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Abstract

The goal of this paper is to explore the potential interest of image fusion in the con-

text of multimodal scanning electron microscope (SEM) imaging. In particular, we aim

at merging the backscattered electron images that usually have a high spatial resolution

but do not provide enough discriminative information to physically classify the nature

of the sample, with energy-dispersive X-ray spectroscopy (EDX) images that have dis-

criminative information but a lower spatial resolution. The produced images are named

enhanced EDX. To achieve this goal, we have compared the results obtained with clas-

sical pansharpening techniques for image fusion with an original approach tailored for

multimodal SEM fusion of information. Quantitative assessment is obtained by means

of two SEM images and a simulated dataset produced by a software based on PENELOPE.

Keywords : fusion of images; SEM images; multivariate image processing, multi-

modalities

1 Introduction

Scanning electron microscope (SEM) is a versatile imaging tool that allows to acquire im-

ages with various detectors. Images formed by secondary electrons (SE) reveals mainly to-

pographic contrasts, images formed by backscattered electrons (BSE) indicates local mean

atomic number, whereas X-ray maps contains local elemental composition. Coupling a SEM

with an energy dispersive spectrometer (EDS) leads to so called energy-dispersive X-ray spec-

trometry in the SEM (SEM-EDX). If the full X-ray spectrum is recorded on each scanned

pixel, SEM-EDX produces spectral images. Typical SEM-EDX spectra are few millions pixels

times few thousands of energy channels. The set of the images produced by the different SEM

detectors can be seen as a multimodal image. Then, the various images can be processed

independently or in a combined way. It seems also natural to consider that an improved pro-

cessing would be obtained by combining the information present in the different modalities;

obviously, that is true in the case where the modalities are “compatible”. This process of

image combination can be seen as a practical case of the theory of information fusion.
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More generally, the fusion of information can be seen either as the search for optimal

representation including all relevant information sources [Piella2003] or as the search for

algorithms making use of information from different modalities [Wald1999].

In the context of multimodal SEM, we decided to focus on a specific problem. We aim

at merging the backscattered electron images that usually have a high spatial resolution, a

good signal to noise ratio but do not provide enough discriminative information to physically

classify the nature of the sample, with energy-dispersive X-ray spectroscopy images that have

discriminative information but a lower spatial resolution and signal to noise ratio. Such image

fusion is rather restricted to flat and polished sample where both EDX and backscattered

electron images are not affected by topographical effects. Indeed, for non-flat samples, topo-

graphic effects can be very strong on EDX images and abundance retrieval is dependent on

the local geometry.

This problem is similar in some ways to the so-called pansharpening [Laben2000, King2001],

which is well known in colour, multispectral and hyperspectral imaging. However there are

also some significant differences. The first one is that in the case of classical image pan-

sharpening, the panchromatic image (i.e., the image at the nominal spatial resolution) has a

good correlation with the colour or multi/hyperspectral image. Even better, in some cases

the “panchromatic image” is contained partly at some wavelengths (or linear combination of

them) from the multi/hyperspectral one. In our case, the information between the two SEM

modalities that are considered is not basically correlated. Moreover, we work with abundance

maps extracted from the energy-dispersive spectroscopy images, since the raw EDS spectral

image are of very high dimension and of very sparse nature.

As usual in multimodal SEM, we work with images perfectly registered. Although these

images are spatially registered, it can be noticed that there are a number of potential artefacts

which can appear when merging their underlying information sources. The origin of these

artefacts is the fact that information can be structurally different, in the sense of the values of

intensities, local contrast, presence of contours, etc. can be different between backscattered

electron images and energy-dispersive spectroscopy. All these phenomena may degrade the

quality of the fusion. A detailed list of the potential artefacts classicaly considered in image

pansharpening can be found in [Thomas2008]. It seems essential to deal with these problems

in order to produce image fusion without major artifacts.

Up to the best of our knowledge, the literature on SEM image fusion is quite limited. On

[Wortmann2009, Angelov20016] Atomic Force Microscopy and SEM are combined to provide

a view of the topography and material properties of the sample. In [Milillo2008] . Thus to

initiate our work, we decided to take inspiration from the work of fusion of information on

multi/hyperspectral imaging which is much more abundant and especially on pansharpening

techniques [Vivone2015, Loncan2015]. The rest of the paper is organized as follows. After

providing a description of the SEM dataset used and a summary of the most frequently used

pansharpening algorithms, we introduce a new approach grounded on the bilateral filtering

framework, which has been conceived in the particular case of SEM images fusion. A extensive
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quantitative assessment of the different algorithms is achieved to motivate discussion and

conclusions.

