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Rates in almost sure invariance principle for slowly
mixing dynamical systems

C. Cuny* J. Dedecker! A. Korepanov! Florence Merlevede?
12 November 2018

Abstract

We prove the one-dimensional almost sure invariance principle with essentially
optimal rates for slowly (polynomially) mixing deterministic dynamical systems,
such as Pomeau-Manneville intermittent maps, with Hélder continuous observables.

Our rates have form o(n”L(n)), where L(n) is a slowly varying function and ~
is determined by the speed of mixing. We strongly improve previous results where
the best available rates did not exceed O(n'/*).

To break the O(nl/ 4) barrier, we represent the dynamics as a Young-tower-
like Markov chain and adapt the methods of Berkes-Liu-Wu and Cuny-Dedecker-
Merlevede on the Komlés-Major-Tusnady approximation for dependent processes.

Keywords: Strong invariance principle, KMT approximation, Nonuniformly expanding
dynamical systems, Markov chain.

MSC: 60F17, 37TE05.

1 Introduction and statement of results

In their study of turbulent bursts, Pomeau and Manneville [21] introduced simple dy-
namical systems, exhibiting intermittent transitions between “laminar” and “turbulent”
behaviour. Over the last few decades, such maps have been very popular in dynamical
systems. We consider a version of Liverani, Saussol and Vaienti [I7], where for a fixed
v € (0,1), the map f: [0,1] — [0, 1] is given by

(1 4+2727), 2 <1/2
fle) = {Qx—l, x> 1/2 (L)
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There exists a unique absolutely continuous f-invariant probability measure p on
0, 1], which is equivalent to the Lebesgue measure.

The intermittent behaviour comes from the fact that 0 is a fixed point with f/(0) = 1.
Hence if a point x is close to 0, then its orbit (f"(z)),>0 stays around 0 for a long time.
The degree of intermittency is given by the parameter v and is quantified by choosing an
interval away from 0 such as Y =|1/2, 1] and considering the first return time 7: Y — N,

7(x) =min{n > 1: f*(z) € Y}.
It is straightforward to verify [7, 27] that for some C' > 0 all n > 1,
CIn Y7 < Leb(r >n) < Cn~ /7, (1.2)

where Leb denotes the Lebesgue measure on Y.
Suppose that ¢: [0,1] — R is a Holder continuous observable with [ ¢ du = 0 and let

n—1
Sn(p) = Z(pofk,
k=0

We consider S, (¢) as a discrete time random process on the probability space ([0, 1], u).
Since p is f-invariant, the increments (¢ o f™),>o are stationary. Using the bound (|1.2)),
Young [27] proved that the correlations decay polynomially:

‘/ ppo fr du’ = O(n =), (1.3)

If 4 < 1/2, then S, () satisfies the central limit theorem (CLT), that is n=1/2S, ()
converges in distribution to a normal random variable with variance

CQZ/QOZd,u—{—QZ/gagpofnd,u. (1.4)
n=1

By , the series above converges absolutely. The asymptotics in is sharp [6]
7, 1], 25, 27], and for each > 1/2 there are observables ¢ for which the series for ¢?
diverges, and the CLT does not hold. We are interested in the case when the CLT holds,
so from here on we restrict to v < 1/2.

In parallel with (1.1)), we consider a very similar map

(1 +a27p(x)), x<1/2
flw) = {23:—1, x>1/2 (15)

where, following Holland [10] and Gouézel [7], p € C*((0,1/2], (0,00)) is slowly varying
at 0 and satisfies:

o 2/(x) = olp(x)) and 20" (z) = ofp(a));
e f(1/2) =1 and f'(x) > 1 for all x # 0;

1/2 1
. —dr < >©.
/0 z(p(x))/



For example, p(z) = C|log z|(**9)7 with ¢ > 0 and C = 27(log 2)~ 1+
Then in place of the bound Leb (7 > n) < Cn~"/7 in (1.2) we have a slightly stronger
bound [7, Thm 1.4.10, Prop. 1.4.12, Lem. 1.4.14]:

/ /7 dLeb < oo, (1.6)
Y

Remark 1.1. The analysis above for the map (|1.1)) applies to the map with minor
differences: the correlations decay slightly faster and the CLT holds also for v = 1/2 (see
7).

Further we use f to denote either of the maps and , specifying which one
we refer to where it makes a difference.

A strong generalization of the CLT and the aim of our work is the following property:

Definition 1.2. We say that a real-valued random process (S,),>1 satisfies the almost
sure invariance principle (ASIP) (also known as a strong invariance principle) with rate
o(n?), B € (0,1/2), and variance ¢® if one can redefine (S,),>; without changing its
distribution on a (richer) probability space on which there exists a Brownian motion
(W})>0 with variance ¢ such that

S, =W, 4+ o(n®) almost surely.
We define similarly the ASIP with rates o(r,,) or O(r,,) for deterministic sequences (7,)5>1.

For the map ([1.1)) with Holder continuous observables ¢, the ASIP for S, (¢) has been
first proved by Melbourne and Nicol [18], albeit without explicit rates. In [I9, Thm. 1.6
and Rmk. 1.7], the same authors obtained the ASIP with rates

o(n/FHAE) -y €]1/4,1/2]

Sulp) = Wa = {0(n3/8+e), v €]0,1/4]

for all ¢ > 0. Their proof is based on Philipp and Stout [22, Thm. 7.1]. This result has
been subsequently improved. Using the approach for the reverse martingales of Cuny
and Merlevede [4], Korepanov, Kosloff and Melbourne [15] proved the ASIP with rates

o(n7te), v € [1/4,1/2]

Snl) = Wn = {O(n1/4(10gn)1/2(10g logn)'/*), 7 €]0,1/4]

for all € > 0. (Subsection [5.2| provides some more details.)

When ¢ is not Holder continuous, the situation is more delicate. For instance, func-
tions with discontinuities are not easily amenable to the method of Young towers used in
[15, 18, [19]. For ¢ of bounded variation, using the conditional quantile method, Merlevede
and Rio [20] proved the ASIP with rates

Su(p) = W = O(n” (log n)'/*(log log ) 1+

for all € > 0, where v/ = max{~,1/3}. Besides considering observables of bounded
variation, the results of [20] also cover a large class of unbounded observables.

In all the papers above, the rates are not better than O(n'/4), which could be perceived
as largely suboptimal when 0 < v < 1/4 due to the intuition coming from the processes
with iid increments [I12] and recent related work [2), 3]. Our main result is:
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Theorem 1.3. Let v € (0,1/2) and ¢: [0,1] — R be a Hélder continuous observable
with [ @dp = 0. For the map , the random process S,(p) satisfies the ASIP with
variance ¢ given by and rate o(n”(logn)¥*¢) for all e > 0. For the map , the
random process S,(p) satisfies the ASIP with variance ¢* given by and rate o(n”).

The rates in Theorem [1.3] are optimal in the following sense:

Proposition 1.4. Let f be the map (L.1)). There exists a Holder continuous observable
© with [ @du =0 such that

lim sup(nlogn)~7|S,(¢) — W,| > 0
n—oo

for all Brownian motions (Wy)i>o defined on the same (possibly enlarged) probability space
as (S, (¢))nz0. Hence, one cannot take € = 0 in Theorem[1.5

Remark 1.5. If ¢ = 0, the rate in the ASIP can be improved to O(1). Indeed, then it is
well-known that ¢ is a coboundary in the sense that ¢ = u—wo f with some u: [0,1] — R.
By [7, Prop. 1.4.2], u is bounded, thus S,(¢) is bounded uniformly in n.

Remark 1.6. It is possible to relax the assumption that ¢ is Holder continuous. As a
simple example, Theorem holds if ¢ is Holder on (0,1/2) and on (1/2,1), with a
discontinuity at 1/2. See Subsection for further extensions.

Remark 1.7. Intermittent maps are prototypical examples of nonuniformly expanding dy-
namaical systems, to which our results apply in a general setup, and so does the discussion

of rates preceding Theorem We focus on the maps (1.1]) and (|1.5)) for simplicity only,
and discuss the generalization in Section [f]

The paper is organized as follows. In Section , following Korepanov [13], we represent
the dynamical systems and as a function of the trajectories of a particular
Markov chain; further, we introduce a meeting time related to the Markov chain and
estimate its moments. In Section [4] we prove Theorem for our new process (which is
a function of the whole future trajectories of the Markov chain) by adapting the ideas
of Berkes, Liu and Wu [2] and Cuny, Dedecker and Merlevede [3]. In Section |5 we
generalize our results to the class of nonuniformly expanding dynamical systems and
show the optimality of the rates.

Throughout, we use the notation a, < b, and a,, = O(b,) interchangeably, meaning
that there exists a positive constant C' not depending on n such that a,, < Cb, for all
sufficiently large n. As usual, a, = o(b,) means that lim,_,. a,/b, = 0. Recall that v :
X — Ris a Holder observable (with a Hélder exponent 1 > 0) on a bounded metric space

(X, d) if [[v]], = [v]oc + [v], < 00 Where [v]o = sup,cx [v(x)] and |v], = sup,, L=t
All along the paper, we use the notation N = {0,1,2,...}.

