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Abstract

Sparse modeling involves constructing a succinct representation of initial data as a

linear combination of a few typical atoms of a dictionary. This paper deals with the use of

sparse representations to introduce new nonlinear image filters which efficiently approxi-

mate morphological operators. Reasons why non-negative matrix factorization (NMF) is

a dimensional reduction (i.e., dictionary learning) paradigm particularly adapted to the

nature of morphological processing are given. In particular, Sparse-NMF representations

are studied and used to introduce first approximations to binary dilations/erosions and

then to openings/closings. The idea behind consists of processing exclusively the image

dictionary and then, the result of processing each image is approximated by multiplying

the processed dictionary by the coefficient weights of the current image. These oper-

ators are then extended to gray-scale images and their interest for feature detection is

illustrated. The practical relevance of our approach is considered for two applications on

multivariate image processing. The first case deals with multispectral texture modeling

using Boolean random set theory; the second case with multi-scale decomposition of hy-

perspectral images and its interest in spectral-spatial pixel classification.

Keywords: mathematical morphology; sparse modeling; non-negative matrix factor-

ization ; sparse NMF ; non-linear filtering ; hyperspectral image processing.

1 Introduction

Modern image processing techniques should deal with images datasets of huge volume, great

variety (e.g., optical, radar and hyperspectral sensors, sequence of images often multi-scale,

etc.) and different veracity (i.e., incomplete images, or different uncertainty in the acqui-

sition procedure). This paper addresses the problem of simultaneous treatment of a set of

images via mathematical morphology. Our approach is motivated by sound developments in

sparse signal representation (or coding), which suggest that the linear relationships among
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high-resolution signals can be accurately recovered from their low-dimensional projections

(also called dictionary) (Donoho, 2006). Sparse coding and dictionary learning, where data

is assumed to be well represented as a linear combination of a few elements from a dictio-

nary, is an active research topic which leads to state-of-the-art results in image processing

applications, such as image denoising, inpainting, demosaicking or compression (Elad and

Aharon, 2006; Mairal et al., 2008; Yu et al., 2011). For a detailed self-contained overview on

sparse modeling for image and vision processing the reader is referred to (Mairal et al., 2012).

Inspired by this paradigm of parsimony representation of images, the aim of this work is to

explore how image sparse representations can be useful to efficiently calculate approximations

to morphological operators.

Mathematical morphology (Serra, 1982; Heijmans, 1994) is a nonlinear image processing

methodology based on the application of lattice theory to spatial structures. Morphologi-

cal filters and transformations are useful for various image processing tasks (Soille, 1999),

such as denoising, contrast enhancement, multi-scale decomposition, feature extraction and

object segmentation. In addition, morphological operators are defined using very intuitive ge-

ometrical notions which allows us the perceptual development and interpretation of complex

algorithms by combination of various operators.

Notation. Let E be a domain of points, which is considered here as a finite digital space

of the pixels of the image, i.e., E ⊂ Z2 such that N = |E| is the number of pixels. Image

intensities are numerical values, which ranges in a closed subset T of R = R ∪ {−∞,+∞};
for example, for an image of discrete L values, it can be assumed T = {t1, t2, · · · , tL}. A

binary image X is modeled as a subset of E, i.e., X ∈ P(E); a grey-level image f(pi), where

pi ∈ E are the pixel coordinates, is a numerical function E → T , i.e., f ∈ F(E, T ). In this

paper, we are interested in operators ψ as a map transforming an image into an image. There

are thus operators on binary images, i.e., maps P(E) → P(E); or on grey-level images, i.e.,

maps F(E, T )→ F(E, T ).

Motivation and outline of the approach. In order to illustrate our motivation, let

us consider the diagrams depicted in Fig. 1. In many practical situations, a collection F =

{f1(pi), · · · , fM (pi)} of M binary or grey-level images (each image having N pixels) should

be analyzed by applying the same morphological operator ψ (or a series of operators) to

each image of F , i.e., ψ (F) = {ψ (fj)}1≤j≤M , Fig. 1(a). If one considers that the content

of the various images is relatively similar, we can expect that the initial collection can be

efficiently projected into a R dimensionality reduced image space, using typically sparse

modeling techniques, i.e., F ≈ ΦH, in order to learn the dictionary composed of atom

images Φ = {ϕ1(pi), · · · , ϕR(pi)} and the corresponding coding or weights H, Fig. 1(b). In

this context, we would like to apply the morphological operator ψ (or an equivalent operator)

to the reduced set of images of the projective space Φ, i.e., ψ (Φ) = {ψ (ϕk)}1≤k≤R, in such

a way that the original processed images are approximately obtained by projecting back to
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the initial space, i.e., ψ (F) ≈ ψ (Φ)H, Fig. 1(c). Note that if the number of operators to be

applied increases, e.g., ΦA, ΦB, ΦC , etc., then such paradigm becomes much more efficient

since R≪M , Fig. 1(d). At this point, we should remark that our approach is different from

the standard use of sparse modeling in image processing (Mairal et al., 2012), since in the

classical approaches the dictionary is not processed. In fact, sparse representation itself leads

to a solution for the tasks of denoising, regularization, coding, etc.

(a) (b)

(c) (d)

Figure 1: Sparse mathematical morphology: motivation and outline.

Typical examples of image families which can be fit in our framework are: i) a collection

of binary shapes, ii) a database of registered grey scale images, for instance, faces, cells

(from biomicroscopy applications) or galaxies (in astronomy), iii) a set of patches of a large

image, iv) a time series of registered images, v) the spectral bands of a multi/hyper-spectral

image, etc. Some of these examples are used to illustrate the relevance of our approach. The

rationale behind this methodology is that the intrinsic dimension1 of the image collection is

lower thanM . Usually the subspace representation involves deriving a set of basis components

using linear techniques like Principal Component Analysis (PCA), Independent Component

Analysis (ICA), or sparse dictionary learning techniques like K-SVD (Elad and Aharon, 2006).

The projection coefficients for the linear combinations in the above methods can be either

positive or negative, and such linear combinations generally involve complex cancellations

1Roughly, the intrinsic dimension of an image f is defined as the number of “independent” parameters

needed to represent f .
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between positive and negative numbers. Therefore, these representations lack the intuitive

meaning of “adding parts to form a whole”. This property is particularly problematic in the

case of mathematical morphology since the basic binary operator, the dilation of a set, is

defined as the operator which commutes with the union of parts of the set. This principle

is widely discuss in the paper. In practice, that means that the paradigm discussed above

in Fig. 1 cannot be used with sign unconstrained sparse modeling methods. Non-negative

matrix factorization (NMF) (Lee and Seung, 1999) imposes the non-negativity constraints

in learning basis images: the pixels values of resulting images as well as the coefficients for

the reconstruction are all non-negative. This ensures that NMF is a procedure for learning

a parts-based representation (Lee and Seung, 1999). In addition, by incorporating sparse

constraint to NMF, it will be constructed a succinct representation of the image data as a

combination of a few typical patterns (few atoms of the dictionary) learned from the data

itself. Hence, our approach of sparse mathematical morphology is founded on sparse NMF

modeling.