2 Materials and methods

Multimodal SEM imaging. SEM is able to produce high resolution images from the

surface of a sample by means of an extremely small electron beam, which is focused at a

point of the sample using the electromagnetic field of an objective lens [Reimer1998]. When

electrons of the beam hit the specimen surface, electron-matter interactions may produce

secondary particles that are detected by adequate sensors. These secondary particles can

produce several types of images, as shown in Figure 1. In this work we focus primarily on

two types of images :

• Images formed by backscattered electrons (BSE);

• Images formed by electron-induced X-ray detected by EDS

Hence, we do not consider the Secondary electrons image, which is quite classic in SEM,

due to the fact that it is less correlated with the two others modalities BSE and EDX. The

different modalities acquired by the SEM provide different physical information about the

sample, and consequently it can be interesting to merge them. This principle corresponds to

the idea of SEM image information fusion.

SEM datasets. SEM fusion methods discussed in this paper has been assessed using two

real datasets and a simulate one.

The first dataset is composed of an EDX image of size 1024 × 768 pixels and 2024 levels

of energy. Thus the image is a data cube 1024 × 768 × 2024 pixels. As an EDX image,

it is naturally corrupted by a Poisson process and of extremely sparse nature, i.e., many

energy levels are zero. This image is from a sample composed of iron, copper, aluminium

and oxygen. This image has been acquired with a Zeiss Supra 40 SEM fitted with a 10mm2

Brucker X-Flash 4010 EDS spectrometer. Beam energy was 15keV, probe current 0.75nA

and dwell time 912µs resulting in a 717s long acquisition time. To estimate the abundance

map of each of these physical elements, a Gaussian model near each peak is fitted as EDS

peak shapes are very close to a Gaussian shape due to electron-hole formation statistics

in the detector [Scholze2009, Bauer1978]. Since there are 6 detectable peaks at 6 different

energies, 6 abundance maps are obtained. In the following of the paper, the multivariate

image of physical abundances is called the ”multispectral image”. In addition to that, the

BSE image of the same sample at the same spatial resolution is also available. To downscale

the abundance maps, the experimental protocol that we followed is similar to the one proposed

by the authors of [Loncan2015]. We have degraded the multispectral image by applying a

Gaussian blur, then we have downsampled this image by a factor s = 5. The second dataset
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is composed of an EDX image of size 1024 × 704 pixels and 2024 levels of energy and the

corresponding BSE image. This image has been acquired with a FEI Nova nanoSEM fitted

with a 80mm2 Oxford Instruments X-Max EDS spectrometer. Beam energy was 10keV, probe

current 0.8nA and dwell time 3.2ms per pixel resulting in a 2307s long acquisition time. This

image is from a sample composed of aluminum, oxygen, vanadium and nickel. In this case, 4

abundance maps were obtained using the same model and algorithm. Downscaled images of

the abundance maps image were produced too.

In order to assess the accuracy of the algorithms, EDX images have been simulated

by the Monte-Carlo method by a dedicated software based on the PENELOPE package

[Sempau1997, Sempau2003, Salvat2006]. First, the response of the EDS detector of the Nova

NanoSEM has been characterized by measuring the full width at half maximum (FWHM)

for different peak energies. The dependence on peak energy E of the standard deviation of

the Gaussian peaks σ(E) was obtained by least-square fitting and gave :

σ(E) =
√
0.4403E + 337.04, (1)

with E in eV. The efficiency ǫ(E) of the detector was modeled from its geometry following the

same approach proposed by Limandri et al. [Limandri2013]. Analog electrons trajectories

(C1 = C2 = 0;WCC = WCR = 0) were generated with the PENELOPE package. As X-

ray emission is an unusual process, both characteristic and Bremsstrahlung photon emission

were enhanced by interaction forcing by a factor F with the help of the build-in functions

of PENELOPE. Sample and detector geometries were handled by the PENGEOM package.

The detector is annular at a 35◦ take-off angle to the surface. Any photon hitting the

detector was considered detected with a probability ǫ(E). Each detected photon of energy E

was registered in an energy channel distributed following a Gaussian law of average E and

standard deviation σ(E). Backscattered electrons were also registered to obtain a simulated

BSE image. The image simulations were performed with 10000 electrons trajectories for each

pixel with varying image size and forcing factor F . Varying F allowed to tune the intensity

of Poisson noise of the simulated images. Two images of 1024 × 1024 pixels with F = 1

and F = 100 and three images of 256 × 256 pixels with F = 1, F = 10 and F = 100 were

simulated. Typical simulation time was about 10 days for a 1024×1024 pixels image on an 8

processors working station. Figure 2 depicts the ground truth sample used in the simulation:

it is composed of regular geometric shapes of pure and binary composition with low mean

atomic number element (Al2O3, SiO2), medium (Fe, Co, Ni) and high (Pt). Figure 3 provides

the simulated total backscattered electrons image. It is worth noticing that phases with close

mean atomic number (Al2O3 and SiO2; Fe, Co and Ni) are hard to be distinguished in the

BSE image. In Figure 4 the different simulated EDX map are represented.
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3 State-of-the-art

Before presenting the different image fusion methods, let us introduce the notation used in

the following, similar to [Loncan2015].