2 Reduction to a Markov chain

2.1 Outline

In this section we construct a stationary Markov chain g, g1,... on a countable state

space S, the space of all possible future trajectories {2 and an observable ¢: 2 — R such
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that the random process (X,,)n>0 where X,, = 9¥(gn, gn+1, .. .) has the same distribution
as (¢ o f™")n>0, the increments of (S,(¢))n>1-

Our Markov chain is in the spirit of the classical Young towers [27]. Just as the Young
towers for the maps and , our construction enjoys recurrence properties related
to the choice of v, and we supply 2 with a metric, with respect to which v is Lipschitz.

We follow the ideas of [I4], though in the setup of the maps and we are
able to make the proofs simpler and hopefully easier to read.

2.2 Basic properties of intermittent maps

A standard way to work with maps , is an inducing scheme. As in Section ,
set Y =|1/2,1] and let 7: Y — N be the inducing time, 7(z) = min{k > 1: f*(z) € Y}.
Let F: Y — Y be the induced map, F(x) = f7®)(x). Let a be the partition of Y into
the intervals where 7 is constant. Let 5 = 1/7.

We remark that ged{7(a): a € a} = 1.

Let m denote the Lebesgue measure on Y, normalized so that it is a probability
measure. Recall that we have the bounds

o m(t >n) < Cn? for all n > 1 for the map ((1.1));
e [7Pdm < oo for the map (L.5).
The induced map F' satisfies the following properties:
o (full image) F': a — Y is a bijection for each a € «;
e (expansion) there is A > 1 such that |[F’| > \;
e (bounded distortion) there is a constant Cy > 0 such that
log |F/(2)| — log |F'(y)|| < Cul F(z) — F(y)

forall z,y € a, a € a.

2.3 Disintegration of the Lebesgue measure

The properties in Subsection allow a disintegration of the measure m, as described in
this subsection.

Let A denote the set of all finite words in the alphabet «, not including the empty
word. For w =ag---a, 1 € A, let |w| =n and let Y,, denote the cylinder of points in Y’
which follow the itinerary of letters of w under the iteration of F'

Yy={yeY:Fi(y)ca,for0<k<n—1}.

Let also h: A = N, h(w) = 7(ap) + -+ 7(an—1) for w =ag- - an_1.
For wy,...,w, € A, let wy---w, € A denote the concatenation.

Proposition 2.1. For each infinite sequence ag, ay, ... € «, there exists a unique y € Y
such that F"(y) € a, for alln > 0.

In particular, for each sequence wq,wy,... € A there exists a unique y € Y such that
y € Yy, F'l(y) €Y,,, Flwltlvl(yy e Y, and so on.
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Proof. Uniqueness of y follows from expansion of F, so it is enough to show existence.

Let w, = ag---a,—1. Note that Y,, , n > 0, is a nested sequence of intervals with
shrinking to 0 length, closed on the right and open on the left. Let y be the only point
in the intersection of their closures, {y} =N, Y,, .

Suppose that y € N,Y,,,. Then y € Y, \Y,, for some n, thus y is a left end-point
of Y,,,. Observe that Y, ,, is contained in Y,,, but cannot contain its left end-point, i.e.
y & Yy, ... This is a contradiction, proving that y € N,Y,,,. Hence F"(y) € a,, for all n,
as required. O

Proposition 2.2. There exist a probability measure P4 on A and a disintegration

m = Z P4 (w)my,,

weA

where
e cach m,, is a probability measure supported on Y,
o (F"N,m, =m;
o Py(w) >0 for each w;
o for the map (1.1), Pa(h > k) < Csk™" for all k > 1, where Cs > 0 is a constant;

e for the map (L.5), [hPdP4 < cc.

The disintegration in Proposition was introduced in [29] and called regenerative
partition of unity. The bounds on the tail of h are proved in [13]. This disintegration is
the basis of the Markov chain construction.

2.4 Construction of the Markov chain

Let go, g1, ... be a Markov chain with state space
S={(w,l) e AXxZ:0<{<h(w)}

and transition probabilities

P(gn+1 = (w,0) | gn = (', 1))
1, (=0+1and ¢+ 1< h(w) and w = w'

(2.1)
= Py(w), ¢=0and ¢ +1=h(w)
0, else

The Markov chain g, g1, ... has a unique (hence ergodic) invariant probability measure

v on S, given by
P 1 w P 1 w
v(w, 0) = A(w) L o<e<n(w)) _ A(w)Lo<o<h(w) (2.2)
Z(w,z)es P a(w) Ea(h)
The Markov chain gg, g1, . . . starting from v defines a probability measure Py on the space

Q C SN of sequences which correspond to non-zero probability transitions. Let o: Q —
be the left shift action,

(g0, 15 ---) = (91,92, ) -
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Remark 2.3. There exists w € A with P4(w) > 0 and h(w) = 1. Therefore, the Markov
chain gg, g1, ... is aperiodic. Aperiodicity is used in the proof of the ASIP (namely, in
the proof of Lemma [3.1| to apply Lindvall’s result [16]). However, in the general case, as
far as the ASIP is concerned, aperiodicity is not necessary (see Section .

We supply the space 2 with a separation time s: Q x  — N U {oo}, measured in
terms of the number of visits to Sy = {(w,¢) € S: ¢ = 0} as follows. For a,b € Q,

a = (907"'agNagN+17"')7

b=1(90s---s 9N Inp1s---) (2:3)
with gn11 # gy, We set
s(a,b) =#{0<n < N: g, € Sp}.
We define a separation metric d on ) by
d(a,b) = \75(®b), (2.4)

For g = (w,?) € S, define X, C [0,1], X, = f*(Y,). Then, similar to Proposition ,
to each (go, g1,...) € Q there corresponds a unique = € [0, 1] such that f"(z) € X, for
all n > 0 (but for a given z, there may be many such (go, g1, ...) € Q).

Thus we introduce a projection 7: Q — [0, 1], with 7(go, g1,...) =  where f"(z) €
X, for all n > 0 as above.

The key properties of the projection 7 are:

Lemma 2.4.
e 7 is Lipschitz: |w(a) — w(b)| < d(a,b) for all a,b € Q;
e T is a measure preserving map between the probability spaces (2, Pq) and ([0, 1], u);

o T is a semiconjugacy between o: Q — Q and f:[0,1] — [0,1], i.e. the following
diagram commutes:
% 0

Q
1]
0,1] —— [0, 1]

Corollary 2.5. Suppose that ¢: [0,1] — R is Hélder continuous. Let ¢» = ¢ om and
X = U9k, Grt1,---) for k> 0. Then

(a) ¢ is Hélder continuous.

(b) The process (Xi,)x>0 on the probability space (Q,Pq) is equal in law to (v o f¥)iso
on ([0, 1], ).



2.5 Proof of Lemma 2.4

The last item, namely, the property that moo = fomr follows directly from the construction
of o and 7.

We prove now the first item. Suppose that a,b € €2 are as in (2.3)) and write

9o, - 9N =
(wo, o), - - -, (wo, h(wy) — 1), (wq,0),..., (wy, h(wy) = 1),..., (wg,0),..., (wg, ),

where 0 < £y < h(wyg), 0 < € < h(wg) and h(wy) — o + Zf;ll h(w;) + ¢x = N. Then
both 7(a) and 7(b) belong to f©(Yug.w,)-
Suppose that ¢y # 0. Then s(a,b) = k. Since |f'| > 1 and |[F']| > A,

diam f (Y., ) < diam Yy, ., < A7F.

Then |m(a) — w(b)] < A% = d(a,b). If ¢, = 0, then s(a,b) = k + 1 and
diam £ (Yo, ) < A™*D 0 Again, |7(a) — w(b)| < d(a,b), as required.

It remains to prove the second item, namely: mPq = p. Let Qo = {(g0,01,...) €
Q: go € Sp}. Then Pqo(€) > 0. Let

Po(-N )
Po,(-) = S]EDQ(—QO)

be the corresponding conditional probability measure. We shall use the following inter-
mediate result whose proof is given later.

Proposition 2.6. 7,.Pq, = m.

Let us complete the proof of the second item with the help of this proposition. Note
that o: Q — € preserves the ergodic probability measure Pg. Since fonm = 7o g, the
measure v := m,[Pq on [0, 1] is f-invariant and ergodic, as is p.

Suppose that v and p are different measures. Since they are both f-invariant and
ergodic, they are singular with respect to each other: there exists A C [0,1] such that
u(A) =1 and v(A4) = 0.

Let v|y and ply denote the restrictions on Y. By Proposition 2.6 m < vl]y. Since
in turn ply < m, it follows that uly < v]y. Hence p(ANY) =v(ANY) = 0. Also,
w(Y\A) =0, so u(Y) = 0, which contradicts the fact that u is equivalent to the Lebesgue
measure on [0, 1]. Thus p = v.

