon-hole principle shows that there exist
i < j such that ri = rj . It follows that rj − ri = 0. Notice that this difference is the
remainder of zi+1 + · · ·+ zj by d. So the lemma is proved with J = {i+ 1, . . . , j}. J

Proof of Lemma 4. Let ρ be a d-coverability run of (q, n) of minimal size. We say that a
node t of ρ is a cut node if the subrun rooted at t contains an increasing cycle (hence t is
internal), but the subruns rooted at tL and tR do not contain any increasing cycle. Cut
nodes are pair-wise incomparable for �, meaning that no cut node is an ancestor of another
cut node. It follows that we can decompose ρ into a witness of d-coverability by replacing
each cut node t by a leaf equipped with the subrun of ρ rooted at t. We show that, in
the resulting witness, the subrun rooted at each non-modular node contains no increasing
cycle. By contradiction, take a maximal (for �) non-modular node t violating the claim.
By maximality, t is a cut node of ρ which contradicts the assumption that t is not modular
in the witness. The desired bounds follow from the observation that by Lemma 3, the size
of each subrun of ρ with no increasing cycle is bounded by |Q|.2|Q|.d2. J

Proof of Lemma 5. Let ψ be a witness of d-coverability of (q, n). We prove that if there
is a modular node of height at least |Q|.d, or if there exists a height with 2|Q|.d different
modular nodes, then ψ can be simplified into a smaller witness. These two properties bound
the number of modular nodes by |Q|.2|Q|.d2.

Suppose there exists a modular leaf ` of height |`| ≥ |Q|.d. The pigeon-hole principle
shows that there exist two ancestors u ≺ v of ` such that qu = qv and nu ≡ nv mod d.
Collapsing the cycle between u and v provides a smaller witness of d-coverability of (q, n).

Next, suppose that for some h, the number of modular nodes of height h is at least 2|Q|.d.
Since the tree is binary and d ≥ 1, we deduce that h ≥ |Q|. Moreover, it follows that there
exist d distinct modular nodes t1, . . . , td of height h− |Q| that admit descendants `1, . . . , `d
that are modular leaves of height at least h. From the pigeon-hole principle, it follows that
for every 1 ≤ j ≤ d, there exist two modular nodes uj , vj such that tj � uj ≺ vj � `j and
quj

= qvj
. By introducing zj = nvj

−nuj
, Lemma 2 provides a non-empty set J ⊆ {1, . . . , d}

such that d divides
∑
j∈J zj . By collapsing cycles in between uj and vj for each j ∈ J , we

get a smaller witness of d-coverability of (q, n). J

B Missing proofs of Section 4

Proof of Lemma 13. We have shown in the main text that for all internal nodes t either
Q(tL) < Q(t) or Q(tR) < Q(t). Let r be the root of ρ and set k = Q(r). We bound the size
of ρ using n and k with the function f(k, n). Consider a root-to-leaf path v0 . . . v` (v0 = r)
that maximizes the function Q(t), and let (qi, ni)0≤i≤` be the sequence of configurations on
this path. Notice that if qi = qj for some i < j then ni > nj since ρ does not contain any
zero or decreasing cycles. Moreover, observe that ni ≤ ni−1 + M for every 1 ≤ i ≤ `. It
follows that ni ≤ n+ |Q|.M for every 1 ≤ i ≤ `. We deduce that ` ≤ (n+ |Q|.M).|Q|. For
every vi let v′i be its sibling. Similarly we deduce nv′

i
≤ n+ |Q|.M , and by the observation

from the first paragraph we know that Q(v′i) < k. We have proved that

f(k, n) ≤ (n+ |Q|.M).|Q|.(1 + f(k − 1, n+ |Q|.M)).
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It follows that

f(k, n) ≤
k∑
j=1

j∏
j′=1

(n+ j′.|Q|.M).|Q|) ≤ |Q|.
|Q|∏
j′=1

(n+ j′.|Q|.M).|Q|) ≤

|Q|.((n+ |Q|2.M).|Q|)|Q|.