First, from a mathematical viewpoint, a multispectral image (abundance maps) is con-

sidered as a function HS defined by

HS :

{
E → RD

x 7→ vi

where D is the number of abundance maps and E is the image domain (support space of

pixels). This multivariate image can be also seen as set of D grey-scale images. We note HS a

multispectral image at a low resolution. Let H̃S ∈ RN1×N2×D be a interpolated multispectral

image whose spatial dimensions are N1, N2, which in our case corresponds to BSE image

dimensions. Let R ∈ RN1×N2 be just the BSE image. We denote by ĤS ∈ RN1×N2×D

the multispectral image of the EDS abundances enhanced with the BSE image information,

where HSk is the k-th abundance map of image HS.

There are essentially three families of pansharpening techniques which are detailed as

follows.

3.1 Component substitution methods (CS)

The purpose of information fusion techniques is to find the function φ satisfying

ĤS = φ(H̃S,R),

where ĤS is “optimal” in a certain sense. The particular notion of optimality is precised

below. Component substitution methods (CS) are based on the projection of the image HS

into another space, separating the spatial information from the spectral one. The spatial

information, i.e., contrast and contours between different objects, is often concentrated in a

single grey-scale image. The main step of CS consists in replacing the image containing the

spatial information by the spatially high resoluted image R. It is based on the assumption

that the image containing only spatial information is highly correlated with R. Once the

corrections are done, the data are projected back to the initial space. This approach is global

and therefore corrects all pixels with a single rule. The strength of this technique is its speed,

however it depends on the fact that the image containing the spatial information of HS

which must be similar in range and intensity distribution to R. If not, the merged image

may have strong distortions. In our particular case, the BSE image has information which is

not comparable with EDS images, that explains the artefacts which appears in our results,

see Section 5.

The problem can be formulated mathematically as follows [Loncan2015]:

ĤSk = H̃Sk + gk(R− IL), (2)
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where gk corresponds to a corrective coefficient for the band k and IL is the image containing

all high resolution spatial information, i.e., typically

IL =

D∑

i=1

wiH̃Si, (3)

where wi is a coefficient depending on the degree of the spatial information of the spectral

band i. Now let us present in a more detail way the most popular CS techniques.

3.1.1 CS by PCA.

Principal Component Analysis (PCA) [Pearson1901, Hotelling1993, Chavez1991] is a well-

known dimensionality reduction technique, which aims at finding an orthonormal basis that

maximizes the variance of the data. Thus, the data projected into this space summarize

the statistically significant information. The fundamental assumption of this pansharpening

technique is that the first component focuses all relevant spatial information while the other

components contain secondary spatial and spectral contrast features. Using the CS model,

the first principal component of H̃S is IL, and wi is the first column of the inverse transform.

Note that this is not exactly the R which is used in the Eq. (2), since the version of R should

be histogram equalized with respect to IL.

3.1.2 CS by Gram-Schmidt decomposition (GS).

The Gram-Schmidt (GS) technique is based on an orthogonal decomposition, which was

invented by Kodak [Laben2000]. First, instead of considering only the cube H̃S, one starts

with the tensor composed of the concatenation of H̃S and R, thus of D+1 bands. Then, an

orthogonal decomposition is performed on this new tensor. We find the vector of the basis that

corresponds to the spatial information and it is replaced by R. Finally a reverse procedure

is done to return to the initial representation space. The components of the Gram-Schmidt

basis being orthogonal, the spatial information is expected to be orthogonal to all the other

information sources. That is why the spatial information is, in theory, gathered in a single

vector. In practice this is not always the case, especially if R contains dense information.

Moreover this technique can be problematic in the case of multimodal SEM images since a

significant orthogonal basis from EDX + BSE cannot be easily obtained without adding a

kind of sparsity constraint.

3.2 Multiresolution analysis methods (MRA)

MRA techniques are founded on the application of a low pass filter to R, sometimes under

different resolutions. Then, details are injected on H̃S thanks to the residue of RL and

R, which represents the high frequences of R. A mathematical formulation of this type of
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technique is written as [Ranchin2000, Tu2001]:

ĤSk = H̃Sk +Gk ⊗ (R−RL), (4)

where Gk corresponds to a corrective coefficient matrix for the band k and ⊗ is the multipli-

cation term by term. Moreover, as mentioned above, R−RL represents the details that are

injected in the low resolution image. Such family of techniques depends mainly on the type

of decomposition performed for RL and the diagonal matrix of gains Gk. Different kind of

filters can be used for RL: Gaussian filters, wavelets, mathematical morphology operators,

etc. There are therefore many possibilities. Two techniques are now detailed.