To end the proof of the second item, it remains to show Proposition [2.6|

Proof of Proposition[2.6. Our strategy is to show that for each w € A,
Pq, (17! (Yy)) = m(Yy,).

Then the result follows from Carathéodory’s extension theorem.

Letm =%, Pa(w)m, be the decomposition from Proposition Recall that each
m,, is supported on Y, and (F|“’|)*mw = m. Since FI*I: Y, — Y is a diffeomorphism
between two intervals, the measures m,, are uniquely determined by these properties.
It is straightforward to write m,, = >, c 4 Pa(w )My, for each w. (Here ww' is the
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concatenation of w,w’ and the measures my,, are from the same decomposition.) Thus
we obtain a decomposition

m = Z P A(w)P A (w") My -

w,w’ €A

Further, for n > 0, we write

m = Z Pa(wo) - -+ Pa(wn)Mapg..ao, -

Suppose that w € A with |w| = n+ 1. For every wy, ..., w, € A, either Y., C Y
(when the word wy - - - w,, starts with w) or Yi,....,, N Yy, = 0 (otherwise). Hence

m(Y,) = Y Pa(wp)-- Pa(w,). (2.5)
WQ,y..ey wp €A
on -wnCYw
For wo, ..., wy,, let Q.. w, denote the subset of €}y with the first coordinates

(w,0), ..., (wy, h(wy) — 1),..., (wy,0),..., (wy, h(w,) —1).
Note that m(Quq.. w,) = Ygw, and by (2.1)),

PQO (Qwo ~~~~~ wn) = PA(wo) o 'PA(wn> .

Then
PQO (W_l(Yw)) = Z IP)QO (Qwo ,,,,, wn) = Z IP)A(w0> te PA(wn) : (26)
WO, ..., Wn EA: WO ..., Wn EA:
on wp, CYw on wp, CYw

Combining (2.5)) and (2.6), we obtain that P, (771(Y,)) = m(Y,), as required. [

3 Meeting time

In Section [2| we constructed the stationary and aperiodic Markov chain (g, )n>0. In this
section we introduce a meeting time on it and use it to prove a number of statements
which shall play a central role in the proof of the ASIP.

We work with the notation of Section [2l Without changing the distribution, we
redefine the Markov chain g, g1, ... on a new probability space as follows. Let gy € S be
distributed according to v (the stationary distribution defined by ) Let €1,¢e9,...
be a sequence of independent identically distributed random variables with values in A,
distribution P4, independent from gy. For n > 0 let

gn+l - U(gn7€n+1) ) (31)

where
(w,0+1), {<h(w)—1,

(¢,0), ¢=h(w)—1. (32)

U((w,0),e) = {

9



We refer to (e,,)n>1 as innovations.
Let g§ be a random variable in S with distribution v, independent from go and (€;,),>1.
Let g5, 97,95, ... be a Markov chain given by

Ini1 = Ulgp, €n+1) for n>0. (3.3)

Thus the chains (g,),>0 and (g ),>0 have independent initial states, but share the same
innovations. Define the meeting time:

T=inf{n>0:¢9,=g,}. (3.4)
For g,n > 1, define @ZJﬁ’n,TZﬁm: [0,00) — [0, 00),
bpn(x) = 2P (log(1+ )™, dg,(z) = 2" (log(1 + x))™"

for > 0 and v3,,(0) = @ZBW(O) = 0.
For the maps ([.1)) and (1.5, moments of T" can be estimated by Proposition and
the following lemma:

Lemma 3.1. Suppose that § > 1.
(a) IfPa(h > k) < k™8, then E(1s,(T)) < oo for all n > 1.
(b) If [hP dP4 < oo, then E(TP™1) < oo.
Proof. Let S, = {(w,?) € S: { = h(w) — 1} be the “ceiling” of S and
T* =inf{n > 0: g, € Sc and g, € S.}.

From the representation , it is clear that T' < T™ + 1.

Now, the segments (go, ¢1, - - -, g7+) and (g3, g7, - - - , g5 ) never use the same innovations
and behave independently. In addition, gr+11 = ghvyy = (e7+41,0) and goire = g5 pe
for any n > 1.

Consider (g],),>1, an independent copy of (¢,),>1, independent also from gy. Let g
be a random variable in S with distribution v, independent from (go, (£4)n>1, (€),)n>1)-
Define the Markov chain (g,),>0 by

Inp1 = UG, €nqq) for n>0.

Let
T =inf{n >0: g, € Sc and ¢, € S.}.

Due to the previous considerations, 7" is equal to 7% in law.
Note that S, is a recurrent atom for the Markov chain (g,),>0. Let

70 = inf{n > 0: g, € S.}
be the first renewal time. If P4(h > k) < k=%, we claim that for all 7 > 1,
E(.0(70)) < 0.

10



Then, according to Lindvall [16] (see also Rio [23, Prop. 9.6]), since the chain (g,),>0 is
aperiodic (see Remark , E(ng(T’ )) < oo and follows. For|(b), the argument is
similar, with z# instead of ¢g,,(z) and 2°~! instead of 1;5,,7(:6).

It remains to verify the claim. Note that if gy = (w, £), then 79 = h(w) — ¢ — 1 and

- (h(w) — € —1)7" h(w)”!

Fone) = il = < gy
For any n > 1, using that v(w, ¢) < P4(w)/E4(h), write

(wﬁn 70)) Z Ego=(w,0) (wﬁ n(70))v(w, £)
Ogul”]g;?(w)
w)?
< CoBAN)™" X g PA®) = ConfBA) Battsn(h) < o0

by taking into account Proposition O

Let ¢: © — R be a Holder continuous observable with [ 1 dPg = 0. (Such as ¢ = pom
in Section ) For ¢ > 0, define d,: 2 — R,

5@(907917 . ) = SUPW(QOth s 9ot 1, ger2s - - ) o ¢<90a91a s 7§€+15§5+27 .- )| )
where the supremum is taken over all possible trajectories (Gei1, o2, - --)-

Proposition 3.2. Assume that E(T) < co. For allr > 1,
E(0,) < L2+ P(T > [¢/7]).

Proof. By (2.4 and the first item of Lemma , there exist C' > 0 (depending on the
Holder norm of ¢) and 6 € (0,1) (depending on A and on the Holder exponent of 1) such
that §, < C0°, where s, = #{k < {: g € So}. Write

- s 1 S
C 1]E(5g) S E(Q é) S 02(€+1)P(906S0) —I— ]E(e 6152<%(€+1)P(90€SO)) (3 5)
1 .
< 93 (HDP@0ES0) 4 P(se <+ 1)P(g € SO)> .

Next,

P(sf < (z +1)P(go € 50)) < ]P’(’i 1ipe50) — (0 + 1)1/(50)\ > %(z n 1)y(so>) .

Recall now the definition (3.4)) of the meeting time 7" and the following coupling inequality:
for allm > 1,

B(n) = %/H(s@,y)(}v « PY — v x vy d(v x V)@, y) <P(T >n),  (3.6)

where || - ||, denotes the total variation norm of a signed measure and P is the transition
function of the Markov chain (gx)k>o. From E(T") < oo, it follows that ) ., f(n) < oo.

11



Applying [23, Thm. 6.2] and using that a(n) < f(n), where (a(n)),>1 is the sequence of
strong mixing coefficients defined in [23], (2.1)], we infer that for all » > 1,

P(| D tesy = (C+ Dw(S0)| > 50+ DulS0)) < @l 2 4+ oB(T 2 (1), (37

where ¢; and ¢y are positive constant independent of £. The result follows. O

For n > 0, let
X’n = Q/} oo" = ¢(gnagn+17 .- ) .

Then (X,,),>0 is a stationary random process. It is straightforward to use the meeting
time to estimate correlations:

Lemma 3.3. Assume that E(T) < co. Then for allk > 1 and a > 1,
|Cov (Xo, Xi)| < k72 + P(T > [k/4al]).