NMF state-of-the-art. The state-of-the on NMF is nowadays vast. Besides the pioneer-

ing work (Lee and Seung, 1999), several NMF variants have been developed by introducing

additional constraints and properties to the original NMF. In particular, being relevant for

our purpose, we can mention, on the one hand, the local NMF (Li et al., 2001), which learns

spatially localized, parts-based subspaces for images (i.e., visual patterns); and on the other

hand, the sparse NMF (Hoyer, 2004), which incorporates explicit sparseness constraints.

These powerful and already classical algorithms are reviewed in next section. We note also

that in hyperspectral imaging, there is a common task called linear unmixing (or factoriza-

tion into physical space) which consists in detecting the spectra of the pure materials and

estimating their relative abundances. Linear unmixing can be seen as an equivalent problem

to NMF (Esser et al., 2012).

Formulation of PCA-like optimization with nonnegative and sparse constraints have also

considered by several works, see for instance (Zass and Shashua, 2006). Motivated by a

combination of NMF and kernel theory (emmbedding into polynomial feature space), var-

ious nonlinear variants of NMF have been proposed (Zafeiriou and Petrou, 2010). Simi-

larly, algorithms have been also introduced for nonnegative ICA (Plumbley, 2003). NMF

has been extended to factorization of non vector spaces, typically for data sampled from a

low-dimensional manifold embedded in a high-dimensional space, using affinity graph matrix

non-negative decomposition (Cai et al., 2011) and manifold regularized NMF (Guan et al.,

2011). NMF has been also extended to tensor factorizations (Cichocki et al., 2009), and has

considered for applications to exploratory multi-way data analysis and blind source separa-

tion. In general, NMF is a NP-hard problem (Vavasis, 2009). However, starting from the

notion of separable NMF, introduced by (Donoho and Stodden, 2004), which in geometric

terms involves that the conical hull of a small subsets of the columns of the data matrix

contain the rest of the columns, an emerging line of work in NMF, based on computational
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geometry approaches, is leading to efficient solutions. It can be then solved by linear pro-

gramming (Arora et al., 2012), conical hull algorithms (Kumar et al., 2013) and random

projections (Damle and Sun, 2014). When the data to be factorized is binary or Boolean

(i.e., only “0” or “1” values), the NMF problem is called discrete basis problem (Miettinen

et al., 2008). This discrete basis problem which is equivalent to the binary k-median prob-

lem is NP-hard and some greedy algorithms (Miettinen, 2010) have been proposed to deal

with. Other binary matrix factorization approaches are straightforward related to classical

NMF (Zhang et al., 2007) either by a thresholding algorithm (smooth approximation to Heav-

iside function) or by binary-constraint penalty function. A binary version of the sparse NMF

can be also mentioned (Yuan et al., 2009), based on windowed image parts with Haar-like

box functions. Extension of NMF to binary data factorization has been also considered by

means of a Bernoulli distribution of binary observations (Schachtner et al., 2010), or more

recently using a logistic PCA approach (Tomé et al., 2015).

Paper organisation. The methodology described here was initiated in (Angulo and

Velasco-Forero, 2011) for binary erosion/dilation. In the present work, we develop also sparse

approximations to binary opening/closing as well as the full counterpart of sparse approxima-

tion to morphological operators for gray-scale images. The applications considered in the last

part of the paper are also new with respect to our previous work (Angulo and Velasco-Forero,

2011).

The rest of paper is structured as follows. Section 2 reviews the formal definition of

NMF and various algorithms proposed in the state-of-the-art, including the sparse variant

introduced in (Hoyer, 2004), which is the one used in the our study. The use of NMF repre-

sentations for implementing sparse pseudo-morphological binary operators is introduced and

theoretically justified in Section 3. The section discusses also why sparse NMF is appropriate

in morphological image processing. Section 4 generalizes the framework of morphological

sparse processing to gray-scale images using two alternatives. The first one is based on level

set decomposition of numerical functions. The second approach, more useful in practice, uses

a straightforward representation of sparse NMF basis from the gray-scale images. Applica-

tions are studied in Section 5. The first case-study deals with the sparse processing and

modeling of a multivariate Boolean texture. The second application focusses on morphologi-

cal sparse processing of hyperspectral images. Conclusions and perspectives close the paper

in Section 6.

2 NMF and Sparse Variants

2.1 Definition of NMF on vector space

Let us assume that our data consists ofM vectors of N non-negative scalar variables. Denot-

ing the column vector vj , j = 1, · · · ,M , the matrix of data is obtained as V = (v1, · · · ,vM )
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(each vj is the j-th column of V), with |vj | = N . If we analyze M images of N pixels, these

images can be stored in linearized form, so that each image will be a column vector of the

matrix.

Given the non-negative matrix V ∈ RN×M , Vi,j ≥ 0, NMF is defined as a linear non-

negative approximate data decomposition into the two matrices W ∈ RN×R and H ∈ RR×M

such that

V ≈WH, s.t. Wi,k,Hk,j ≥ 0, (1)

where usually R ≪ M , which therefore involves a dimensionality reduction. Each of the R

columns of W contains a basis vector wk and each row of H contains the coefficient vector

(weights) hj corresponding to vector vj : vj =
∑R

k=1wkHk,j = Whj . Using the modern

terminology from sparse coding theory, the matrix W contains the dictionary and H the

encoding.

A theoretical study of the properties of NMF representation has been achieved in (Donoho

and Stodden, 2004) using geometric notions. Hence, NMF is interpreted as the problem of

finding a simplicial cone which contains the data points in the positive orthant, or in other

words, NMF is a conical coordinate transformation. It is interesting to note that NMF

is somehow equivalent to Kernel k-means clustering and Laplacian-based spectral cluster-

ing (Ding et al., 2005).

2.2 Basic NMF algorithms

The factorization V ≈ WH is not necessarily unique, and the optimal choice of matrices

W and H depends on the cost function that minimizes the reconstruction error. The most

widely used is the Euclidean distance, i.e., minimize

∥V −WH∥22 =
∑
i,j

(Vi,j − (WH)i,j)
2 ,

with respect to W and H, and subject to the constraints W,H > 0. Although the minimiza-

tion problem is convex inW andH separately, it is not convex in both simultaneously. In (Lee

and Seung, 2001) a multiplicative good performance algorithm to solve (1) is proposed. They

proved that the cost function is nonincreasing at the iteration and the algorithm converges

at least to a local optimal solution. More precisely, the update rules for both matrices are:

Hk,j ← Hk,j
(WTV)k,j

(WTWH)k,j
; Wi,k ←Wi,k

(VHT )i,k
(WHHT )k,j

.

Another useful cost function, also considered in (Lee and Seung, 2001), is the Kullback-Leibler

(KL) divergence, which leads also quite simple multiplicative update rules.

