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C. Cuny∗, J. Dedecker†, A. Korepanov‡, Florence Merlevède§
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Abstract

We prove the one-dimensional almost sure invariance principle with essentially
optimal rates for slowly (polynomially) mixing deterministic dynamical systems,
such as Pomeau-Manneville intermittent maps, with Hölder continuous observables.

Our rates have form o(nγL(n)), where L(n) is a slowly varying function and γ
is determined by the speed of mixing. We strongly improve previous results where
the best available rates did not exceed O(n1/4).

To break the O(n1/4) barrier, we represent the dynamics as a Young-tower-
like Markov chain and adapt the methods of Berkes-Liu-Wu and Cuny-Dedecker-
Merlevède on the Komlós-Major-Tusnády approximation for dependent processes.

Keywords: Strong invariance principle, KMT approximation, Nonuniformly expanding
dynamical systems, Markov chain.

MSC: 60F17, 37E05.

1 Introduction and statement of results

In their study of turbulent bursts, Pomeau and Manneville [21] introduced simple dy-
namical systems, exhibiting intermittent transitions between “laminar” and “turbulent”
behaviour. Over the last few decades, such maps have been very popular in dynamical
systems. We consider a version of Liverani, Saussol and Vaienti [17], where for a fixed
γ ∈ (0, 1), the map f : [0, 1]→ [0, 1] is given by

f(x) =

{
x(1 + 2γxγ), x ≤ 1/2

2x− 1, x > 1/2
(1.1)
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There exists a unique absolutely continuous f -invariant probability measure µ on
[0, 1], which is equivalent to the Lebesgue measure.

The intermittent behaviour comes from the fact that 0 is a fixed point with f ′(0) = 1.
Hence if a point x is close to 0, then its orbit (fn(x))n≥0 stays around 0 for a long time.
The degree of intermittency is given by the parameter γ and is quantified by choosing an
interval away from 0 such as Y =]1/2, 1] and considering the first return time τ : Y → N,

τ(x) = min{n ≥ 1: fn(x) ∈ Y } .

It is straightforward to verify [7, 27] that for some C > 0 all n ≥ 1,

C−1n−1/γ ≤ Leb (τ ≥ n) ≤ Cn−1/γ , (1.2)

where Leb denotes the Lebesgue measure on Y .
Suppose that ϕ : [0, 1]→ R is a Hölder continuous observable with

∫
ϕdµ = 0 and let

Sn(ϕ) =
n−1∑
k=0

ϕ ◦ fk.

We consider Sn(ϕ) as a discrete time random process on the probability space ([0, 1], µ).
Since µ is f -invariant, the increments (ϕ ◦ fn)n≥0 are stationary. Using the bound (1.2),
Young [27] proved that the correlations decay polynomially:∣∣∣∫ ϕ ϕ ◦ fn dµ

∣∣∣ = O
(
n−(1−γ)/γ

)
. (1.3)

If γ < 1/2, then Sn(ϕ) satisfies the central limit theorem (CLT), that is n−1/2Sn(ϕ)
converges in distribution to a normal random variable with variance

c2 =

∫
ϕ2 dµ+ 2

∞∑
n=1

∫
ϕϕ ◦ fn dµ . (1.4)

By (1.3), the series above converges absolutely. The asymptotics in (1.3) is sharp [6,
7, 11, 25, 27], and for each γ ≥ 1/2 there are observables ϕ for which the series for c2

diverges, and the CLT does not hold. We are interested in the case when the CLT holds,
so from here on we restrict to γ < 1/2.

In parallel with (1.1), we consider a very similar map

f(x) =

{
x(1 + xγρ(x)), x ≤ 1/2

2x− 1, x > 1/2
, (1.5)

where, following Holland [10] and Gouëzel [7], ρ ∈ C2((0, 1/2], (0,∞)) is slowly varying
at 0 and satisfies:

• xρ′(x) = o(ρ(x)) and x2ρ′′(x) = o(ρ(x));

• f(1/2) = 1 and f ′(x) > 1 for all x 6= 0;

•
∫ 1/2

0

1

x(ρ(x))1/γ
dx <∞ .
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For example, ρ(x) = C| log x|(1+ε)γ with ε > 0 and C = 2γ(log 2)−(1+ε)γ.
Then in place of the bound Leb (τ ≥ n) ≤ Cn−1/γ in (1.2) we have a slightly stronger

bound [7, Thm 1.4.10, Prop. 1.4.12, Lem. 1.4.14]:∫
Y

τ 1/γ dLeb <∞ . (1.6)

Remark 1.1. The analysis above for the map (1.1) applies to the map (1.5) with minor
differences: the correlations decay slightly faster and the CLT holds also for γ = 1/2 (see
[7]).