Proof. Let k > 2. Let (£));>1 be an independent copy of the innovations (g;);>1, in-
dependent also from go. Define (g;)i>r—p/21+1 by g,;_[k/2]+1 = U(gk_[k/g],égc_[k/g]ﬂ) and
Gor = Ulghy L) for i > k — /2]
Let
XO,k = Eg (w(g(b g1, 7gk—[k/2}7 (gz{)iZk_[k/Q]-i-l)) )

where E, denotes the conditional expectation given g := (g, )n>0. Write

|Cov (Xo, Xi)| < | Xklloc | Xo — Xoll1 + [E(XoxXe)] -
Note that || X[ < [¢|e < co. By Proposition 3.2 for any o > 1,

1Xo — Xoxlli < k7 + P(T > [k/(4a)]).
Hence it is enough to show that
|E(Xoe Xi)| < P(T > [k/2]). (3.8)
With this aim, note that by the Markovian property and stationarity,
E(XoxXk)| < | Xoklloo [E(Xk | gr—ps2) I < [¥0]oo [E(X /2y | g0)l]1 -

Recall the definition of the Markov chain (g ),>o. For all n > 0, let X = ¥((g5)k>n)-
Since E(X (k /2]) = 0 and X ) is independent from go,

IE(X /2y | go)ll1 < 1 Xy — Xyl -
Note now that Xp/s) # Xj o only if T' > [k/2]. Hence
| Xy — Xl < 2[00|P(T > [k/2]),
which proves (3.8)) and thus completes the proof of the lemma. O

Forn > 1, let S, =Y ,_, Xj. From Lemma , we get

12



Corollary 3.4. Assume that E(T) < oco. Then the limit

. 1
2 = lim —||Sn||§
n—oo N

exists and -
¢ =1 Xoll3 +2)  Cov (Xo, X,,) .
n=1

Lemma 3.5. Assume that E(T) < co. Then, for any x > 0 and any r > 1,
—r/2
P(rilgx\SM > 5:c) < E(:c”" +P(T' > Cx)) + (1 + m:Q/n> : (3.9)
<n x

where C' and k are constants depending on |¢| and r, and the constant involved in <
does not depend on (n, ).

Proof. Our proof is similar to that of [23, Thm. 6.1].
Let (€),>1 be an independent copy of the innovations (&,),>1, independent also of

Jo-
Fixn>1land 1<qg<mn. For k>0, let

X,; = Eg W(gkagkﬂa -+ Gk+1q/2] (gi)i2k+[q/2]+1)) )

where E,; denotes the conditional expectation given (g, )n>0, While (§;)i>k-+[q/21+1 is defined
by Grtig/2141 = U(Gk+(a/2)s €y 41) @0 Giv1 = U(Gis €34) for @ > k+[g/2]. The function

U is given by (3.2)).
Let

S, =Y Xj.
k=1
Observe that .
< _ / / .
max S| < ]; [Xi = X | + max |S}]
Now, set k, = [n/q] and U} = 5, — 5[, ), for 1 <i <k, and Uy, _,; = 5, — 5}, ,- Since

all integers j are on the distance of at most [¢/2] from ¢N, we write

< . !
11?25 |Sk| < Z | Xk — Xp| + 2[q/2]|9]00

k=1
. , 3.10
+ max E Use| +  max E Uékﬂ’.

We shall now construct random variables (U;)1<i<k,+1 such that a) U} has the same
distribution as U] for all 1 <i < k,,+1, b) the variables (Us;)2<2i<k, +1 are independent as
well as the random variables (U3;_;)1<2i—1<k,+1 and ¢) we can suitably control |U; — U;||1.

This is done recursively as follows. Let Uy = U and let us first construct Uf. With
this aim, we note that

)(]/g = hq(gk7gk+17 s 7gk+[Q/2])

13



for some centered function h, with |hg|e < |[¢)]s. Let géz)ﬂq /o) be a random variable in S

with law v and independent from (go, (¢x)r>1) and define the Markov chain (g,(f)) k>2q-+[a/2]
by:
0 = U9 erm) for k> 2q+[g/2).

Let

2 2 2 2

X =ho(g g gl m) for k> 2q+[q/2)

and

4q

. 2
Ur= Y x?.
k=3q+1

It is clear that Uj is independent of of Uy and equal to Uj in law.
Now, for any ¢ > 3, we define Markov chains (g,(:))kz2(z-_1)q+[q /2 in the following it-

erative way : géi()ifl)qu[q/Z]

()
(907 (er)r>1, (g2ij_1)q+[q/2])2gj<i) and we set

is a random variable in S with law v and independent from

915,21 = U(gl(:)vgk-&-l) for k> 2(i — 1)q + [¢/2].

Next, , o .
X2 = hy(gy) g0 g ym) for k> 2(i— 1) + [g/2]
and o
iq
U= > x.
k=(2i—1)q+1

It is clear that the so-constructed (Us;)2<2i<k,+1 are independent and that Us; is equal in
law to U, for all 7.
By stationarity, for all 1 < i < [(k, +1)/2],

4q
* * 2
105 = Usill < MU = Ul < 37 1% = X2
k=3q+1

But, by stationarity again,

4q 2q—[q/2]

2 * * *

Z | Xk — X;i )||1 = Z (g Grt1s - - agk+[q/2]) = hg(G> Gy - - - 79k+[q/2])||1 )

k=3¢+1 k=q—[q/2]+1

where (g} )k>0 is the Markov chain defined in (3.3]). Hence, for all 1 <i < |[(k, +1)/2],

2q—[q/2]
U3 = Ugillh < 2[le D> P(T = k) < 2q[|oP(T > [q/2]) . (3.11)
k=q—[q/2]+1

Similarly for the odd blocks, we can construct random variables (Uj;_)1<2i—1<k,+1

*

which are independent and such that U, ; equals in law to Uj, , for all ¢ and

1Usi1 = Uzl < 20| [P(T = [q/2]) (3.12)

14



Overall, from (3.10)), (3.11]) and (3.12), we deduce that for all x > 1 and 1 < g <n
such that ¢|¢|. < =z,

3
H

P (max || > 5) < a1 3 (X~ Xflls + 200~ [V B(T > [q/2)
- 0

B
Il

) (3.13)
P [0 2) 48, e[S |2 0).
By Proposition [3.2] for all o > 1
HXk_XkHI < ¢ P+ P(T > [9/2)/a), (3.14)

where the constant involved in < does not depend on k or q. Using that ||Us;||c < q|?]oo,
we apply Bennet’s inequality and derive

s

where one can take v, any real such that

( max
25<kn+1

x) §2exp( !wloolog( +$‘J|1/’|°°/”q))’

[(kn+1)/2] [(kn+1)/2]

vz Y U= Y U5
i=1

i=1

But, by stationarity,

1Usill2 = 1155112 < [15gll2 + (2[]s0) 1/22 1 = X"

By Corollary 3.4} ||5,|3 < ¢. Since nP(T > n) < 1, we infer that
Z 1X = X3l < g

Therefore, ||Us,]|3 < ¢. Hence, taking v, = n/k’ where «’ is a sufficiently small positive
constant not depending on x, n and ¢, we get

J
P(gféﬁﬁﬁl);% > ) §2exp< 5 W’oo log(1+/fxq|¢|oo/n)> (3.15)

It follows from (3.13), (3.14)) and (3.15)), that for all @« > 1, > 0 and 1 < ¢ < n with
Y] < w,

P(max|Sy| > 52) < na”! (g% + B(T > [g/2]/a)

+exp< 5 W’oo log(1+/fxq|¢|oo/n)>

Let now 7 > 1. Then, for z € [r|t)|c, n|1|so/5], choose ¢ = [2/(7]1)]o)] and a = 2r in
the previous inequality and the result follows. To end the proof, note that if x > n|¢|« /5,
the deviation probability obviously equals zero and if 0 < z < r|¢)|«, the inequality
follows easily from Markov’s inequality at order 1. O]
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The following Rosenthal-type inequality relates T to the moments of S,,.

Proposition 3.6. Assume that E(T) < oco. Then, for each p > 2, there exist k1, ko, K3 >
0 such that for allm > 1,

[k3n]

E(max \Sk|p> < ki 4 ran Y BT 2 ).

k<n -
=1

Proof. Write

k<

P\ — 5P p—1
E(mai<|5k| ) =pb /0 x P(I£§§|Sk| > bx) d . (3.16)

Using Lemma [3.5| with » = p + 1, we get that for p > 2,

n|hloo /5 n|Y]eo /5
/ xp_lP(r]??X S| > 5z) dv < nP/? + n/ 2" 2P(T > Cx) dw .
PSS =n rl]oo

Together with (3.16]), the above implies that for any p > 2,
Cnl]oo /5
E<I£1<ax|5k|p> <<np/2+n/ P ?P(T > x) dx,
=n 0

where the constant involved in < depends on p but not on n. The result follows. O

4 Proof of Theorem 1.3

4.1 Outline

Let go, g1,... be the stationary Markov chain constructed in Section [2] Suppose that
¥: Q — R is a Holder continuous observable with [ 1) dPq = 0. Let

Xn=100" =g, Gsts--.) and Sn:ZXk-
k=1

By Corollary the proof of Theorem [1.3|reduces to proving ASIP with the same rates
for the process (S,)n>1. This is the aim of this section. Our strategy is to adapt the
argument in [3].

Remark 4.1. We restrict to the case when the variance ¢?, given by ((1.4)), is positive. The
case c2 = 0 requires a different approach, and it is addressed by Remark

The Markov chain (g,),>0 behaves similarly to the Markov chain (W,),>o on the
state space N, studied in [3], Sec. 3.3.1]. Let us briefly recall [3| Cor. 5]: For any bounded
and centered function h: N — R, the process (Zzzl h(I/Vk))n>1 satisfies the ASIP with

rate o(n'/?), p > 2, provided that > ko1 KPPP(T > k) < oo where v is the stationary
distribution of (W,,),en and T is the meeting time of the Markov chain.