3.2.1 MRA by Smoothing Filter-based Intensity Modulation (SFIM).

The technique [Liu2000] involves the use of a single low pass filter, noted Hlp, applied to R

to get RL. The enhancement is then obtained as:

ĤSk = H̃Sk +Gk ⊗ (R −R ∗Hlp), (5)

with

Gk = H̃Sk ⊙R ∗Hlp, (6)

where ⊙ is the division term by term. To achieve the low pass filter, a simple average filter

is typically used. The formula can be simplified thanks to the coefficient matrix to obtain:

ĤSk = R⊗ (H̃Sk ⊙Rl). (7)

Thus it involves that the information of R was modulated by the ratio of the image H̃Sk

and Rl. This allows integrating the contrast present in R without creating missing objects

in the multispectral image H̃S. Due to this pixel by pixel multiplication, there can be an

issue on the low values of Rl, which requires to manage the dynamic of the image, such that

it does not exceed a given range.

3.2.2 MRA by Laplacian Pyramid (MTF-GLP).

This technique [Burt1983, Mallat1989] has some similarities with the previous one. However,

this time a multiple low-pass filterHreso i at various resolutions (i.e., at various scales) is used.

More precisely, the low-pass filters are typically Gaussian convolutions. Missing information

at a given scale i is injected into ĤSreso i+1 thanks to information from R at the resolution i.

In our framework, the BSE image R and the multispectral abundance maps image of the EDS

image are both in a multi-resolution structure pyramid, as illustrated in Figure 5. Details

are injected at each resolution, until the nominal resolution of the BSE image is reached.
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3.3 An hybrid method: Guided PCA

This technique [Liao2014, Kang2014] consists in first doing a PCA on the multispectral image

H̃S. Then, on the d first principal components, a guided filter [He2013] is applied and nothing

is done on the remaining D− d bands. The rationale is based on the fact that the remaining

bands correspond to “noise”, and it would be useless to enhance the resolution of noise. Then

a reversed PCA transform is made to obtain the original multispectral representation. The

high resolution information from R is included by the guided filter. For more details about

this technique, see [Liao2014, Kang2014].

4 Fusion of SEM information by Abundance Guided Bilateral

Filtering (AGB)

As we have discussed above, when a pansharpening technique is used in the image fusion con-

text, the starting point is a low spatial resolution image HS, together with a high resolution

“panchromatic” image R. Usually, the first step consists in upsamplingHS, thanks to a basic

bi-cubic interpolation to obtain the image H̃S. Then, on this image at the nominal scale,

the image enhancement is done, where the information is corrected by means of a particular

pansharpening algorithm. The main issues with the previous techniques are that the CS

approaches do not take into account the differences between the various components of the

multimodal image, that is, the differences between the abundance maps themselves and the

differences with the panchromatic image. In our case, there is a few correlation between the

different EDX abundance maps. Moreover the MRA approaches do not consider the spectral

link between the different abundance maps, since there is a finite quantity of material for

each pixel (i.e., the sum of abundances at a given pixel is equal to 1).

In order to address these drawbacks, we propose an interpolation technique called abun-

dance guided bilateral filter (AGB) by considering the relationships between the abundance

maps. Thus, weights used in the interpolation would depend on both R and HS. Our ap-

proach of interpolation uses bilateral filter [Tomasi1998] and more exactly its cross version

[Eisemann2004]. By the way, the bilateral filter has already been used on other super-

resolution algorithms. Inspired by these works, we have chosen to improve the interpolation

process which is a scaling process.

A bilateral filter is a nonlinear, edge-preserving denoising/regularizing operator for im-

ages. The intensity value at each pixel in an image is replaced by a weighted average of

intensity values from nearby pixels. This weight can be based on a Gaussian distribution.

Crucially, the weights depend not only on Euclidean distance between pixels on the grid, but

also on their intensity (or more general radiometric) differences. Thanks to the fact that it

uses spatial and range information, it preserves the edges, this is the reason why bilateral

filter is used in super-resolution.
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Formally, the joint bilateral filter of an image I guided by an image F is defined as :

I∗(x) =
1

Wp(x)

∑

xi∈E

I(xi)k(x, xi), (8)

where the kernel weights are given by

k(x, xi) = fr(‖F (xi)− F (x)‖)gs(‖xi − x‖),

and where the normalization term is just given as:

Wp(x) =
∑

xi∈E

k(x, xi),

such that fr and gs represent respectively the range (or spectral) and spatial kernels of

parameters r and s. To simplify, we have chosen a Gaussian function for both kernels.

However in our case we would like to consider the link between the different abundance maps.

To handle this relationship, we need to define a guided function F as a global criterion. Hence,

we used the level of mixing of pixels, which will be represented by an order map: an image

of ordered levels of intensity. In a way the order map has a low value if the pixel contains

a mixture of various different materials and a high value if it is almost pure, so it contains

contribution of few materials.

Let us precise how this order map is computed using of the possible alternatives. The

EDS spectrum at a position i of the image is a vector vi which can be written as:

vi =

D∑

r=1

ar,imr + ni, (9)

where {mr}Dr=1 represent the set of D endmembers (spectral signature of the material), ar,i
the abundance at vector i of each endmember r, and ni an additive noise. This last term

can be neglected. The nonnegative coefficients ar we consider are convex combination such

that
∑D

r=1 ar = 1. By using this additional constraint, it is guaranteed to work on a (D− 1)-

simplex.