Further we use f to denote either of the maps (1.1) and (1.5), specifying which one
we refer to where it makes a difference.

A strong generalization of the CLT and the aim of our work is the following property:

Definition 1.2. We say that a real-valued random process (Sn)n≥1 satisfies the almost
sure invariance principle (ASIP) (also known as a strong invariance principle) with rate
o(nβ), β ∈ (0, 1/2), and variance c2 if one can redefine (Sn)n≥1 without changing its
distribution on a (richer) probability space on which there exists a Brownian motion
(Wt)t≥0 with variance c2 such that

Sn = Wn + o(nβ) almost surely.

We define similarly the ASIP with rates o(rn) or O(rn) for deterministic sequences (rn)n≥1.

For the map (1.1) with Hölder continuous observables ϕ, the ASIP for Sn(ϕ) has been
first proved by Melbourne and Nicol [18], albeit without explicit rates. In [19, Thm. 1.6
and Rmk. 1.7], the same authors obtained the ASIP with rates

Sn(ϕ)−Wn =

{
o(nγ/2+1/4+ε), γ ∈]1/4, 1/2[

o(n3/8+ε), γ ∈]0, 1/4]

for all ε > 0. Their proof is based on Philipp and Stout [22, Thm. 7.1]. This result has
been subsequently improved. Using the approach for the reverse martingales of Cuny
and Merlevède [4], Korepanov, Kosloff and Melbourne [15] proved the ASIP with rates

Sn(ϕ)−Wn =

{
o(nγ+ε), γ ∈ [1/4, 1/2[

O(n1/4(log n)1/2(log log n)1/4), γ ∈]0, 1/4[

for all ε > 0. (Subsection 5.2 provides some more details.)
When ϕ is not Hölder continuous, the situation is more delicate. For instance, func-

tions with discontinuities are not easily amenable to the method of Young towers used in
[15, 18, 19]. For ϕ of bounded variation, using the conditional quantile method, Merlevède
and Rio [20] proved the ASIP with rates

Sn(ϕ)−Wn = O(nγ
′
(log n)1/2(log log n)(1+ε)γ′)

for all ε > 0, where γ′ = max{γ, 1/3}. Besides considering observables of bounded
variation, the results of [20] also cover a large class of unbounded observables.

In all the papers above, the rates are not better than O(n1/4), which could be perceived
as largely suboptimal when 0 < γ < 1/4 due to the intuition coming from the processes
with iid increments [12] and recent related work [2, 3]. Our main result is:
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Theorem 1.3. Let γ ∈ (0, 1/2) and ϕ : [0, 1] → R be a Hölder continuous observable
with

∫
ϕdµ = 0. For the map (1.1), the random process Sn(ϕ) satisfies the ASIP with

variance c2 given by (1.4) and rate o(nγ(log n)γ+ε) for all ε > 0. For the map (1.5), the
random process Sn(ϕ) satisfies the ASIP with variance c2 given by (1.4) and rate o(nγ).

The rates in Theorem 1.3 are optimal in the following sense:

Proposition 1.4. Let f be the map (1.1). There exists a Hölder continuous observable
ϕ with

∫
ϕdµ = 0 such that

lim sup
n→∞

(n log n)−γ|Sn(ϕ)−Wn| > 0

for all Brownian motions (Wt)t≥0 defined on the same (possibly enlarged) probability space
as (Sn(ϕ))n≥0. Hence, one cannot take ε = 0 in Theorem 1.3.

Remark 1.5. If c2 = 0, the rate in the ASIP can be improved to O(1). Indeed, then it is
well-known that ϕ is a coboundary in the sense that ϕ = u−u◦f with some u : [0, 1]→ R.
By [7, Prop. 1.4.2], u is bounded, thus Sn(ϕ) is bounded uniformly in n.

Remark 1.6. It is possible to relax the assumption that ϕ is Hölder continuous. As a
simple example, Theorem 1.3 holds if ϕ is Hölder on (0, 1/2) and on (1/2, 1), with a
discontinuity at 1/2. See Subsection 4.3 for further extensions.

Remark 1.7. Intermittent maps are prototypical examples of nonuniformly expanding dy-
namical systems, to which our results apply in a general setup, and so does the discussion
of rates preceding Theorem 1.3. We focus on the maps (1.1) and (1.5) for simplicity only,
and discuss the generalization in Section 5.