Remark 4.2. By [3, Prop. 15], the condition ), -, kP~2P(T > k) < oo is sharp to get the
rate o(n'/?) in the ASIP.
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The strategy used in [3] was to adapt the method of Berkes, Liu and Wu [2] for
functions of iid r.v.’s to functions of Markov chains, in order to obtain sufficient conditions
for the ASIP with rate o(n'/?) in terms of an L'-coupling coefficient. For the Markov
chain (W,,),en, this L'-coupling condition can be obtained from the tails of the meeting
time.

The main difference between our situation and the one considered in [3] is that X,,’s are
functions of not only g, but the whole future g, g,+1, ... However, using the regularity
of our observables, we shall see that it is possible to approximate X,, by a measurable
function of a finite number of coordinates. Then the proof in [2] can be adapted also to
our situation, and the rate in the ASIP is, as in [3], related to the tail of the meeting
time of the chain (g,)n>0 (see Section [3)).

4.2 The proof

Let ¢ be given by (T.4). From Corollaries 2.5 and [3.4] ¢? = lim,, 0o n 715,13 = || Xol|3 +
2> Cov (X, X,,). If the process (5, )n>0 satisfies the ASIP, this has to be the variance
of the limiting Brownian motion. Recall that we suppose that ¢ > 0.

All along the proof, we set =1/ (so § > 2 since v < 1/2), and n will designate a
constant, which is equal either to 1 in case of the map or to 0 in case of the map
©3).

It suffices to prove the following strong approximation: one can redefine (S,)n>1
without changing its distribution on a probability space (possibly richer than (£2,Pg)) on
which there exists a sequence (N;);>; of iid centered Gaussian r.v.’s with variance ¢? such

that for all K > 1/,

sup
k<n

Sy — Z Ni‘ = o(n'?(logn)™) a.s. (4.1)

i=1

The proof of (4.1) is divided in several steps. Throughout, we use the notation b, =
[(logn)/(log3)] for n > 2 (so that b, is the unique integer such that 3*~! < n < 3bn),
and fix k > 1/0.

Step 1. For ¢ > 0, let
my = [3Y50M] (4.2)

and define, for k > 0,

X&k = Eg (¢(gk7 Gk+15 - - -5 Gk+my> (gi)iZk—‘rmZ-{-l)) P

where E,; denotes the conditional expectation given g := (gn)n>0. Here (§;)isktm,+1 1S
defined as follows: Grim,+1 = U(Gktmes Ehrmy 1) a0d Giv1 = U(gi, €71,) for any @ > k+my,
where (€});>1 is an independent copy of (g;);>1, independent of gy, and U is given by .
Note that the X, ’s are centered. Define

,L‘+3Z71 i+3£71
N , J—
Wg’i = E Xk y Wg’i = E Xg,k and Wé,i = Wgﬂ' — Wgﬂ' .
k=143¢-1 k=143¢-1
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The fist step is to prove that

bn—1
Z Wige gen Wy gpa = o(n'%(logn)™) a.s. (4.3)
=1

This will hold provided that for all £ > 0,

J 3¢
P Xy — Xy > 39257 | < 0. (4.4)
> P2 X ,

jz1 =1 k=3¢-141
By Proposition 3.2] for all £ >0, > 1 and r > 1,
X = Xewlls < my ™+ B(T > [my/r]) (4.5)

where the constant involved in < does not depend on k and ¢. By Markov inequality at
order 1, for alle > 0 and r > 1,

-
>op zj: DXk = Xog| > 375

j=1 =1 g=3¢t-141
1 j p 1 j
£, —r l
< § S ; 1 3'm, """ + §>1 ST § 3P(T > [my/r]).
= J=

§>1 =1

Taking into account the fact that m, = [3%/7¢7%], the first term in the right-hand side is
finite provided we take r > 2(3 — 1) whereas, by a change of variables, we have, for any
r=1,

1 ! nf=2

> g 23T 2 [mafr]) S C Y e T 2 ). (4.6)

7j>1 (=1

where C' is a constant depending on 7, 5, k and 7. In case of the map (1.1), n = 1 and
the series above converge iff ]E(zzﬁﬁg(T)) < 00, which holds by Lemma (a) and the
fact that k0 > 1. Now in case of the map , 17 = 0 and then, again from Lemma 7
the series above converges since E(T77!) < oco. It follows that is satisfied and then

(4.3)) holds.
This completes the proof of step 1.
Step 2. Let )
Xg,k = E<X£,k‘5k—m57 Ce ,Ek_,_m[) . (47)

= i+30—1 S = s . .
Let Wy, = Z;;Hgg,l Xoy and W), = Wy, — W,,;. The second step consists of proving

that
bn—1

Z s g1+ Wy g = o(n*?(logn)™) a.s.. (4.8)
=1

Clearly, (4.8]) will follow from the Kronecker lemma, if one can prove that

32
1 ~
Z 3¢/8 gnk E : ”Xe,k - Xe,kH1 < 0. (4_9)
EZI k:35—1+1
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We claim that

1 Xes — Xerllt < 200|P(T > my). (4.10)
Then, using ,
1 il 3¢
Z 3078 g Z 1 Xek — Xealh < 2[¢]o Z W]P’(T > my) .

£>1 k=3t-141 £>1

Therefore (4.9)) holds by using and Lemma (as quoted right after (4.6))).
It remains to prove the claim (4.10)). This follows closely the proof of [3, Lem. 24].
Indeed, we can write

Xf,k = h@(g’ﬁ Gk+1, - - - 7gk+mg) )

where hy is a measurable function such that |hs|s < || and Pg(hy) = 0. Hence

Xe,k - X@,k = hz(gk, Jk+1, - - - 7gk+mg) - E(he(gk, Gk+1,y - - - 7gk+mg)|€k7mgy cee 7€k+mg) .

Recall that for all £k > 1, gr = U(gx_1,€x) where U is a measurable function from S x A4
to S. For any ¢ > 1, let then U; be the function from S x A®* to S defined in the following
iterative way:

U1:U and Ui(a,xl,xg,...,xi):Ui_l(U(a,xl),mg,...,xi),i22.
Then for all ¢ > 0 and & > m, + 1,

Gk+i = i—i—mg—l—l(gk—mg—la Ek—mys - -+ aEk:-i-z') .

Hence,

hé(gka gk+1, - - - 7gk+mz)
- h[ (Umg—‘rl(gk—mg—l? gk—mga tee 7€k>7 DR Ung—l-l(gk—me—l? 8k—mg; s 75k+m4)>
= Hf,mg (gk:—nw—la Ek‘—mea s 75k‘+mg) .

Let now (£}, )x>1 be an independent copy of (e )x>1, independent of gy. Let gf be a random
variable in S with distribution v and independent from (go, (€x)k>1, (€})k>1). Define a
Markov chain (g,,)n>0 by

Ins1 = U9, €np) for n>0.

Denoting Vim, = (90, €15 - - -+ €k+m,) and By, (1) = E(|Vim,), we have
X@,k - X@,k = EV’%W@ (He,mg (gk‘fmgfla gk‘*ﬂ’t@) LR 7€k‘+m5>>

/
- EVk,mZ <H€)m£ (gkfml717 6k—mg7 cee 76k+mg)> .

Hence, using the stationarity,

HXZ,/C_XK,]CHI S ”Hf,ﬂw (gkfmgfla Ek‘*mg) cee 7€k+m5) _Hé,mg (g]/g_m[_ly gk‘fmg) e 7€k’+m2) Hl

= HHe,m@ (907 AP 7€2mg+1) - He,m[ (g(l), S P 7€2mg+1) Hl .
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Let (g )n>0 be the Markov chain in the definition of the meeting time, see (3.3)). Then

1 Xek — Xelli < || Hom, (90,€1, -+, €amps1) — Homy (95,615 - - -, €2mps1) 11

= ||h£(gme+17 me+25 - - - 792me+1) - hf(g;kn[—f—h g:nz+2a cee 7g;m4+1)||1 .

Recall that for every & > T, g, = g;. Therefore
1 Xew — Xowll < 20heloP(T > my),

proving (4.10]). This ends the proof of step 2.

bn—1 117

Step 3. Setting S, = oy Wise_ge—1 + an’n_gbn—l, the rest of the proof consists
in showing that, enlarging the underlying probability space if necessary, there exists a
sequence (N;);>1 of iid centered Gaussian r.v.’s with variance ¢* such that

k

ék—ZNi

=1

sup
k<n

=o(n"(logn)"™) a.s. (4.11)

This can be achieved using the method of [2]. Indeed the constructed X ¢; can be rewritten
as

Xog = Go(Ekemyy - - s Ebtmy) 5
where GG, is a measurable function. So X ¢k 1s a measurable function of (ex—mm,, - - -, Ektm,)
instead of (€x_m,,...,€x) as in [2]. However, this difference can be handled by only

minor adjustments, mainly taking 2m, instead of m, in [2]. More precisely, the blocks
By in [2] can be defined as follows: for ¢ > ko := inf{k > 1 : my < 471372} and
j=1,...,q:=[3"%/my] — 2,

(65+5)m,

BE,] - E XZ,ierngS[_l .

i=1+(6j—1)m,
Define, for j > 1,
Joj =137 4+ (65 — )ymy+ k, k=1,2,...,2m,},

U&j = (€i,i c ._7[73') and U = (U&j,j = 1, RN 1);2190 .