To conclude, observe that n+ |Q|2.M ≤ 2|B| + 22|B|.M ≤ 23|B|. J

Proof of Lemma 14. We prove by induction on the length of the main branch ` ≥ 1 that
for every decreasing cycle π there exists a simple decreasing cycle π′ such that any state
labeling a main node of π′ also labels a main node of π, and such that the set of dangling
configurations of π′ is included in the set of dangling configurations of π. The base case
` = 1 is immediate. Let us assume the lemma proved for cycles with a number of main
nodes bounded by `. Now, suppose the length of π is ` + 1, and suppose that π is not
simple. Then there exists a simple cycle θ on the main branch of π. If θ is decreasing then
we define π′ = θ. If θ is a zero cycle then we remove θ from π and proceed by induction.
Finally, if θ is increasing then we remove it from π, however, this time it could cause a drop
below zero. If that is the case we uniformly increase the value of all nodes on the main
branch, so they remain nonnegative. The choice of the value added on the main branch
is not important. It remains to observe that by removing an increasing cycle from π the
obtained cycle remains decreasing, we do not introduce new states on the main branch, and
new dangling configurations. We proceed by induction.

Now it remains to prove the lemma when π is a simple d-cycle with d < 0. Let v be a
minimal node in π and let (q, n) be its label. We decompose π into π1π2 such that π1 is
the fragment of π with the source node v. By a v-rotation of π we understand π′ = π′2π

′
1,

where π′1 and π′2 are obtained from π1 and π2 by decreasing all values on the main branch
by n+ d and n respectively. Since v is minimal, notice that π′ is a simple decreasing d-cycle
from (q,−d) up to (q, 0) satisfying the lemma. J

C Missing proofs of Section 5

Proof of Theorem 15. We prove PSpace hardness through a polynomial time reduction
from the validity problem for Quantified Boolean Formulas. Suppose we are given a QBF
sentence of the form

ϕ = ∀Q1∃P1 · · · ∀Qn∃Pn
∧

i∈{1,...,`}

∨
j∈{1,...,m}

Vi,j

where n, `,m ∈ N and Vi,j ∈ V for V = {Q1, P1, . . . , Qn, Pn,¬Q1,¬P1, . . . ,¬Qn,¬Pn} for all
i, j. We will show how to construct, in polynomial time, a 1BVASS B so that its configuration
(q1, 0) is reachable if and only if ϕ is valid. To simplify our construction we will assume that
` = 2`′ for some `′ —this is without loss of generality since one can always add conjuncts
P1∨¬P1 in order to complete to a power of 2. Let S ⊆ 2{1,...,`} be the smallest set satisfying:
(i) {1, . . . , `} ∈ S, and (ii) if {i, . . . , j} ∈ S with i < j then {i, . . . , (i + j − 1)/2} ∈ S and
{(i+ j + 1)/2, . . . , j} ∈ S. Note that |S| = 2`− 1.

For this reduction it is convenient to make use of ‘unary’ transitions of the form (p, z, q) ∈
Q×Z×Q as short for (p, qI , z, q), and ‘binary’ transitions of the form (qL, qR, q) ∈ Q×Q×Q
as short for (qL, qR, 0, q). These are the only two kinds of transitions we will use. Further,
in the context of this proof it seems more natural to see the run as top-down since we would
like to think that information flows downwards in the run, as information about all possible
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n+`0z }| {

4(n+`0)z }| {

Q1 ¬Q1 ¬P1P1 PnQn ¬Qn ¬Pn

· · ·z =

z�1 z�2 z�3 z�4 z�4n�3 z�4n�2 z�4n�1 z�4n

Figure 3 Separation into bitstring blocks of the binary represenation of values.

variables valuations to test will be built incrementally by traversing each branch downwards.
Thus, when we say that we ‘increase’ a value z from a state q to a state q′ we are implicitly
making reference to a unary transition of the form (q′,−z, q).