The paper is organized as follows. In Section 2, following Korepanov [13], we represent
the dynamical systems (1.1) and (1.5) as a function of the trajectories of a particular
Markov chain; further, we introduce a meeting time related to the Markov chain and
estimate its moments. In Section 4 we prove Theorem 1.3 for our new process (which is
a function of the whole future trajectories of the Markov chain) by adapting the ideas
of Berkes, Liu and Wu [2] and Cuny, Dedecker and Merlevède [3]. In Section 5 we
generalize our results to the class of nonuniformly expanding dynamical systems and
show the optimality of the rates.

Throughout, we use the notation an � bn and an = O(bn) interchangeably, meaning
that there exists a positive constant C not depending on n such that an ≤ Cbn for all
sufficiently large n. As usual, an = o(bn) means that limn→∞ an/bn = 0. Recall that v :
X → R is a Hölder observable (with a Hölder exponent η > 0) on a bounded metric space

(X, d) if ‖v‖η = |v|∞ + |v|η <∞ where |v|∞ = supx∈X |v(x)| and |v|η = supx6=y
|v(x)−v(y)|
d(x,y)η

.

All along the paper, we use the notation N = {0, 1, 2, . . .}.

2 Reduction to a Markov chain

2.1 Outline

In this section we construct a stationary Markov chain g0, g1, . . . on a countable state
space S, the space of all possible future trajectories Ω and an observable ψ : Ω→ R such
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that the random process (Xn)n≥0 where Xn = ψ(gn, gn+1, . . .) has the same distribution
as (ϕ ◦ fn)n≥0, the increments of (Sn(ϕ))n≥1.

Our Markov chain is in the spirit of the classical Young towers [27]. Just as the Young
towers for the maps (1.1) and (1.5), our construction enjoys recurrence properties related
to the choice of γ, and we supply Ω with a metric, with respect to which ψ is Lipschitz.

We follow the ideas of [14], though in the setup of the maps (1.1) and (1.5) we are
able to make the proofs simpler and hopefully easier to read.

2.2 Basic properties of intermittent maps

A standard way to work with maps (1.1), (1.5) is an inducing scheme. As in Section 1,
set Y =]1/2, 1] and let τ : Y → N be the inducing time, τ(x) = min{k ≥ 1: fk(x) ∈ Y }.
Let F : Y → Y be the induced map, F (x) = f τ(x)(x). Let α be the partition of Y into
the intervals where τ is constant. Let β = 1/γ.

We remark that gcd{τ(a) : a ∈ α} = 1.
Let m denote the Lebesgue measure on Y , normalized so that it is a probability

measure. Recall that we have the bounds

• m(τ ≥ n) ≤ Cn−β for all n ≥ 1 for the map (1.1);

•
∫
τβ dm <∞ for the map (1.5).

The induced map F satisfies the following properties:

• (full image) F : a→ Y is a bijection for each a ∈ α;

• (expansion) there is λ > 1 such that |F ′| ≥ λ;

• (bounded distortion) there is a constant Cd ≥ 0 such that∣∣log |F ′(x)| − log |F ′(y)|
∣∣ ≤ Cd|F (x)− F (y)|

for all x, y ∈ a, a ∈ α.

2.3 Disintegration of the Lebesgue measure

The properties in Subsection 2.2 allow a disintegration of the measure m, as described in
this subsection.

Let A denote the set of all finite words in the alphabet α, not including the empty
word. For w = a0 · · · an−1 ∈ A, let |w| = n and let Yw denote the cylinder of points in Y
which follow the itinerary of letters of w under the iteration of F :

Yw = {y ∈ Y : F k(y) ∈ ak for 0 ≤ k ≤ n− 1}.

Let also h : A → N, h(w) = τ(a0) + · · ·+ τ(an−1) for w = a0 · · · an−1.
For w0, . . . , wn ∈ A, let w0 · · ·wn ∈ A denote the concatenation.

Proposition 2.1. For each infinite sequence a0, a1, . . . ∈ α, there exists a unique y ∈ Y
such that F n(y) ∈ an for all n ≥ 0.

In particular, for each sequence w0, w1, . . . ∈ A there exists a unique y ∈ Y such that
y ∈ Yw0, F |w0|(y) ∈ Yw1, F |w0|+|w1|(y) ∈ Yw2, and so on.
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Proof. Uniqueness of y follows from expansion of F , so it is enough to show existence.
Let wn = a0 · · · an−1. Note that Ywn , n ≥ 0, is a nested sequence of intervals with

shrinking to 0 length, closed on the right and open on the left. Let y be the only point
in the intersection of their closures, {y} = ∩nȲwn .