Then
(65+1)my (65+3)me (65-+5)my
Byj = E Xeiymerse—r + E Xeiymersze—r + E Xtitme3e-1
i=1+(65—1)my i=1+(6j+1)my i=1+(6j+3)my

i= Hy(Ug, {€ir3e-1 Mt (654 1)me<i<(6j+5)me» Utj+1)

On the set {U = u}, (B (u));=1.. 4 are then independent between them. Then, fol-
lowing [2], we use Sakhanenko’s strong approximation [24] to get a bound for the ap-
proximation error between S,(u) and a Wiener process with variance depending on u.
To get the unconditional ASIP, we use the arguments given in [2 step 3.4]. So, as it is
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summarized in [3, Prop. 21], we infer that (4.11)) will follow if one can prove that there
exists r € (2,00) such that

36 o r
Z 357”/6677%7"ng<1§r£2g{m4 ‘WM} ) <%0, (4.12)
>kg
and
38(1,"% — ¢)? = o(32/P1*" (log £)™") , as £ — oo, (4.13)
where . . . .
vy = (2mg)71{E(W€272m2> -+ QE(W&QmZ (WEAme — Wg’2m£>>} . (414)

To end the proof, it remains to prove the two conditions above. We start with (4.12)).
Note first that for all » > 1,

- 6mp+3¢1
max Wy = Weal | < D0 1% — Zeal,-
1<k<6my r
k=1+3¢-1

Using that || Xkl < [%]oo and HXMHOO < 2|90, We get

6my+3¢-1
17 r— r 1/r < 1/r
Janax (W= Weal| < @ll) 07 3 (1K = Xl 4+ X0k = Kealll)
k=1+3¢-1
But according to (4.5) and (4.10)), for all a > 1,
X = Xewlls < mg 2 + (T > [my/a]), (4.15)

where the constant involved in < does not depend on k and ¢. Therefore, for all » > 1
and o > 1,

30 . 3tm), —a)2
> i B max (Wi = W] ) < D 22 (4 P(T > [mg/a))

r KT r KT
ézkog /Bensrmy, \ 1<k<6m, ézkog /Bnrrm,
3UB-1/E 3UB-1)/8
—atl/(2B) p—ank/2 £/B pnr
<> 3 ( +> e P 23000 a).
£>ko L>ko

The first term in the right-hand side is finite provided that we take o > 2( — 1) whereas,
the second series converge for any o > 1, by using once again (4.6) and Lemma .
Therefore, to prove (4.12)), it suffices to show that there exists r €]2, co[ such that

3¢ ,
3 G B3, IWl) <o (4.16
—Z R0

By Lemma .1} E(T) < oo since 8 > 2 for both maps. Using stationarity and
Proposition [3.6] we get that for any r > 2,

3¢ r
Z 3£T/5£nﬁrmeE<1§I£?g(mg ‘Wk‘ >
I>ko
3t P 3¢ [6r5m]
r/a— - —2 :
< Z 3€r/5£nnrm£ +gk: 32r/ﬁ€nm“ Z t ]P)(T Z Z)'
>ko

0>ko =1
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Since my = [3“/2¢7%], the first term of the right-hand side is finite provided that we take
r > 2( — 1). To control the second term, we note that for any r» > 3, by a change of
variables,

3t [6r3m] iB8-2
r—2 . .
—— iITTP(T > 0) < ——P(T >1)
g};} 3er/ByQtn)r ; ; (log 7)mr

which is finite by Lemma as it was quoted after (4.6). So, provided that we take
r > 2(5 —1), since § > 2, (4.16)) holds (and then (4.12)).

We turn now to the proof of (4.13]). Proceeding as to get the relation [3, (66)], we

have
2my

Ve = Cgo+ 2 E Ce ke s
=1

where, for any ¢ > 0,
i = Cov (Xpmyt1, Xeitmet1) -

Note also that since ¢? is assumed to be positive, to prove , it suffices to prove that
3y — )2 = o(328 0% (log 0)7Y), as £ — o0, (4.17)

To show that is satisfied, we first note that, by stationarity, for all i > 0,

|éri—Cov (Xo, Xy)| = |Cov (Xemp+1=Xmpt1s Xeimes1) FCoV (X1, Xeismy+1—Xismer1)|
< 209 oo (I Xemet1 = Xmprallt + 1 Xeismer1 — Ximpalln) -

Let a > 1. Then, according to , for all 2 > 0,
|ées — Cov (Xo, X)| < my " + B(T > [my/a]).

It follows that

e — 2 < my~ " + mP(T > [me/a]) +2 ) |Cov (Xo, X,)|.

i>2my
Recall that 8 > 2. By Lemma [3.1] (since 8 > 1),
P(T > n) = o((logn)"™"n'~"), asn — occ.
Using, in addition, Lemma [3.3| we derive that for all o > 1,

v — €2 < 3UE-/8) pre(z=a)/2 | o (302-5)/3 20 |

proving (4.17) (and then (4.13])) using the fact that 8 > 2 and taking o > 25 — 2. This
ends the proof of Theorem [1.3| when ¢ > 0.
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4.3 Extension to other observables

As already mentioned in Remark [I.6] it is possible to relax the Holder continuity as-
sumption. For instance, if m > 1 is an integer, assume that ¢ is Holder on the interior of

Yoo a,,_, for every ag, ..., a,_1 € a. Denote by a(ay, ..., an,_1) the corresponding Holder
exponent and by [¢|a(as,....am_,) the corresponding Hélder norm. Assume further that
o :==1nf,, 4. ea(ao,...,am_1) > 0 and that |p|e. = SUDgy an 1o |0la(ac,.sam-_1) <

oo. Under the above assumptions, the conclusion of Theorem holds.

Let us briefly give the arguments explaining why such an extension is possible. We
just give the necessary arguments to prove the estimate (or more generally Propo-
sition . Similar arguments may be used at each place where the Holder property has
been used to get similar estimates as . To do so one has to bound

‘Tﬂ(g(], ce s 9 9n1, - - ) - ’QD(go, N ) (gk)k2n+l7 .. )| (418)
If #{k <n: gp € So} <m we bound (4.18) by 2|p|w -

Assume now that #{k < n: g € So} > m. Set gy = (wq, {y). Assume that we can
write that wg = ww’ with h(w) = ¢y and w may be an emptyword (in which case ¢y, = 0).
Hence, 7(go, - - - Gns Gnt1, - - ) and ©(go, - - -, Gn, (Gk)k>n+1, - - -) belong to Y and even, since
#{k < n:gx € So} > m, to some Yg,...q,, , (on which ¢ is Holder). In particular one

may bound (#.18)) by |p|q. A~ #{k<n: gk€So},
If wy cannot be written as above then, 7(go,...,9n, Gns1,...) and

7(90s - -+ Gns (G )k>nt1, - - -) belongs to [0,1/2) and we infer a similar bound.
So at the end, there exists C' > 0 depending on |¢|« and |¢|a«, such that

W(QO, <59, 9n+1, - - ) - 77Z}(g()7 ~e ey 0n, (gk)an—‘rl) o )| S CQ#UCSH 9r€So}=—m .

The end of the proof of Proposition remains unchanged.

5 Nonuniformly expanding dynamical systems

We stated and proved Theorem for two particular families of maps. In this section we
extend our result to the class of nonuniformly expanding systems which admit inducing
schemes as in Young [27] with polynomially decaying tails of return times.

5.1 Nonuniformly expanding maps

Let X be a complete bounded separable metric space with the Borel o-algebra. Sup-
pose that f: X — X is a measurable transformation which admits an inducing scheme
consisting of:

e a closed subset Y of X with a reference probability measure m on Y;

e a finite or countable partition o of Y (up to a zero measure set) with m(a) > 0 for
all a €
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e an integrable return time function 7: Y — {1,2,...} which is constant on each
a € o with value 7(a) and f7@(y) € Y for all y € a, a € a. (We do not require
that 7 is the first return time to Y.)

Define F: Y — Y, F(y) = f"®(y). We assume that there are constants £ > 1, K > 0
and 7 € (0, 1] such that for each a € o and all z,y € a:

e [ restricts to a (measure-theoretic) bijection from a to Y, nonsingular with respect
to the measure m;

o d(F(x), F(y)) > rd(z,y);
o d(f*(z), f*(y)) < Kd(F(x), F(y)) for all 0 < k < 7(a);

e the inverse Jacobian (, = of the restriction F': a — Y satisfies

dmoF

log ¢o(2)] — log|Gu(w)l| < Kd(F(x), F(y))".