We have proposed in [Franchi2015] different techniques to calculate such order map on

abundance map images. We adopt here an approach based on the notion of majoriza-

tion [Marshall2010], which is a technique for ordering vectors of same sum. Let us consider

two vectors c = (c1, . . . , cn) ∈ Rn and d = (d1, . . . , dn) ∈ Rn, then we say that C weakly

majorizes D, written c ≻w d, if and only if
{ ∑k

i=1 c
↓
i ≥

∑k
i=1 d

↓
i , ∀k ∈ [1, n]∑n

i=1 ci =
∑n

i=1 di
(10)

where c↓i and d
↓
i represent respectively the coordinates of C and D sorted in descending order.

Majorization is not a partial order, since c ≻ d and d ≻ c do not imply c = d, it only implies

that the components of each vector are equal, but not necessarily in the same order.
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Let us define a majorization-like partial order adapted to the abundances. A permutation
τi of the coordinates of the vectors vi in the simplex is applied such that they are sorted in
descending order. The majorization-like order ≤maj is defined as

vi ≤maj vj ⇔





aτ−1

i
(1),i < aτ−1

j
(1),j or

aτ−1

i
(1),i = aτ−1

j
(1),j and aτ−1

i
(2),i < aτ−1

j
(2),j or

...

aτ−1

i
(1),i = aτ−1

j
(1),j and . . . and

aτ−1

i
(R),i ≤ aτ−1

j
(R),j

This order map between pixels brings a global information: the materials entropy. Since a

pixel that has a high value with this order is less mixed than the other one. Let us write O

the order map of the abundance images from the EDS image.

Figure 6 provides the corresponding O image for dataset 1 at the resolution of HS,

together the BSE image R at the nominal resolution. Let us write Õ the order map image

at the nominal resolution, where the value of all the missing pixels is put to zero.

We can now introduce the expression of the SEM fusion using the AGB filter:

ĤS(x) =
1

Wp(x)

∑

xi∈E

HS(xi)k̂(x, xi) (11)

where the AGB kernel is written as the product of two kernels

k̂(x, xi) = kspace(x, xi)kEDX+BSE(x, xi) (12)

given by

kspace(x, xi) =

gs(‖xi − x‖)M(Õ(xi)), (13)

kEDX+BSE(x, xi) =

gs(|Õ(xi)− Õ(x)|)gs(|R(xi)−R(x)|), (14)

with a typical normalization term:

Wp(x) =
∑

xi∈E

k̂(x, xi), (15)

M is a mask that allows us to consider just the data on the values of abundance images

available at the low resolution:

M(Õ(xi)) =

{
1, if Õ(xi) 6= 0

0, otherwise
(16)

and finally, gs is a Gaussian function of scale parameter s.
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5 Results and discussion

5.1 Evaluation criteria of pansharpening algorithms

The criteria used to evaluate the quality of the merged information are those conventionally

considered in the context of the pansharpening literature. More precisely, we dealt with the

following criteria:

C1: The spectral distortion between the enhanced multispectral image and the real

multispectral image at the nominal resolution should be as small as possible. Or, in

other terms, we would like to find the same materials for each pixel as the original

image at high resolution;

C2: The spatial distortion between the enhanced multispectral image and the real one

should not be too high.

Many alternative metrics can be used to quantify these two criteria [Loncan2015]. Let

us formaly precise those that we have used. We write
̂̂
HS the multispectral abundance

EDS image at the same resolution that R, that has been provided by the sensor at high

resolution. In a way it is the ground truth such that our enhanced images ĤS should be

compared to
̂̂
HS. Moreover, we denote by

̂̂M ∈ Mn,D(R) and M̂ ∈ Mn,D(R) the two

matrices representing respectively
̂̂
HS and ĤS, where n is the total number of pixels (i.e.,

n = N1×N2), and D the number of abundance maps. We write by M̂i,:, ∀i ∈ [1, n], a spectra

of ĤS, and M̂:,k∀k ∈ [1,D] a map of ĤS. We have now all the notation to introduce the

four parameters.

Cross correlation (CC) is a measure that evaluate the spatial distortion defined as

CC(ĤS,
̂̂
HS) =

1

D

D∑

k=1

CCS(M̂:,k,
̂̂M:,k), (17)

where

CCS(M̂:,k,
̂̂M:,k) =

(
∑n

i=1 M̂i,k − µ
M̂:,k

)(
∑n

i=1
̂̂Mi,k − µ̂̂

M:,k

)
√∑n

i=1(M̂i,k − µ
M̂:,k

)2
∑n

i=1(
̂̂Mi,k − µ̂̂

M:,k

)2
,

with µ
M̂:,k

= n−1
∑n

i=1 M̂i,k being the empirical mean. The CC is optimal when it is close

to 1.