The 1BVASS B = (Q, δ, {qI}) we define has a set of states Q consisting of
states qi, q>i , q⊥i , pi for i ∈ {1, . . . , n}, which will be used to encode all valuations that
need to be tested for;
states sS for S ∈ S to consider all possible conjuncts

∨
j Vij —the idea being that each

distinct s{i} will appear in a different branch of the run;
states rVi and r̂Vi for all i ∈ {1, . . . , n} and V ∈ V, which will ensure that for the conjunct
considered in the branch there is a disjunct which is satisfied by the current valuation;
the state qI , which is the only initial state.

As we will see, B forces runs whose every branch has exactly n′ = n + `′ binary rules: the
first n to encode all possible valuations induced by ∀Q1, . . . ,∀Qn, and the last `′ to encode
every possible choice among the ` conjunts —since we are in a binary tree, the ` possibilities
will be encoded using subtrees of height log(`) = `′.

We make use of 4n · n′ bits of the binary representation. A 1-bit among the first n′
most significant bits {1, . . . , n′} encodes a valuation for Q1 being true, a 1-bit among {n′ +
1, . . . , 2n′} encodes Q1 being false; {2n′+1, . . . , 3n′} encodes P1 being true; {3n′+1, . . . , 4n′}
encodes P1 being false; {4n′ + 1, . . . , 5n′} encodes Q2 being false; etc. Figure 3 depicts the
different blocks of bits assigned to each valuation of a propositional variables (ignore the
bottom line of �i for now).

In light of this coding, we define constants cVj to denote the number that has a 1-bit in
the j-th least significant bit of the block corresponding to V . Formally, we define for every
i, j:

cQi

j = 24n′(n−i)+j−1,
c¬Qi

j = 24n′(n−i)+n+j−1,
cPi
j = 24n′(n−i)+2n+j−1,
c¬Pi
j = 24n′(n−i)+3n+j−1.

For example, c¬Pi
j is the value having the j-th least significant bit of the block for ¬Pi set

in one.
Finally, the transitions of δ are the following:
(q>i , q⊥i , qi), (pi,−cQi

n′−i+1, q
>
i ), and (pi,−c¬Qi

n′−i+1, q
⊥
i ) for every i; that is, from qi we

always split the counter into children q>i and q⊥i and we turn the (n′ − i + 1)-th bit to
1 for the representation of Qi or ¬Qi respectively —this corresponds to the universal
quantifier ‘∀Qi’ demanding both partial valuations to be considered.
(qi+1,−cPi

n′−i+1, pi) and (qi+1,−c¬Pi

n′−i+1, pi) for every i < n; that is, from pi we descend
to qi+1 by nondeterministically choosing between turning the (n′ − i+ 1)-th bit of Pi or
that of ¬Pi —this corresponds to the existential choice ‘∃Pi’.
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(s{1,...,`},−cPn

n′−n+1, pn) and (s{1,...,`},−c¬Pn

n′−n+1, pn); that is, when we finished with the
valuation building phase of qi, q>i , q⊥i , pi, we pass to the satisfaction phase of the sS ’s.
(s{i1,...,i2}, s{i2+1,...,i3}, s{i1,...,i3}) for every i1 ≤ i2 ≤ i3 with i1 < i3 and {i1, . . . , i2}, {i2+
1, . . . , i3}, {i1, . . . , i3} ∈ S; this encodes the complete binary tree of height `′ needed to
take into account all possible conjuncts.
(rVij

1 , 0, s{i}) for all i, j; that is, we choose which disjunct j will be the witness for
conjunct i.
Finally, from r

Vij

1 we have a series of unary transitions that decrement the first bit
corresponding to R or the first bit of ¬R for every R ∈ {Q1, P1, . . . , Qn, Pn}, except for
the propositional variable of Vij for which only the first bit corresponding to the block
of Vij is decremented. Concretely, for every i and V ∈ V we have transitions

(r̂Vi , c
Qi

1 , rVi ) if V 6= ¬Qi,
(r̂Vi , c

¬Qi

1 , rVi ) if V 6= Qi,
(rVi+1, c

Pi
1 , r̂Vi ) if V 6= ¬Pi,

(rVi+1, c
¬Pi
1 , r̂Vi ) if V 6= Pi,

(qI , cPi
1 , r̂Vn ) if V 6= ¬Pi,

(qI , c¬Pi
1 , r̂Vn ) if V 6= Pi.