In (Li et al., 2001), a variant of KL divergence NMF was proposed, which is named Local

NMF (LNMF), aiming at learning spatially localized components (by minimizing the number

of basis R to represent V and by maximizing the energy of each retained components) as well
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as imposing that different bases should be as orthogonal as possible (in order to minimize

redundancy between the different bases). The multiplicative update rules for LNMF are given

by

Hk,j ←
√
Hk,j

∑
i

Vi,j
Wi,k

(WH)i,k
; Wi,k ←Wi,k

∑
j Vi,j

Hk,j

(WH)i,j∑
j Hk,j

; Wi,k ←
Wi,k∑
iWi,k

.

As we have discussed in the introduction, there are many other alternative NMF algo-

rithms, but we focus on the following technique which provide a sparse variant.

2.3 NMF with sparseness constraints

A very powerful framework to add an explicit degree of sparseness in the basis vectors W

and/or the coefficientsH was introduced in (Hoyer, 2004). First of all, the sparseness measure

σ of a vector v ∈ RN×1 used in (Hoyer, 2004) is based on the relationship between the L1

norm and the L2 norm:

σ(v) =

√
N − ∥v∥1/∥v∥2√

N − 1
.

This function is maximal at one if and only if v contains only a single non-zero component,

and takes a value of zeros if and only if all components are equal (up to signs). Then,

matrix W and H are solved by the problem (1) under additional constraints σ(wk) = Sw
and σ(hj) = Sh, where Sw and Sh are respectively the desired sparseness of W and H. The

algorithm introduced in (Hoyer, 2004) is a projected gradient descent algorithm (additive

update rule), which takes a step in the direction of the negative gradient

Wi,k ←Wi,k − µW (Wi,kHk,j −Vi,j)H
T
j,k; Hk,j ← Hk,j − µHWT

k,i (Wi,kHk,j −Vi,j) ;

and subsequently projects each column of W and each row of H onto the constraint space.

The most sophisticated step is therefore how to find, for a given vector v, the closest non-

negative vector u with a given L1 norm and a given L2 norm. The algorithm works as

follows (Hoyer, 2004). The vector is projected onto the hyperplane of L1. Next, within this

space, one projects to the closest point on the joint constraint hypersphere (intersection of

the sum and the L2 constraints), by moving radially outward for the center of the sphere (the

center is the point where all the components have equal values). If the components of this

projection point are not completely non-negative, the negative values must be fixed at zero

and a new point found in similar way under the same constraints. Sparseness is controlled

explicitly with a pair of parameters that is easily interpreted; in addition, the number of

required iterations grows very slowly with the dimensionality of the problem. In fact, for all

the empirical tests considered in this paper, we have used the MATLAB code for performing

NMF and its various extensions (LNMF, sparse NMF) provided by Hoyer (2004).

Besides the sparseness parameters (Sw, Sh), a crucial parameter to be chosen in any

NMF algorithm is the value of R, that is, the number of basis of projective reduced space.
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Any dimensionality reduction technique, such as PCA, requires also to fix the number of

components. In PCA, the components are ranked according to the second-order statistical

importance of the components and each one has associated a value of the represented variance;

whereas in NMF the selection R can be evaluated only a posteriori, by evaluating the error

of reconstruction. This issue is not considered in the paper and we empirically fix R.

2.4 A few properties of NMF

We conclude this review on NMF algorithms by discussing some well-known propeorties which

are useful for the sequel.

• Boundedness property (for any NMF variant) (Zhang et al., 2007): We say that

V is bounded if 0 ≤ Vi,j ≤ 1. If V is bounded, then the factor matrices W and H are

also bounded, i.e., 0 ≤Wi,k ≤ 1 and 0 ≤ Hk,j ≤ 1.

• Indeterminacies (for any NMF variant) (Theis et al., 2005; Huang et al., 2014):

Positivity and sparseness are invariant under permutation and scaling of columns of W

(and correspondingly of the rows of H), i.e., V = WH = (WP−1L−1)(LPH), where

P is a permutation matrix and L a positive scaling matrix.

• Uniqueness (only for Sparse-NMF) (Theis et al., 2005; Huang et al., 2014): Under

sparsity constraints, projection step proposed in (Hoyer, 2004) has a unique solution,

which is found. Hence, under non-degenerate data, Sparse-NMF a.s. produces a unique

factorization. This is another fundamental reason why we think that Sparse-NMF is

an excellent choice for our learning our non-negative dictionaries.
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3 Sparse approximation to binary morphological operators

Let X = {X1, · · · , XM} be a collection of M binary shapes, called a family of shapes, i.e.,

Xj ∈ P(E). For each shape Xj , let xj(i) : I → {0, 1}, with i ∈ I = {1, 2, · · · , N} and

N = |E|, be its indicator vector :

∀Xj ∈ P(E), ∀pi ∈ E, xj(i) =

{
1 if pi ∈ Xj

0 if pi ∈ Xc
j

(2)

Then the family of shapes X has associated a data matrix V ∈ {0, 1}N×M , where each

indicator vector corresponds to one of its columns, i.e., Vi,j = xj(i).

3.1 Sparse NMF approximations of binary sets

After computing the NMF representation on data V, for a given constant R > 0, an approx-

imation to V is obtained. More precisely, if we denote by ϕk(pi) : E → R+ the basis images

associated to the basis matrix W, i.e., ϕk(pi) = Wi,k, the following image is obtained as

aXj (pi) =

R∑
k=1

ϕk(pi)Hk,j (3)

It is obvious that without any additional constrains, function aX(pi) is not a binary image. By

the boundedness property discussed above, we have 0 ≤ aX(pi) ≤ 1. Hence, a thresholding

operation at value α is required to impose a binary approximate set X̃j to each initial shape

Xj , i.e.,

Xj
NMF−−−−→ X̃j : pi ∈ X̃j if aX(pi) > α (4)

We propose to fix, for all the examples of the paper, the threshold value to α = 0.45, in order

to favor the reconstruction of Xj against its complement.

Let us consider a practical example from a binary image collection X , composed of M =

100 images from the Fish shape database (N = 400 × 200), see in Fig. 2 a few examples

of images. Fig. 3 depicts the corresponding basis images for various NMF algorithms: we

have fixed R = 10 for all the cases (factor 10 of dimensionality reduction). We observe

that standard NMF produces a partial part-based representation, which also includes almost

complete objects for outlier shapes (basis 2-upper-center and 5-center-center). As expected,

LNMF produces more local decompositions, however the orthogonality constraints involves

also an atomization of some common parts. A similar problem arises for Sparse-NMF when

Sw ̸= 0 (constraint of sparsity in basis matrix W). When the sparsity constraint is limited

to the coding Sh, with a typical value around 0.6, the obtained dictionary of shapes is less

local, but in exchange, this constraint involves that each binary shapes is reconstructed

using a limited number of atoms. The various groups of fish shapes are therefore better

approximated by the latter case than using the other NMF algorithms. The comparison of
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Fig. 4 illustrates qualitatively the better performance of Sparse-NMF (Sw = 0, Sh = 0.6)

with respect to the others. We have also included in Fig. 3(a) the 10 first eigenimages

obtained by PCA (in red the positive values and in blue the negative values); as expected,

the corresponding representation does not fit with a part-based decomposition needed for

morphological operators.