The map f as above is said to be nonuniformly expanding. It is standard [I, Cor. p. 199],
[27, Proof of Thm. 1] that there is a unique absolutely continuous F-invariant probability
measure iy on Y with % < dpy /dm < cfor some ¢ > 0, and the corresponding f-invariant
probability measure p on X.

We make an additional assumption, which is not part of the usual definition of nonuni-
formly expanding maps, but is straightforward to verify in examples. Denote by A
the set of all finite words in the alphabet « (not including the empty word) and set
Y, = Ni_oF*(ay,) for w =ag---a, in A. We assume that

m(Yy) = m(Yy,) for every w € A. (5.1)
We say that the return times of f have:
e a weak polynomial moment of order 8 > 1, if m(7 > n) < n=?;

e a strong polynomial moment of order 8 > 1, if [ 77 dm < oc.

Remark 5.1. Intermittent maps and are nonuniformly expanding. Their return
times have respective weak and strong moments of order 5 = 1/7.

More generally, our results apply to nonuniformly expanding and nonuniformly hy-
perbolic dynamical systems which can be modelled by Young towers |26l 27]. A notable
example with polynomial return times is the class of non-Markov maps with indifferent
fixed points in [27, Sec. 7]. (C.f. AFN maps in Zweimiiller [2§].)

5.2 Rates in the ASIP

Suppose that gp X — R is a Hélder continuous observable such that p(¢) = 0. Let

Sn(p) = Zk o ¢ o f* be the corresponding random process, defined on the probability
space (X, p). Assume in addition that the return times of f have a polynomial moment
of order 8 > 2 (weak or strong). Let

= lim — / 1S, (0)|? die . (5.2)

n—oo 1



Remark 5.2. The limit above exists by e.g. [15, Cor. 2.12]. In case of summable correla-
tions, ¢? can be computed by the formula (1.4), but in the setup of this section, f may
be non-mixing and the correlations may not decay.

The ASIP for S, () with variance ¢® was first proved in [I8]. Prior to our work, the
best available rates were due to [4, [15], formulated for the strong polynomial moment of
order [3:

o(n'/?(logn)'/?) B e (2,4),

Snlp) = Wa = {O(n1/4(log n)/?(loglogn)'/*) B > 4.

Again those rates are not better than O(n'/*). Our main result is:

Theorem 5.3. Suppose that the return times of f have a weak polynomial moment of
order 8 > 2. Then S,(y) satisfies the ASIP with variance ¢* given by and rate
o(n'/?(logn)Y/8+¢) for alle > 0. Further, if the return times of f have a strong polynomial
moment of order B > 2, then the rate is o(n'/?).

In the remainder of this Section we prove Theorem First we consider the special
case when ¢* = 0.

Proposition 5.4. Suppose that the return times of f have a weak polynomial moment of
order 8. Then on the probability space (Y, py),

max 7 o F* = o(n"P(logn)/5+¢)  almost surely for all e > 0.

With a strong polynomial moment of order 3,

maxr o F* = o(n'?)  almost surely.

Proof. The sequence (70 F"),>¢ is stationary and by the Borel-Cantelli lemma, it suffices
to check that for all § > 0,

Zuy(T > 5n1/6(10gn)1/6+5) < 00.

n>1

Since dpuy /dp is bounded, it is enough to verify that
Zm(T > on'/P(logn)/P1¢) < oo,
n>1

which follows immediately from our assumptions.
The proof for the strong polynomial moments is similar. (See also [I5, Prop. 2.6].) O

Corollary 5.5. Theorem holds when ¢® = 0.

Proof. In [15], the ASIP for nonuniformly expanding dynamical systems uses the
martingale-coboundary decomposition. With ¢* = 0, the martingale part vanishes [15]
Cor. 2.12, Cor. 3.4]. The estimates of the coboundary part are reduced to those in
Proposition [5.4} see the proof of [I5, Prop. 2.6]. ]
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From here on, we assume that ¢ > 0. We construct a Markov chain as in Section [2|
The general setup of nonuniformly expanding maps brings in a few minor technical com-
plications that we explain below:

e Proposition is the basis of the Markov chain construction, providing a “regen-
erative” decomposition of the reference measure. It is proved in the general setup
in [13].

e Construction of the semiconjugacy m: €2 — X needs additional work, because we
may not be able to define it everywhere as we did for the intermittent maps. Nev-
ertheless, using assumption (|5.1) we define it almost everywhere as follows.

Let A, C A denote the set of all words with length n + 1. Let

Z = UnEN Uw#w'EAn (Yw N Yw/) )
Y = (mnGN Uwea, Yw) \ Z.

Then m(Z) = 0 and m(}N/) =1, and for every y € Y there exists a unique sequence
(@n)nen € o such that y € NpenYag-a, -

We endow oY with the metric §((ay)nen, (@), )nen) = k7%, where s > 0 is the largest

such that ag---as1 = ay---a,_;. Define a map x: o — Y by x((ay)nen) = ¥,

where {y} = NuenYa,. It follows from completeness of X and expansion of F’ that
X is defined everywhere and is Lipschitz. Set X := x~1(Y). Then X is measurable
and {X<<an)n€N)} = ﬁnGI\IY'ao-"an for every (an)nEN eX.

Every g € € can be written as

9= ((wo, ), . .., (wo, h(wy) — 1), (wy,0),..., (w1, h(wr) — 1), (ws,0),...).

Let Qy = {g € Q:{ly = 0}. Define t: Qg — o by «(g) = (ao, a1, . ..) where apa; - - -
= wowy - - -. Define Q) = ¢~ 1(X) and mp: Q) — Y, 19 = y 0. Let

QO ={o(g): g€ Qp, 0< < h(w)}.

Observe that Po(€) = 1. Define a projection 7: ' — X by 7(g) = f(mo(g?)).
Following the proof of Lemma [2.4] with straightforward changes, we see that 7 is
Lipschitz on €.

Remark 5.6. Construction of the Markov chain for nonuniformly expanding dynamical
systems can be found in [14], done in different notation. There the space X is not assumed
complete, and a more general, though less hands-on, assumption is used in place of (|5.1)):
that the set

{(ag,ay,...) € o™ : there exists y € Y with F*(y) € a; for all k}

is measurable in o' (in the product topology with Borel sigma algebra).

Further we work in notation of Section 2 Let
p = ged{h(w): w e A}.
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For the maps and we showed that p = 1. This means that the Markov chain
9o, g1, - - - is aperiodic, which was necessary to control the moments of the meeting time
in Section In the general case, however, it could be that p > 2. This is typical for
example for logistic maps with Collet-Eckmann parameters.

For p = 1, our proof proceeds without changes. Below we treat the periodic case
p > 2. For 0 < k < p, define

Sy ={(w,0) € S: { =k (mod p)}

and -
Qk = {(g07gb s ) € Q: 90 € Sk}

The sets  partition €2, and they are cyclically permuted by o: 0(%) = Q11 mod p-
Note that if g, = (w,?) € Sy for some n > 0, then g, = (v, + k) for 0 < k < p.
Thus we can identify 2y with

Q={(90,9p> g2p---) €EQ: go € 50}.

Let now (go, g1, - - .) be a Markov chain with state space Sp and transition probabilities

P(gns1 = (w, €p) | gn = (w', {'p))

1, (=0+T1and '+ 1< h(w)/p and w = v’
= Pa(w), €=0and ¢'+1=h(w')/p
0, else

This Markov chain admits a unique (ergodic) invariant probability measure 7 on So given

by

Pa(w)1go<e<n(w)/n)
E4(h)

The Markov chain (g, ),>0 starting from o defines a probability measure Pg on the space
Q. Note that P corresponds to P conditioned on €2,. Note also that go,gi,... is
a Markov chain, identical to g, g1,... in structure except that it is aperiodic and the
return times to Sp = {(w, ) € S: { = 0} are divided by p.

Following Section we define the separation time § and the separation metric d on Q,
using the same constant A > 1. Suppose that d,l; € Q with the corresponding a, b € .
The separation time is measured in terms of returns to Sy, hence

v(w,lp) =p (5.3)

(a,b) = s(a,b) and d(a,b) = d(a,b).