Let ρ be a complete run of B whose root label is (q1, 0). The crucial property of ρ in
order to verify that the reduction works, is that all binary transitions split the value in two
halves. To show this, we will need to reason inductively on the blocks of n′-bit substrings
of the binary representation of the values in ρ. The inductive idea is that that there cannot
be an uneven split affecting the most significant block, and further that there cannot be an
uneven split affecting the i-th most significant block, assuming that all other strictly more
significant blocks are unaffected.

For z ∈ N, let z�i ∈ {0, . . . , 2n
′ − 1} be the number represented by the bits {n′(i− 1) +

1, . . . , n′i} of the binary representation of z (where the bit 1 is the most significant one).
Thus, z�1 is the number denoted by the n′ most significant bits of z, z�2 is the one denoted
by the following block of n′ bits, and so on. Figure 3 depicts the block numbers. Note that
for any value z in ρ, z = z�4n + 2n′ · z�4n−1 + · · ·+ 24nn′−n′ · z�1.

The following statement follows straight from the definition of the transitions on the rj ’s
and sj ’s.

I Claim 15.1. For every node t of ρ labelled with a state rV1 , V ∈ V, and for every i ∈
{1, . . . , 4n}, k ≤ n we have that the 4n′k least significant bits of nt encode a value

nt|k = c
Vn−s+1
1 + c

V ′n−s+1
1 + c

Vn−s

1 + c
V ′n−s

1 + · · ·+ cVn
1 + c

V ′n
1

for some choice Vi ∈ {Qi,¬Qi} and V ′i ∈ {Pi,¬Pi} for each i. In particular,

nt|k ≤ cQ1
1 + cP1

1 + · · ·+ cQn

1 + cPn
1

by definition of the constants cVi ’s.

Thus, the configuration of the rVj ’s contain only 1’s and 0’s in the blocks. As a consequence
of this, every binary transition of the qj ’s evenly splits the blocks among the children, as
stated next.

I Claim 15.2. For every node t of ρ with no qI -labeled child and for every i ∈ {1, . . . , 4n}
we have nt�i = 2 · ntL�i = 2 · ntR�i. In particular, ntL = ntR.
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To see this suppose, my means of contradiction, that it is not true. Let i be minimal so that
the property does not hold, and let t be a ≺-minimal node contradicting the property on
i. Let us assume that ntL�i > ntR�i —the case ntL�i < ntR�i is equivalent. By definition
of B, the state of tL is either: (1) sS for some S, or (2) q>j for some j. Note that nt�i 6= 0
since otherwise either t would verify the condition, or i would not be minimal. Further,
nt�i = 2n′−k for k = j in the case (1) or k = n + `′ − log(|S|) in the case (2). Since
ntL�i > ntR�i and ntL�i′ = ntR�i′ for all i′ < i by minimality of i, necessarily we have that

ntL�i · 24in′ + · · ·+ ntL�4n−1 · 24n′ + ntL�4n · 20 > 2n−k−1 · 24in′ .

We now follow from tL a downward path until finding a node t′ with state rV1 for
some V ∈ V. Let π be such a path, obtained by always choosing the largest value of the
configuration at every split. It then follows that nt′ is too large to be reachable, that is,

24in′−n′ · nt′�4n + · · ·+ 24nn′−n′ · nt′�4i > cQi

1 + cPi
1 + · · · cQn

1 + cPn
1 .

This is in contradiction with our previous claim, and therefore all binary transitions split
the value in halves.

Using the fact that all binary transitions split evenly the value or, in other words, have the
effect of producing a ‘right-shift’ on the bitstring represeniting the value, it is straightforward
to verify that (q1, 0) is reachable on B if and ony if ϕ is valid. J
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