Figure 2: Examples of original binary images from the fish database, composed of 100 images.

3.2 Sparse max-approximation to binary dilation and erosion

Dilation and Erosion. The two fundamental morphological operators are the dilation and

the erosion, which are defined respectively as the operators which commute with the union

and the intersection. Given a structuring element B ⊆ E, i.e., a set defined at the origin

which introduces the shape/size of the operator, the dilation of a binary image X by B and

the erosion of a binary image X by B are defined respectively by (Serra, 1982; Heijmans,

1994; Bloch et al., 2007):

δB(X) = ∪{B(pi)| pi ∈ X} , (5)

and

εB(X) = {pi ∈ E|B(pi) ⊆ X} , (6)

where B(pi) is the structuring element centered at pixel pi. In the case of numerical functions

f ∈ F(E, T ), which are considered in detail in next section, the dilation of a grey-level image

is defined by (Heijmans, 1994; Soille, 1999; Bloch et al., 2007):

δB(f)(pi) =
{
f(pm)| f(pm) = sup [f(pn)] , pn ∈ B̌(pi)

}
= sup

pn∈B̌(pi)

{f(pn)} , (7)

and the dual grey-level erosion is given by (Heijmans, 1994; Soille, 1999; Bloch et al., 2007)

εB(f)(pi) = {f(pm)| f(pm) = inf [f(pn)] , pn ∈ B(pi)} = inf
pn∈B(pi)

{f(pn)} , (8)
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(a) PCA basis images (b) NMF basis images

(c) LNMF basis images (d) Sparse-NMF basis images (Sw = 0.5,Sh = 0.5)

(e) Sparse-NMF basis images (Sw = 0.6,Sh = 0) (f) Sparse-NMF basis images (Sw = 0,Sh = 0.6)

Figure 3: PCA vs. non-negative representation of binary shapes. A collection of M = 100

shapes has been used in the experiments (see examples in Fig. 2), where the number of

reduced dimensions has been fixed to R = 10 (in the examples are given the first 9 basis

images).

where B̌(pi) is the transposed structuring element centered at pixel pi. If B is symmetric

with respect to the origin, one has B̌ = B.

Sparse max-approximation to binary dilation. Let us first introduce two basic notions.

The indicator function of set X, denoted 1X : E → {0, 1}, is defined by

∀X ∈ P(E), ∀pi ∈ E, 1X(pi) =

{
1 if pi ∈ X
0 if pi ∈ Xc (9)

Obviously, we have 1Xc = 1 − 1X . Given two sets X,Y ∈ P(E), one has the two following

basic properties of indicator function:

1X∩Y = min{1X ,1Y } = 1X · 1Y ;
1X∪Y = max{1X ,1Y } = 1X + 1Y − 1X · 1Y = min{1,1X + 1Y }.
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(a) Original binary images

(b) NMF approximation (c) LNMF approximation

(d) Sparse-NMF approximation (Sw = 0.6,Sh = 0) (e) Sparse-NMF approximation (Sw = 0,Sh = 0.6)

Figure 4: Sparse-NMF approximations to binary sets: (a) three original shapes Xj ; (b)-(e)

Top, reconstructed function aXj and Bottom, approximate set X̃j .

For a function f : E → T , the thresholded set at value t ∈ T is a mapping from F(E, T )
to P(E) given by (Serra, 1982):

ϖt(f) = {pi ∈ E| f(pi) ≥ t} . (10)

Using these transformations it is obvious that the binary dilation (6) can be computed using

the numerical operator (7), i.e.,

δB(X) = ϖ1 (δB(1X)(pi)) . (11)

By the fundamental property of dilation (Serra, 1982), given a set defined as the union of a

family of sets, i.e., X = ∪k∈KXk, its corresponding binary dilation by B is

δB(X) = δB (∪k∈KXk) = ∪k∈KδB(Xk). (12)

From (11) and the property of the indicator function for the union of sets, it is easy to see

that (12) can be rewritten using the dilation of functions as

δB(X) = ϖ1

(
δB

(
min

{
1,
∑
k∈K

1Xk
(pi)

}))
= ϖ1

(
min

{
1,
∑
k∈K

δB (1Xk
(pi))

})
,

and finally it is obtained that

δB(X) = ϖ1

(∑
k∈K

δB (1Xk
(pi))

)
. (13)
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Hence, the justification for using NMF-based part decompositions in sparse mathematical

morphology arises from equations (12) and (13).

Coming back to the NMF reconstruction, expressions (3) and (4), we can now write

Xj ≈ X̃j = ϖα

(
R∑

k=1

ϕk(pi)Hk,j

)
. (14)

Hence, we introduce the following nonlinear operator, named sparse max-approximation to

binary dilation:

DB(Xj) = ϖα

(
R∑

k=1

δB (ϕk) (pi)Hk,j

)
. (15)

Note that by the nonnegativity of Hk,j , we have δB (ϕk(pi)Hk,j) = δB (ϕk) (pi)Hk,j . We can

say that

if Xj ≈ X̃j then δB(Xj) ≈ DB(Xj),

or in other words, the degree of approximation to the dilation depends on the degree of

approximation to the original set. However neither the increasiness nor the extensitivity of

DB(Xj) w.r.t. Xj can be guaranteed and consequently, operator (15) is not a morphological

dilation in an algebraic sense (Heijmans and Ronse, 1990).

In conclusion, in order to approximate the dilation by B of any of the M sets Xj , we only

need to calculate the dilation of the R basis images. In addition, if sparsity is imposed to H,

that involves that only a limited number of dilated atoms are required for each Xj .

Dual sparse max-approximation to binary erosion. One of the most interesting prop-

erties of mathematical morphology is the duality by the complement of pairs of operators,

and in particular the duality between the dilation and the erosion. Hence, the binary ero-

sion of set X by structuring element B can be defined as the dual operator to the dilation:

εB̌(X) = (δB(X
c))c, where the complement set is Xc = {X = E \ X. Using this property,

we propose to define the sparse max-approximation to binary erosion as

EB(Xj) = ϖα

(
R∑

k=1

{
[
δB̌
(
{[ϕk]

)
(pi)

]
Hk,j

)
, (16)

where the complement basis images are defined by {[ϕk(pi)] = max(Wi,k)−ϕk(pi)+min(Wi,k).

The results of sparse max-approximations to DB(Xj) and EB(Xj) for three examples of

the Fish shapes, compared to the exact binary dilation and erosion, are given in Fig. 5. We

have compared in particular the sparse max-approximation for the standard NMF and for

the Sparse-NMF.
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(a) Dilated original images δB(Xj) (b) Eroded original images εB(Xj)

(c) NMF-based max-approximation (d) NMF-based max-approximation

to dilation DB(Xj) to erosion EB(Xj)

(e) Sparse NMF-based max-approximation (f) Sparse NMF-based max-approximation

to dilation DB(Xj) to erosion EB(Xj)

Figure 5: Comparison of dilation/erosion (a)/(b) vs. sparse pseudo operators for three

examples of the Fish shapes. It is compared in particular the sparse max-approximation

to dilation/erosion for the standard NMF (c)/(d) and for the Sparse-NMF (e)/(f), with

(Sw = 0,Sh = 0.6). The structuring element B is a square of 5× 5 pixels.