Spectral Angle Mapper (SAM) is a measure that assesses the spectral distortion by com-

puting

SAM(ĤS,
̂̂
HS) =

1

n

n∑

k=1

S̃AM(M̂i,:,
̂̂Mi,:), (18)
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with

S̃AM(M̂i,:,
̂̂Mi,:) =

arccos


< M̂i,:,

̂̂Mi,: >

‖M̂i,:‖‖̂̂Mi,:‖


 ,

where < ·, · > is the Euclidean inner product of vectors associated to the norm L2, and where

‖ · ‖ is the norm L2 of vectors. The SAM is optimal when it is near to 0.

Root mean squared error (RMSE) measures the mean residual error of fusion and is defined

as:

RMSE(ĤS,
̂̂
HS) =

‖M̂ − ̂̂M‖F
n.D

, (19)

where ‖ · ‖F is the Frobenius norm of a matrix A, i.e., ‖A‖F =
√

trace(AAt). The RMSE is

optimal when it is near to zero.

Synthetic adimensional global error (ERGAS) offers an overall measure of the quality of

an enhanced image. It is given by the expression:

ERGAS(ĤS,
̂̂
HS) =

100d

√√√√√
D∑

k=1


RMSE(M̂:,k,

̂̂M:,k)

µ
M̂:,k




2

, (20)

where d is the ratio between the linear resolution of the BSE image R and the abundances

EDS image HS, i.e.,

d =
R-linear spatial resolution

HS-linear spatial resolution
.

The ERGAS is optimal when close to 0.

We note that C1 and C2 are not enough to assess in our case the quality of the enhance-

ment. Indeed the BSE images give not just access to the high resolution spatial information

of the physical objects, but it provides other kind of information that can in theory allow us

to have better result than just the EDX image at high resolution, such as the topographic

shape of the sample. Thus we need to introduce a new criterion measuring the amount of

information which is injected in the merged image:

C3: The injected information. Since the information provided by the various modalities

can be relatively different, we would like to inject the useful one to improve segmentation

and characterisation of the EDX image.
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In order to quantify this criterion, we proposed to use the cross correlation between the

norm of gradient of the images. To calculate such norm of the image gradient, different

techniques can be used. In our studies, we computed the morphological gradient [Soille2004].

More precisely, we have:

Cross correlation gradient (CCg) is a measure that evaluate the spatial distortion defined

as

CCg(R,
̂̂
HS) =

1

D

D∑

k=1

CCS(Rg,
̂̂Mg:,k), (21)

where Rg represents the image gradient of the BSE image converted into a vector and
̂̂Mg:,k

is the image gradient of the enhanced abundance map at the nominal scale converted also

into a vector.

An optimal enhancement method would be a compromise between the criterion C3 and

the C1 and C2.

5.2 Evaluation on dataset 1

The EDS abundance maps of dataset 1 are provided in Figure 7. The results of the enhanced

abundances H̃S, obtained by the different techniques are provided in Figures 8, 9, 10, and

11 where the abundances are visualized as RGB color images. The results of our methods on

dataset 1 are provided in Figure 12. Quantitative results for this case according to the five

measures are presented in Table 1.

From these results, we note that CS techniques are good to inject R on ĤS, while MRA

techniques are good to increase the resolution. In addition, AGB and MTF-GLP present

both a good compromise between these criteria.

Techniques CC SAM RMSE ERGAS CCg

GS 0.783 22.6 27.7 16.8 0.69

PCA 0.771 29.3 32.0 16.3 0.65

SFIM 0.831 11.6 19.6 14.4 0.29

MTF GLP 0.899 10.9 14.3 9.6 0.70

GFPCA 0.840 12.2 15.2 12.2 0.55

AGB 0.90 9.5 11.2 9.35 0.59

Table 1: Comparison of pansharpening algorithms for enhanced EDS abundance images of

dataset 1.

5.3 Evaluation on dataset 2

In the case of this multimodal SEM dataset, which has a higher level of noise, we try to inject

the BSE image R, depicted in Figure 13, to increase the resolution of the EDS abundance
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maps provided in Figure 14, and also to denoise the images. The results for our ABG method

are given in Figure 15.

For comparaison, Figures 16 and 17 provide a visualization of the results obtained using

the other methods. Quantitative results are given in Table 2, which lead to similar conclusions

as for dataset 1.

Techniques CC SAM RMSE ERGAS CCg

GS 0.23 16.3 1.6 20.3 0.66

PCA 0.17 17.4 1.6 20.6 0.67

SFIM 0.14 15.9 1.74 27.9 0.17

MTF GLP 0.30 15.8 1.4 20.1 0.61

GFPCA 0.26 15.9 1.5 20.4 0.31

AGB 0.30 15.7 1.4 20.1 0.45

Table 2: Comparison of pansharpening algorithms for enhanced EDS abundance images of

dataset 2.