W

Further, d(c*(a), 0% (b)) = d(a,b) for 0 < k < p. Let ¢: Q — R,

It follows that Lipzz < pLip . Also, zz is mean zero with respect to Pg.
In Corollary of Appendix [A| we show that the ASIP for 37— )4 0 o* on (Q,Pg)
(and hence the ASIP for ZZ;& @ o f*on (X, u)) follows from the ASIP for Z;é ook
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n (9, Ps) with the same rates and variance v?/p, where v? is the variance of the Wiener
process on (Q, Pg).
Now as in Sectlonl the ASIP for Z;(l) Yok on (Q,Pg) follows from the ASIP for
e OXk where, for any k£ > 0,

Xy = QZ((QZ)ZEk) :

and (gn)n>o0 is the stationary Markov chain defined above with the state space g[) and
stationary distribution . The proof of the ASIP for > ;_, X, with the adequate rates
is, as in Section 4| mainly based on suitable bounds for the tails of the meeting time T
for the Markov cham (Gn)nen, which is defined as follows. First, without changing the
distribution, we redefine (g,),eny on a new probability space as follows. Let g € Sy be
distributed according to o (the stationary distribution defined by ) Let €1,¢e9,...
be a sequence of independent identically distributed random variables with values in A,
distribution P4 and independent from gy. For n > 0, let

gn—i-l = U(gm 6n—i—l) s

where, for any £ € N,

~ w,(l+1)p), Ip < h(w)—p,
U((w,lp),e) = (w, (£+1)p) (w) (5.4)

(67 0)7 gp = h(’UJ) —D-

The meeting time T of the Markov chain (§y)nen is then defined by
=inf{n >0:g,=7.}, (5.5)

where (§*,n € N) is the Markov chain defined as follows: §; is a random variable in Sy
with distribution # and independent from (o, {€, }n>1) and, forn > 0, G, = U(G%, €nt1)-
Proceeding as in the proof of Lemma and taking into account the bounds on the tails
of h proved in [13], we infer that the following lemma holds:

Lemma 5.7.

e [f the return times of f have weak polynomial moment of order 8 > 1, then, for
any n > 1, E(¢s,(T)) < oo, where g ,(x) = 2~ (log(1 + x))~" for x > 0.

e [f the return times of f have strong polynomial moment of order 8 > 1, then
E(TP7!) < .

In addition, proceeding as in the proof of Lemma (3.3 we also get the bound:
Lemma 5.8. Assume that E(T) < oco. Then, for any k > 1 and any a > 1,
|Cov (Xo, X3)| < k72 + P(T > [k/4a]) .

Now, with the same arguments as those developed in Section [4 and taking into account
Lemmas 5.7/ and [5.8 we infer that, enlarging the underlying probability space if necessary,
there exists a sequence (N;);>; of iid centered Gaussian r.v.’s with variance

v? = Var (X;) + 2 Z Cov (Xo, X) (5.6)

k>1
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such that, for any k > 1/8,

T
L

sup n*f(logn)™) a.s.

k
2 N2
where 1 = 0 if the return times of f have strong polynomial moment of order § > 2 and
1 = 1 if the return times of f have weak polynomial moment of order 5 > 2.

Now, accordlng to Corollary the ASTP for 37—, ¢ 00" on (€2, Py) (and then the
ASIP for S"7—) ¢ o f* on (X, u)) holds with variance v?/p and rate o(n'/?(logn)™). Tt
remains to check that v?/p = ¢2, with ¢? given by (5.2). Since by Lemmas and [5.7,
the series defined in ([5.6]) is absolutely convergent, we have

Il
=)

i

-1

n—1
v? T};&ﬂV&r(Z )—JLIEOHEP <<kz:%{pvo6k>2).

Hence, according to Lemma [A.T],

.1 2
v? = lim ~Br, (Y woo) ) = lim = Hsnp( )12, = pe?.
This ends the proof of Theorem [5.3| when ¢? > 0.

5.3 Optimality of the rates

In this subsection we prove Proposition [I.4 In fact we prove a stronger statement as
follows. We consider a nonuniformly expanding map f: X — X as above. We assume
that:

e 7 is the first return time to Y

e for some f>2, k>0andalln > 1,

(r>n)>—
milT n —_—.

These assumptions are verified for the map (1.1)) with § =1/y and Y = [1/2,1].

Proposition 5.9. Let 1) be a bounded observable such that 1) =0 on X\Y and pu(y)) > 0,
and let o = — u(Y). Then for every process (Z,)nen with the same law as (¢ o f™)pen
and every stationary and Gaussian centered sequence (gi)rez such that n_IVar( S gi)
converges, living on a same probability space,

lim sup (nlogn) 1/5’ Z Ly — Z gk‘ > 0 almost surely.

n—oo k=1

Remark 5.10. Under relaxed assumptions, there exist Lipshitz observables ¢ with
[ @du = 0 satisfying the hypotheses of Proposition Indeed, if m is regular and
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u(Y) # 0, then there is a compact K C Y such that u(K) > 0. Note that K and X\Y
are closed disjoint sets. Thus ¢: X — R,

d(z, X\Y)
(2, X\Y) + d(z, K)

vl(z) = -

is Lipschitz, and so is ¢ = ¢ — [ dpu.

Remark 5.11. If f: X — X is a Young tower [27], then one can take p = 1y — u(Y).
Then ¢ is Lipschitz with respect to the distance on the tower.

Proof of Proposition [5.9. Recall that py is the F-invariant probability measure on Y.
For n > 0, let 7,, = 7 o F™. We claim that py-almost surely, n™*> " 7, — [7du as
n — oo and 7, > (nlogn)'/? infinitely often. Then our result follows as in the proof of
[3, Prop. 15].

It remains to verify the claim. Its first part is provided by the pointwise ergodic
theorem, so further we verify the second part. We follow Gouézel [§].

For n >0, let A, = {y € Y: 7,(y) > (nlogn)'/?}. Recall that there is a constant
¢ > 0 such that for all n, k& > 0,

py (1 = k) > cm(r =k).

Thus - -
Z,uy(An) > CZ?TL(T > (nlogn)l/'g) =00. (5.7)
n=0 n=0

Next, there are constants C' > 0 and 6 €]0, 1| such that for all k£ #n >0,

|y (Ax N Ay) — py (Ag)py (Ay)| < CO™ ™y (Ag) py (An) -

(See for instance the last line of [1l Sec. 1].) Therefore,

| A A) = D (A (40| £ D v (A0 A — v (Aiy (A

1<k f<n 1<k t<n 1<k f<n
<Y (A + D 0y (A py (Ar) <Y v (Ar).
k=1 1<k,0<n k=1

Taking into account (|5.7)), we obtain

_ Di<ke<n My (Ax N A)
lim =1

e (YR v (Ar))

By [B, Lemma C], we verify a criterion for the second Borel-Cantelli lemma and prove
that py (NS, UL, Ap) = 1, i.e. that py-almost surely, 7, > (nlogn)'/# infinitely often.
This completes the proof of the claim. O
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A ASIP for periodic dynamical systems

Suppose that (€2, P) is a probability space and o: 2 — Q is a measure preserving trans-
formation.

Suppose that p > 2 is an integer and o is p-periodic in the sense that 2 can be
partitioned into disjoint subsets €2, . .., €2,y which are permuted by o cyclically: o(€2) =
Q41 mod p- In particular P(Q) = 1/p for any k=0,...,p — 1.

Let 6: Qg — Qq, 6 = oP. We refer to ¢ as the induced map. The space g is endowed
with a probability measure Py, which is P conditioned on €2y. Note that Py is invariant
under 4.

Suppose that 1: Q@ — R is an observable with ||, = supg |¢| < o0o. Define the
induced observable J: Qo — R,

Denote ) )
Yo=Y ook and ¢, =Y Post.
k=0 k=0

We consider 1, and @Zn as random processes, defined on probability spaces (£2,P) and
(Q,Py) respectively. Define a projection my: @ — € by

o oPF(z) ifre,k=1,...,p—1. '

Lemma A.1. We have N
[¥n = Vlnspl © Toloo < 2p|Y]oo - (A.2)

Moreover, if lim, oo n™" [, V2P(w) dw = ¢*, then lim, oo n™! fQo Jﬁl/p]Pg(W) dw = 2.

Proof. The bound ({A.2)) is obvious. Indeed, for instance if x € €y, it suffices to write

~ n—1 pln/pl+p—2
|¢n—¢[n/p]oﬂo\:’z¢00k— > ¢00k‘§2(p—1)w’oo-
k=0 k=p—1

To end the proof of the lemma, note that (m).P = Py, thus {En o 7y, defined on the
probability space (€2, P), has the same distribution as v, on (g, Py). ]

Corollary A.2. Let (b,)n>1 be a regularly varying sequence with values in R*, and such
that b, (log n)_1/2 — 00 as n — 00. Assume that 2 can be enlarged in such a way that
there exists a Brownian motion Wy (with variance v?) such that

Jn omy =W, + o(b,) almost surely.
Then, on the same probability space, there is a Brownian motion W (with variance c* =

v?/p) such that
U =W, +o0(b,) almost surely.
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Proof. By assumption and Lemma [A.T],

Yy, = Winsp + 0(bn)  almost surely.

Then W, = W,/, is a Brownian motion (with variance ¢ = v?/p), and

sup [We/p — Wissm| = O((log t)/?)  almost surely.
s<t

(See, for instance, Theorem 3.2A in [9]). The result follows. O
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