3.3 Sparse max-approximation to binary opening and closing

Composition of dilation and erosion produces two other operators, called opening and closing,

which are the fundamental bricks for morphological filtering. More precisely, opening of a

binary image X by B and the dual closing of a binary image X by B are defined as (Serra,

1982; Heijmans, 1994):

γB(X) = δB (εB(X)) =
∪
{B(pi)| pi ∈ E andB(pi) ⊆ X} , (17)

φB(X) = εB (δB(X)) = (γB (Xc))c . (18)

Similarly for the case of numerical functions f ∈ F(E, T ), opening and closing of a grey-level

image by B and its dual grey-level closing are respectively given by (Serra, 1982; Heijmans,

1994):

γB(f)(pi) = δB (εB(f)) (pi) = sup
pm∈B̆(pn)

inf
pn∈B(pi)

{f(pm)} ,

φB(f)(pi) = εB (δB(f)) (pi) = inf
pm∈B(pn)

sup
pn∈B̆(pi)

{f(pm)} .

In order to apply the non-negative decomposition underlaying the NMF coding, we first

introduce sufficient conditions for a compatibility of opening with set decomposition, which

are based on the geometric formulation of binary opening provided by (17). LetX =
∪

k∈K Xk

such that

• either ∂Xi ∩ ∂Xj = ∅, ∀i, j ∈ K,

14



• or Xi ⊆ Xj or Xj ⊆ Xi, ∀i, j ∈ K

then

γB(X) = γB

(∪
k∈K

Xk

)
=
∪
k∈K

γB(Xk). (19)

Hence, opening commutes with the union only in the cases where the subsets are either totally

disjoint or totally contained. We call these cases as separable subsets.

Under the assumption of separability of the atoms of the dictionary {ϕk}1≤k≤R, by com-

bining (17) and (19) (equivalence only valid on the separable case), i.e.,

γB(X) =
∪
k∈K

∪
{B(pi)| pi ∈ E andB(pi) ⊆ Xk} =

∪{
B(pi)| pi ∈ E andB(pi) ⊆

∪
k∈K

Xk

}
,

and similarly to the dilation and erosion, we introduce the sparse max-approximation to

binary opening and to binary closing respectively as

GB(Xj) = ϖα

(
R∑

k=1

γB (ϕk) (xi)Hk,j

)
, (20)

FB(Xj) = ϖα

(
R∑

k=1

{
[
γB
(
{[ϕk]

)
(pi)

]
Hk,j

)
. (21)

As discussed below, in Section 4, even in the case when the separability is not always fulfilled,

operatorsGB(Xj) and FB(Xj) are interesting to approximate the effect of the opening γB(Xj)

and the closing φB(Xj).

3.4 Consistency and noise robustness of sparse morphological operators

Let us discuss the two following important properties which have been empirically observed.

From our viewpoint, they prove the pertinence of the sparse max-approximation to binary

dilation based on Sparse-NMF representations.

Consistency. Behind this notion of consistency between Sparse-NMF and morphological

binary dilation, we mean the fact that the Sparse-NMF basis from an image collection X
should be stable to dilation of X , i.e., δB (X ) = {δB(X1), · · · , δB(XM )}. Fig. 6 illustrates

the consistency: it is compared in (a) the Sparse-NMF basis from the original image data

set X to the Sparse-NMF basis obtained using the same parameters from two dilated image

data set δB (X ), in (b) for B a square of 5× 5 and in (c) for a square 7× 7. We have noted

that, for a symmetric structuring element B of size relatively small with respect to the size

of the objects, i.e., |Xj \ δB(Xj)|/|Xj | ≪ 1, ∀j, the consistency involves that
∑

i ∥ϕ
⊕B
k −

δB(ϕk)∥(pi)/
∑

i ϕk(pi) ≈ 0, ∀k, where

X Sparse−NMF−−−−−−−−−→ {{ϕk}1≤k≤R; H} ⇒ δB (X ) Sparse−NMF−−−−−−−−−→
{
{ϕ⊕B

k }1≤k≤R; H
}
.
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Using the semi-group property of multi-scale dilation δnB by homothetic convex structuring

elements, i.e., δnB ◦δnB = δ(n+m)B, a consequence of such consistency is depicted in the exam-

ple of Fig. 6(d): the sparse max-approximation to dilation of size 7 from X is close the sparse

max-approximation to dilation of size 5 from a Sparse-NMF representation on δ2B (X ), i.e.,
D5B (δ2B(Xj)) ≈ D7B(Xj). More generally, given a convex symmetric structuring element

B, if one has |Xj \ δmB(Xj)|/|Xj | ≪ 1 for a scale m, then we have

D(n+m)B(Xj) ≈ ϖα

(
R∑

k=1

δnB

(
ϕ⊕mB
k

)
(pi)Hk,j

)
.

(a) From original images

(b) From dilated images by size 5

(c) From dilated images by size 9

Sparse NMF-based max-approximation to dilation D7B(Xj)

Sparse NMF-based max-approximation to dilation D5B (δ2B(Xj))

(d)

Figure 6: Consistency of Sparse-NMF representation for binary dilation: (a)-(c) Sparse-NMF

basis images (Sw = 0,Sh = 0.6), M = 100 and R = 10; (d) max-approximation to dilation on

original image collection vs. on dilated image collection.

Robustness against noise.The perturbation associated to X is now related to the
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presence of noise; in particular, since we are dealing with binary images, salt-and-pepper

noise is considered. Accordingly, a given percentage p of pixels is corrupted in our dataset to

obtain X noise−p. Concerning the noise, it is well known that morphological operators are very

sensitive to noise and even a small amount of salt-and-pepper provides a strong perturbation

of dilation/erosion. As it is illustrated in Fig. 7, Sparse-NMF dictionary learning produces

atoms or basis which are quite robust against this kind of noise. If we denote by ϕnoise−p
k

the basis obtained from noisy data X ′
p, we have observed that for p up to 20% − 30%,

we get
∑

i ∥ϕ
noise−p
k − ϕk∥(pi)/

∑
i ϕk(pi) ≈ 0, ∀k, and therefore we obtain DB

(
Xnoise−p

j

)
≈

DB(Xj). Fig. 7(d) shows examples of the robustness of sparse max-approximation to dilation

for p = 10% and p = 20%. In conclusion, Sparse-NMF representation allows us (pseudo-

)morphological processing noisy images.
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(a) From original images

(b) From noisy (salt-and-pepper 10%)

(c) From noisy (salt-and-pepper 20%)

Original 10% noisy images Xj Original 20% noisy images Xj

Dilated 10% noisy images δB(Xj) Dilated 20% noisy images δB(Xj)