5.4 Evaluation on simulated dataset

By means of the Monte Carlo software based on PENELOPE, we calculated various simulated

datasets with different levels of noise and different resolutions. So first we have a dataset

represented in Figure 2. It represents the sample at the full resolution without noise, thus

it corresponds to the ground truth. The size of this image is 1024 × 1024 × 2048. Then we

simulate other EDX images of the same sample at resolution 4 times smaller than the original.

The size of these images is therefore 256×256×2048. First we extract the 7 abundance maps

of these images and perform the fusion techniques. The results of the different algorithms

are gathered in Table 3. Since we know the ground truth, for each pixel the most important

materials that are present are known (see Figure 18). Hence after having performed the

fusion techniques, for each pixel we extract the most significant material. This imply that,

each pixel is represented by a number between 1 and 7. Then these images can be seen

as the results of a classification. To evaluate the performance we used the overall accuracy

(OA) which is defined as the percentage of pixels well classified on the whole image, and the

average accuracy (AA) which represents mean of the accuracy of each class. These grey scale

images are represented in Figure 18. One can see the results with the different levels of noise

in Table 4. Our proposed ABG method and GFPCA give the best accuracies, even with high

noise levels. We have represented the result of our method on 19. Thanks the figures and

the tables one can see that our method is able to increase the resolution.

6 Conclusion

In this article, we have conducted a qualitative and quantitative evaluation of different al-

gorithms of fusion of information applied on SEM images. Thanks to these algorithms we

merged EDX and backscattered electrons SEM images. We compared global and local state
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Techniques CC SAM RMSE ERGAS CCg

GS 0.065 26.72 0.51 445.61 0.12

PCA 0.046 26.52 0.62 461.6 0.20

SFIM 0.15 24.66 0.61 365.3 0.045

MTF GLP 0.19 24.0502 0.42 266.4 0.0763

GFPCA 0.29 16.39 0.218 439.4 0.1766

AGB 0.36 16.30 0.217 420.6 0.3529

Table 3: Comparison of pansharpening algorithms for enhanced EDS abundance images on

simulated SEM image, forcing level 1.

Techniques forcing level OA AA

GS 1 71.0 22.8

PCA 1 71.0 20.8

SFIM 1 70.0 33.3

MTF GLP 1 70.8 33.4

GFPCA 1 78.2 36.9

AGB 1 78.9 36.9

GS 10 74.9 23.0

PCA 10 75.3 21.5

SFIM 10 77.8 34.4

MTF GLP 10 77.9 34.4

GFPCA 10 79.2 36.5

AGB 10 79.1 36.7

GS 100 75.1 22.4

PCA 100 75.8 22.6

SFIM 100 78.3 35.3

MTF GLP 100 79.1 35.5

GFPCA 100 79.2 36.5

AGB 100 79.2 36.8

Table 4: Comparison of pansharpening algorithms for enhanced EDS abundance images on

simulated SEM image, for different forcing levels.

of the art techniques and proposed an innovative one based on a guided bilateral filter. We

also wrote a program based on the PENELOPE package to simulate large SEM-EDX spectral

maps.

Thanks to these simulated and real SEM images, we evaluated the performances of the dif-

ferent techniques according to criteria defined for pansharpening problem. We also proposed

one new criterion that is more adapted for the SEM segmentation problem. The accuracy of

the pansharpening methods was assessed, and our proposed method was always found to be

one of the best, together with the GFPCA. Our proposed algorithm performs well even on

very noisy EDX images. Thanks to this fusion of information, we can increase the speed of

the imaging process, since we need fewer pixels. A way to improve the compression of this

technique might be to consider pixels at given location, where the location is guided thanks

to the backscattered image. By doing that, we would first take the backscattered image then

have a look at the keypoints localizations, and then take the EDX image just at those points.

Another way to improve this technique might be to consider the secondary electrons image.

In addition, thanks to the developed formalism, it can easily be taken into account. In a

broader perspective, the proposed guided bilateral filter could be used for other multispectral

image pansharpening than SEM based ones.
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List of figures

• Figure 1 : Multimodal SEM image acquisition. In the red square ( a,b,c,d) we repre-

sented 4 abundances. In the blue square (e) we represented the backscattered image and

in the green square (f) the secondary electron image. As one can notice each modality

brings different information, that are perfectly registred in our experimental set up.

Our goal is to merge the SEM backscattered (green square) and SEM EDX modality

(red square).

• Figure 2 : Ground truth of the simulated multimodal SEM image.

• Figure 3 : Simulated backscattered electron image.

• Figure 4 : Simulated Al energy channel in (a), Co energy channel in (b), Fe energy

channel in (c), Ni energy channel in (d) , Si energy channel in (e) , Pt energy channel

( the first peak) in (f).

• Figure 5 : Model of a hierarchical decomposition of the information. The algorithm

takes as input image ĤSreso 0 and increases its resolution to build ĤSreso 1, and so one

up to ĤS.