Sparse NMF-based max-approximation Sparse NMF-based max-approximation

to dilation DB(Xj) to dilation DB(Xj)

(d)

Figure 7: Robustness against noise of Sparse-NMF representation for binary dilation: (a)-(c)

Sparse-NMF basis images (Sw = 0,Sh = 0.6), M = 100 and R = 10; (d) noisy binary images,

dilated noisy images and max-approximation to dilation of noisy images.
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4 Sparse approximation to numerical morphological operators

Approaches introduced in Section 3 are extended here to gray-levels images. In this case, we

deal with families of discrete gray-level images, i.e., F = {f1(pi), · · · , fM (pi)}, with fj(pi) ∈
F(E, T ), T = {t1, t2, · · · , tL} with (tl+1 − tl) = ∆t. Fig. 8 provides some examples of ORL

face database (Guo et al., 2000) which is used to illustrate and compare our techniques. We

consider in particular two alternative paradigms: i) each gray-scale function fj is represented

as a stack of upper level sets and Sparse-NMF processing is applied on the upper level sets,

followed by image recomposition from processed upper level sets; ii) straightforward Sparse-

NMF representation and processing of gray-scale images

Figure 8: Examples of original numerical images from the ORL face database.

4.1 Sparse-NMF processing of upper level sets

The thresholded set of fj at each tl, i.e., X
tl
j = ϖtl(fj), is called the upper level-set at tl of

fj . The set of upper level sets constitutes a family of decreasing sets (Serra, 1982):

tλ ≥ tµ ⇒ Xtλ ⊆ Xtµ and Xtλ = ∩{Xtµ , µ < λ}.

Moreover, any (semi-continuous) image fj can be viewed as an unique stack of its upper level

sets, which leads to the following reconstruction property (Serra, 1982):

fj(pi) = sup{tl| pi ∈ Xtl
j }, tl ∈ T .
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We prefer here to consider the alternative reconstruction using a numerical sum of the indi-

cator function of upper level sets (Wendt et al., 1986; Ronse, 2009):

fj(pi) = ∆t
L∑
l=1

1
X

tl
j
(pi). (22)

It is well known in mathematical morphology that any binary increasing operator, such

as the dilation and erosion, can be generalized to gray-level images by applying the binary

operator to each cross-section, and then by reconstructing the corresponding gray-level im-

age (Serra, 1982; Ronse, 2009), i.e.,

δB(fj)(pi) = ∆t

L∑
l=1

1
δB

(
X

tl
j

)(pi), (23)

εB(fj)(pi) = ∆t

L∑
l=1

1
εB

(
X

tl
j

)(pi). (24)

Consider now that each image of the initial gray-level family F ofM images is decomposed

into its L upper level set. Hence, we have

F = {f1, · · · , fM} 7→ X = {Xt1
1 , X

t2
1 · · · , X

tL
1 , · · · , XtL

M−1, X
t1
M , · · · , X

tL
M },

where X is a family ofM ′ =M×L binary images. Therefore, we can use NMF algorithms, for

a given dimension R, to approximate each set Xtl
j and then approximate the corresponding

function fj(pi). Thus, using the results of the previous Section, we are able now to introduce

the following definition for the sparse max-approximation to grey-level dilation and erosion

given respectively by:

DB(fj)(pi) = ∆t

L∑
l=1

1
DB

(
X

tl
j

)(pi), (25)

and

EB(fj)(pi) = ∆t
L∑
l=1

1
EB

(
X

tl
j

)(pi). (26)

with

DB

(
Xtl

j

)
= ϖα

(
R∑

k=1

δ (ϕk) (pi)Hk,j+l

)
,

EB

(
Xtl

j

)
= ϖα

(
R∑

k=1

{
[
δB
(
{[ϕk]

)
(pi)

]
Hk,j+l

)
.

Similarly, a sparse max-approximation to gray-scale opening and closing can be achieved by

means of the expressions (20) and (21) for respectively GB(Xj) and FB(Xj) applied to the

upper level sets of fj .
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Behavior of sparse max-approximation to gray-level dilation and erosion based on upper

level set decomposition is shown in Fig. 9. Note that, for this example, the number of

initial images M = 20, and each of them has been quantized in L = 10 gray-levels, i.e.,

M ′ = 20 × 10 = 200 dimensions and them for Sparse-NMF the number of atoms is fixed to

R = 75. Hence a reduction factor which is not significant. Some of the corresponding atoms

are given in Fig. 9(a). As expected the quality of the sparse max-approximation to dilation

and to erosion depends on the quality of the initial Sparse-NMF reconstruction of the image.

For instance, the first face (man with glasses) is not well approximated with the learned

NMF basis and hence, its approximated dilation and erosion are also unsatisfactory. On the

contrary, in the case of the last image (woman), the results are more relevant. Nevertheless,

at this point, we can conclude that the sparse approximation using upper level set stack,

which is theoretically consistent with the binary framework discussed in Section 3 is not very

useful in practice.

4.2 Sparse-NMF representation and processing of gray-scale images

As an alternative to the previous formulation, we propose a straightforward use of Sparse-

NMF representation from the image gray-scale image collection F = {f1(pi), · · · , fM (pi)}.
That is, each column of the data matrix V corresponds to an image, i.e., Vi,j = fj(pi). Then,

after Sparse-NMF dictionary learning of dimension R, each image is approximated as

fj(pi)
Sparse−NMF−−−−−−−−−→ f̃j(pi) =

R∑
k=1

ϕk(pi)Hk,j .

According to our principle, for any image fj of the family F and given a structuring element

B, we can introduce the following operators.

The sparse max-approximation to gray-level dilation and to gray-level erosion are respec-

tively given by

DB(fj)(xi) =
R∑

k=1

δB (ϕk) (xi)Hk,j , (27)

EB(fj)(xi) =

R∑
k=1

{
[
δB
(
{[ϕk]

)
(xi)

]
Hk,j . (28)

In addition, the sparse max-approximation to gray-level opening and gray-level closing are

respectively defined as

GB(fj)(xi) =
R∑

k=1

γB (ϕk) (xi)Hk,j , (29)

FB(fj)(xi) =
R∑

k=1

{
[
γB
(
{[ϕk]

)
(xi)

]
Hk,j . (30)
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We must point out again that these approximate nonlinear operators do not satisfy the

standard properties of grey-level dilation and erosion.

Similarly to the binary case, let us discuss the conditions under which these max-approximations

to dilation and opening are more relevant. First, let us rewrite (27) as supremum of cylin-

ders (Heijmans, 1994; Bloch et al., 2007):

δB(f) =
∨{

CB(pi), f(pi) : pi ∈ E
}
,

where CB,t is the cylinder of base B at the origin and height t. From this expression, it is

easy to see that dilation commutes with supremum of functions, i.e.,

δB

(∨
k∈K

fk

)
=

∨{
CB(pi),

∨
k∈K fk(pi) : pi ∈ E

}
=

∨{∨
k∈K

CB(pi), fk(pi) : pi ∈ E

}
=

∨
k∈K

∨{
CB(pi), fk(pi) : pi ∈ E

}
=
∨
k∈K

δB (fk)

For the case of the opening (29), one has (Heijmans, 1994; Bloch et al., 2007):

γB(f) =
∨{

CB(pi), t : pi ∈ E, CB(pi), t ≤ f
}
.

Thus, a sufficient condition for the commutation of opening with the supremum is the “dis-

jointness” of functions, i.e.,
∧

k∈K fk = 0. It is obvious also that for “disjoint functions”, one

has:
∨

k∈K fk =
∑

k∈K fk. Therefore, operators (27) and (29) will provide a good approxima-

tion to dilation and opening in the case where the Sparse-NMF representation is composed

of disjoint atoms, i.e., ∧
ϕk(pi) ≈ 0,

which turns out to be a condition of non-redundancy of the Sparse-NMF basis.

Fig. 10(a) gives the Sparse-NMF representation of the faces, where a collection ofM = 80

images has been used in this experiment and dimension of dictionary has been fixed to

R = 20 atoms. As we can observe, the effectivity of the max-approximation to dilation and

opening is consistent with the approximation to the corresponding original image. Thus,

such approximations can be then used to compute evolved morphological operators. We have

in particular illustrated in Fig. 10 two operators which can be applied in face image feature

extraction. The first one is the morphological gradient, i.e., δ(B)(f)−ε(B)(f), typically used

for contour detection. The second one, the black top-hat, i.e., φ(B)(f)− f , extracts the dark
structures, which in the present case of faces, correspond just to the eyes and lips.
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(a) Examples from {ϕ}1≤k≤75

(b) Original images fj(pi) (c) Sparse-NMF approximation f̃j(pi)

(d) Dilated images δB(fj)(pi) (e) Sparse max-approximation dilat. DB(fj)(pi)

(f) Eroded images εB(fj)(pi) (g) Sparse max-approximation erod. EB(fj)(pi)

Figure 9: A collection ofM = 20 faces has been used in this experiment, where the number of

reduced dimensions for the binary matrix V has been fixed to R = 75 (note that M ′ = 20×
10 = 200 dimensions). Top, some examples of the Sparse-NMF atoms obtained from the 200

upper level sets. Bottom, four examples of the ORL face database (b) (quantized in L = 10

gray-levels) and (c) corresponding approximated images using Sparse-NMF. Comparison of

dilation/erosion (d)/(f) vs. sparse max-approximation to dilation/erosion for the Sparse-

NMF (e)/(g). The structuring element B is a square of size 3× 3 pixels.
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(a) Sparse-NMF basis {ϕ}1≤k≤20 (Sw = 0, Sh = 0.6)

(b) Original images fj(pi) (c) Sparse-NMF approximation f̃j(pi)

(d) Dilated images δB(fj)(pi) (e) Sparse max-approximation dilat. DB(fj)(pi)

(f) Opened images γB(fj)(pi) (g) Sparse max-approximation open. GB(fj)(pi)

(h) Black top-hat images φB(fj)(pi)− fj(pi) (i) Sparse max-approximation black top-hat

FB(fj)(pi)− f̃j(pi)

(j) Morphological gradient images

δB(fj)(xi)− εB(fj)(pi)
(k) Sparse max-approximation morpho. gradient

DB(fj)(xi)− EB(fj)(pi)

Figure 10: Sparse-NMF representation and processing of gray-scale images F : A collection

of M = 80 faces has been used in this experiment and dimension of dictionary has been fixed

to R = 20. Top, the obtained Sparse-NMF atoms. Bottom, four examples of the ORL face

database (b) and (c) corresponding approximated image using Sparse-NMF. Comparison of

dilation, opening, black top-hat and gradient (d)/(f)/(h)/(j) vs. sparse max-approximation

to this operators. The structuring element B is a square of size 5× 5 pixels for the dilation

and opening, size 9× 9 for the black top-hat.
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5 Applications

We consider in this Section to potential applications of Sparse-NMF morphological processing

to problems arising from multi/hyperspectral image processing.

5.1 Sparse processing of multivariate Boolean textures

The motivation of this study is to deal with random image models on multivalued images, and

more precisely with the case of multivariate Boolean random set model (Jeulin, 1991). This

approach is an extension of the classical Boolean random model (Matheron, 1975). Multivari-

ate texture images which fit with this model appear in different fields: multi/hyperspectral

images, energy dispersive spectrometry, electron energy-loss spectrometry, etc.

Let us consider a Poisson point process in a set E ⊂ Rn with intensity (average number of

point per unit of volume) θ. In each point xk ∈ E of the process, an independent realization

of a multivariate random compact set A = (A1, A2, · · · , Ad) is implanted: a realization of the

primary grain sets Ai is placed at xk. Each componentXi of the multivariate Boolean random

set X = (X1, X2, · · · , Xd), X ∼ (θ,A) is a Boolean random closed set obtained as Xi =∪
k Ai(xk). An example of 2D multivariate image of 20 components X = (X1, X2, · · · , X20),

Xi ∈ P(E), E = [0, 255] × [0, 255], θ|E| = 30, and where Ai are random disks is given in

Fig. 11. In practical situations, this kind of binary textures can be for instance obtained after

segmentation of multi/hyperspectral images.

In the framework of the theory of random sets, these structures and their models are

fully characterized by a functional called Choquet capacity (Matheron, 1975). In the present

model, the multivariate Choquet capacity TX(K), with K = (K1,K2, · · · ,Kd), Ki ∈ K
(compact set), is defined as (Jeulin, 1991):

TX(K) = 1−QX(K) = 1− exp
(
−θµn

(
A⊕∪ K̆

))
,

with

A⊕∪ K̆ =
{
A1 ⊕ K̆1 ∪A2 ⊕ K̆2 ∪ · · ·Ad ⊕ K̆d

}
,

µn being the Lebesgue measure in Rn and where X ⊕ K̆ is the dilation of set X ∈ P(E) by

structuring element K, i.e.,

δK(X) = X ⊕ K̆ =
∪

pi∈K̆

X(pi),

where K̆ = {−pi : pi ∈ K}. Hence, an experimental estimation of TX(K) can be obtained

by morphological dilations on realizations of components of K. If a single grain is used for

each Poisson point, the components are independent Boolean random sets (Matheron, 1975;

Jeulin, 1991); otherwise some correlations between components are present.

As a fundamental property, this model is stable by the union; such that any number

of components (even correlated) of a Boolean multivariate random set is still a Boolean
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X1 X2 X3 X4 X5

X6 X7 X8 X9 X10

X11 X12 X13 X14 X15

X16 X17 X18 X19 X20

Figure 11: Example of 2D multivariate image of 20 components X = (X1, X2, · · · , X20),

Xi ∈ P(E), E = [0, 255]× [0, 255], θ|E| = 30, Ai are random disks.

random set. Hence a notion of dimensionally reduction by supremum of primary schemes is

compatible with the model. In our current example of Fig. 11, the Ai random disks have

been simulated using three vector prototypes, see Fig. 12(b) which consequently involves

correlations between the components.