• Figure 6 : The two images used for the fusion of SEM information by AGB filter.

• Figure 7 : The six EDS abundance maps of SEM dataset 1 at the nominal resolution.

• Figure 8 : RGB color image from abundances 1,2,4 of the dataset 1 for the different

pansharpening techniques. The input image has been simplified by applying a dilation

for visualization purpose.

• Figure 9 : Zoom of the RGB color image from abundances 1,2,4 of the dataset 1 for the

different pansharpening techniques. The input image has been simplified by applying

a dilation for visualization purpose.

• Figure 10 : RGB color image from abundances 3,5,6 of the dataset 1 for the different

pansharpening techniques. The input image has been simplified by applying a dilation

for visualization purpose.

• Figure 11 : Zoom of the RGB color image from abundances 3,5,6 of the dataset 1 for the

different pansharpening techniques. The input image has been simplified by applying

a dilation for visualization purpose.

• Figure 12 : Six enhanced EDS abundance maps by means of ABG method of SEM

dataset 1 at the nominal resolution.

• Figure 13 : BSE image of SEM dataset 2.
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• Figure 14 : Four EDS abundance maps of SEM dataset 2 at the nominal resolution.

• Figure 15 : Four enhanced EDS abundance maps by means of ABG method of SEM

dataset 2 at the nominal resolution.

• Figure 16 : RGB color image from abundances 2,3,4 of the dataset 2 for the different

pansharpening techniques. The input image has been simplified by applying a dilation

for visualization purpose.

• Figure 17 : Zoom of the RGB color image from abundances 2,3,4 of the dataset 2 for the

different pansharpening techniques. The input image has been simplified by applying

a dilation for visualization purpose.

• Figure 18 : Extraction of the most abundant material at each pixel for the different

pansharpening techniques.

• Figure 19 : Six enhanced EDS abundance maps by means of ABG method of SEM

simulated dataset at the nominal resolution.
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Figure 1: Multimodal SEM image acquisition. In the red square ( a,b,c,d) we represented 4
abundances. In the blue square (e) we represented the backscattered image and in the green
square (f) the secondary electron image.

23



Figure 2: Ground truth of the simulated multimodal SEM image.
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Figure 3: Simulated backscattered electron image.
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(a) (b)

Figure 4: (a) The pixelwise mean image of the simulated EDX image (256×256, F = 1). (b)
Simulated Al Kα energy channel.
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Figure 5: Model of a hierarchical decomposition of the information.
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Figure 6: The two images used for the fusion of SEM information by AGB filter.
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abundance 3 abundance 4

abundance 5 abundance 6

Figure 7: The six EDS abundance maps of SEM dataset 1 at the nominal resolution.
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Reference Input image

GS method PCA method

SFIM method MTF GLP method

GFPCA method AGB method

Figure 8: RGB color image from abundances 1,2,4 of the dataset 1 for the different pansharp-
ening techniques.
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Reference Input image

GS method PCA method

SFIM method MTF GLP method

GFPCA method AGB method

Figure 9: Zoom of the RGB color image from abundances 1,2,4 of the dataset 1 for the
different pansharpening techniques.
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Reference Input image

GS method PCA method

SFIM method MTF GLP method

GFPCA method AGB method

Figure 10: RGB color image from abundances 3,5,6 of the dataset 1 for the different pan-
sharpening techniques.
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Reference Input image

GS method PCA method

SFIM method MTF GLP method

GFPCA method AGB method

Figure 11: Zoom of the RGB color image from abundances 3,5,6 of the dataset 1 for the
different pansharpening techniques.
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Al abundance Co abundance

Figure 12: Six enhanced EDS abundance maps by means of ABG method of SEM dataset 1
at the nominal resolution.
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Figure 13: BSE image of SEM dataset 2.
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abundance 1 abundance 2

abundance 3 abundance 4

Figure 14: Four EDS abundance maps of SEM dataset 2 at the nominal resolution.
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abundance 1 abundance 2

abundance 3 abundance 4

Figure 15: Four enhanced EDS abundance maps by means of ABG method of SEM dataset
2 at the nominal resolution.
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Reference Input image

GS method PCA method

SFIM method MTF GLP method

GFPCA method AGB method

Figure 16: RGB color image from abundances 2,3,4 of the dataset 2 for the different pan-
sharpening techniques.
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Reference Input image

GS method PCA method

SFIM method MTF GLP method

GFPCA method AGB method

Figure 17: Zoom of the RGB color image from abundances 2,3,4 of the dataset 2 for the
different pansharpening techniques.
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MTF GLP method GFPCA method

AGB method

Figure 18: Extraction of the most abundant material at each pixel for the different pansharp-
ening techniques.
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Si abundance Pt abundance

Figure 19: Six enhanced EDS abundance maps by means of ABG method of SEM simulated
dataset at the nominal resolution.
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