Using our theory of Sparse-NMF representation and max-approximation to dilation we

note that, on the one hand, the Sparse-NMF basis {ϕk(pj)} gives just a dimensionality

reduction of the initial multivariate Boolean model. In other words, thresholding the four

components of Fig. 12(a) produces a Boolean model of dimension 4 instead of dimension 20

of the original model. We observe in the coding vectors H associated to basis, Fig. 12(c), that

the four components are consistent with the decomposition of the original spectra Fig. 12(d).

On the other hand, approximated dilations to the initial components of the model can be

naturally obtained using expression (15), Fig. 12(d)-(f).

In summary, in order to model a multispectral Boolean set X, we need to compute

the characteristic curves related to Choquet capacity TX(K), for different K, and these

computations can be efficiently approximated in a consistent theoretical way with our Sparse-

NMF dilations.

5.2 Sparse processing of hyperspectral images

High-spatial resolution hyperspectral images are used nowadays in remote sensing and other

application domains. They constitute high dimensional datasets: for instance, the Pavia

image, used in this case-study, has dimensions N = 340 × 610 and M = 103. As we have

discussed in the introduction, NMF is widely used in hyperspectral imaging since the non-
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negative representation is compatible with linear physical model of endmembers/abundances.

Fig. 13 shows some of the spectral bands of Pavia image in (a) as well as the classical

NMF representation compared to the Sparse-NMF counterpart (with Sw = 0 and Sh = 0.5),

where for both cases R = 5. We have assessed the effect of the sparseness parameter Sh on the

approximation error (in average percentage) to morphological operators: max-approximation

to dilation DB (27), to erosion EB (28) and to opening GB (29), for the theM = 103 spectral

bands. From this example we clearly observe that with Sh = 0.5 the approximation error is

much better than without any sparseness. We note also that a low value of Sh can eventually

produces worst results than unconstrained NMF.

Mathematical morphology is widely used in remote sensing hyperspectral imaging. One

of the most popular applications in the state-of-the-art is the spectral-spatial classification

based on the notion of morphological profile (Pesaresi and Benediktsson, 2001), and its various

extensions to hyperspectral images (Fauvel et al., 2008; Velasco-Forero and Angulo, 2013).

Morphological profiles are founded on the granulometry (or opening-based scale-space). We

remind that a granulometry (Serra, 1982) is a family of openings {γBn}0≤n≤L, depending

on a (discrete) positive parameter n, representing scale of homothetic structuring element,

i.e., Bn = nB. Then, given an image f , it produces a multi-scale decomposition of bright

structures:

sn(f)(pj) = f(pj)− γBn(f)(pj),

or using a differential representation:

rn(f)(pj) = γBn−1(f)(pj)− γBn(f)(pj)

such that:

f(pj) = γBL
(f)(pj) +

L∑
n=1

rn(f)(pj).

Then, this multi-scale decomposition can be used either for tensor-based spatial-spectral

dimensionality reduction (Velasco-Forero and Angulo, 2013) (4D tensor = 2D space × 1D

spectrum × 1D morphology):{
{fλ}1≤λ≤M , {γB1 (fλ)}1≤λ≤M · · · , {γBL

(fλ)}1≤λ≤M

}
;

or for spatial-spectral classification, where the feature vector per pixel pj given by:

(f1(pj), f2(pj), · · · , fM (pj), γB1(f1)(pj), γB1(f2)(pj), · · · , γBL
(fM )(pj)) ,

is the so-called morphological profile at pj . As it is shown in Fig. 15 for two examples

of spectral bands, the max-approximation to opening-based scale-space using Sparse-NMF

representation is quite satisfactory and can be naturally used in morphological profile-based

spectral spatial classification.
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Figure 12: Dimensionality reduction of multivariate Boolean set X from Fig. 11: (a) Sparse-

NMF basis with R = 4; (b) three spectra used to simulate multivariate set X; (c) coding

vectors H associated to basis of (a); (d) two dilated components of X; (e) approximated

dilation using the Sparse-NMF basis; (d) thresholded images.
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(c) Sparse-NMF representation (Sw = 0, Sh = 0.5)

Figure 13: Pavia hypersectral images (crop of a part of the whole image): (a) some of the

spectral bands, (b) classical NMF representation, (c) Sparse-NMF representation (Sw = 0,

Sh = 0.5). In both cases, left, basis {ϕk(pj)}1≤k≤5 and right, coding H.
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Figure 14: Approximation error (in average percentage) to morphological operators of the

M = 103 spectral bands {fi}, with respect to the sparseness parameter Sh (in red, Sh = 0;

in green, Sh = 0.1 and in blue, Sh = 0.5): (a) max-approximation to dilation DB, (b) max-

approximation to erosion EB, (b) max-approximation to opening GB. For all the cases B is

a square 3× 3.
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Exact Sparse NMF-based approximation

(a)

Exact Sparse NMF-based approximation

(b)

Figure 15: Comparison of opening-based scale-space fi(x), s1(fi)(x), s3(fi)(x), s5(fi)(x),

s7(fi)(x) for exact openings and for Sparse-NMF max-approximations (R = 5, Sh = 0.5). In

(a) for spectral band f1(pj) and in (b) for f3(pj).
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6 Conclusions and perspectives

We have introduced the notion of sparse binary and gray-level max-approximation to mor-

phological operators based on Sparse-NMF representation.

We have linked the role of non-negative decompositions of sets of functions, viewed as

vectors in a high dimensional space, to the commutation by supremum of the dilation opera-

tor, which is just the counterpart of convolution in max-plus algebra. We have also seen that

in the case of the opening operator, additional conditions of separability (or disjointness) are

required for an exact compatibility. Empirical examples showed that this assumption can be

relaxed since the obtained approximations are satisfactory in practical cases.

We have illustrated the practical interest of our approach for morphological processing

of multivariate vector images, namely multispectral/hyperspectral images. Our results are

relatively encouraging and they open a new avenue to study how the current paradigm of

sparse modeling (based mainly on linear operations) in computer vision can be extended to

the nonlinear morphological framework.

As we have discussed, NMF produces linear non-negative decompositions which are well

indicated for morphological operators in the case of separable functions, i.e., decomposition

by sum is equivalent to decomposition by max.

It is well known that morphological operators are linear in the max-plus algebra. Con-

sequently, the intrinsic linear decomposition in such algebra is the more appropriate one

to introduced sparse morphological processing, without separability conditions. Some re-

cent work has addressed the problem of matrix factorization in max-plus algebra, see for

instance (Hook, 2014), which is based on some classical results on max-plus spectral theory

and max-plus eigenvalues as the asymptotic behavior of standard eigenvalues by means of a

nonlinearization of the matrix (Gaubert et al., 2001; Schutter and De Moor, 2002). Other

recent results on matrix factorization over max-times algebra (Karaev, 2013) can also be

used as a representation approach for morphological operators. To explore the interest of

decompositions on max-plus and max-times algebras for morphological processing will be the

object of future research.
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