Suppose that y 6∈ ∩nYwn . Then y ∈ Ȳwn \ Ywn for some n, thus y is a left end-point
of Ywn . Observe that Ȳwn+1 is contained in Ȳwn but cannot contain its left end-point, i.e.
y 6∈ Ȳwn+1 . This is a contradiction, proving that y ∈ ∩nYwn . Hence F n(y) ∈ an for all n,
as required.

Proposition 2.2. There exist a probability measure PA on A and a disintegration

m =
∑
w∈A

PA(w)mw,

where

• each mw is a probability measure supported on Yw;

• (F |w|)∗mw = m;

• PA(w) > 0 for each w;

• for the map (1.1), PA(h ≥ k) ≤ Cβk
−β for all k ≥ 1, where Cβ > 0 is a constant;

• for the map (1.5),
∫
hβ dPA <∞.

The disintegration in Proposition 2.2 was introduced in [29] and called regenerative
partition of unity. The bounds on the tail of h are proved in [13]. This disintegration is
the basis of the Markov chain construction.

2.4 Construction of the Markov chain

Let g0, g1, . . . be a Markov chain with state space

S = {(w, `) ∈ A× Z : 0 ≤ ` < h(w)}

and transition probabilities

P(gn+1 = (w, `) | gn = (w′, `′))

=


1, ` = `′ + 1 and `′ + 1 < h(w) and w = w′

PA(w), ` = 0 and `′ + 1 = h(w′)

0, else

(2.1)

The Markov chain g0, g1, . . . has a unique (hence ergodic) invariant probability measure
ν on S, given by

ν(w, `) =
PA(w)1{0≤`<h(w)}∑

(w,`)∈S PA(w)
=

PA(w)1{0≤`<h(w)}

EA(h)
. (2.2)

The Markov chain g0, g1, . . . starting from ν defines a probability measure PΩ on the space
Ω ⊂ SN of sequences which correspond to non-zero probability transitions. Let σ : Ω→ Ω
be the left shift action,

σ(g0, g1, . . .) = (g1, g2, . . .) .
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Remark 2.3. There exists w ∈ A with PA(w) > 0 and h(w) = 1. Therefore, the Markov
chain g0, g1, . . . is aperiodic. Aperiodicity is used in the proof of the ASIP (namely, in
the proof of Lemma 3.1 to apply Lindvall’s result [16]). However, in the general case, as
far as the ASIP is concerned, aperiodicity is not necessary (see Section 5).

We supply the space Ω with a separation time s : Ω × Ω → N ∪ {∞}, measured in
terms of the number of visits to S0 = {(w, `) ∈ S : ` = 0} as follows. For a, b ∈ Ω,

a = (g0, . . . , gN , gN+1, . . .),

b = (g0, . . . , gN , g
′
N+1, . . .)

(2.3)

with gN+1 6= g′N+1, we set

s(a, b) = #{0 ≤ n ≤ N : gn ∈ S0}.

We define a separation metric d on Ω by

d(a, b) = λ−s(a,b). (2.4)

For g = (w, `) ∈ S, define Xg ⊂ [0, 1], Xg = f `(Yw). Then, similar to Proposition 2.1,
to each (g0, g1, . . .) ∈ Ω there corresponds a unique x ∈ [0, 1] such that fn(x) ∈ Xgn for
all n ≥ 0 (but for a given x, there may be many such (g0, g1, . . .) ∈ Ω).

Thus we introduce a projection π : Ω → [0, 1], with π(g0, g1, . . .) = x where fn(x) ∈
Xgn for all n ≥ 0 as above.

The key properties of the projection π are:

Lemma 2.4.

• π is Lipschitz: |π(a)− π(b)| ≤ d(a, b) for all a, b ∈ Ω;

• π is a measure preserving map between the probability spaces (Ω,PΩ) and ([0, 1], µ);

• π is a semiconjugacy between σ : Ω → Ω and f : [0, 1] → [0, 1], i.e. the following
diagram commutes:

Ω Ω

[0, 1] [0, 1]

σ

π π

f

Corollary 2.5. Suppose that ϕ : [0, 1] → R is Hölder continuous. Let ψ = ϕ ◦ π and
Xk = ψ(gk, gk+1, . . .) for k ≥ 0. Then

(a) ψ is Hölder continuous.

(b) The process (Xk)k≥0 on the probability space (Ω,PΩ) is equal in law to (ϕ ◦ fk)k≥0

on ([0, 1], µ).
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2.5 Proof of Lemma 2.4

The last item, namely, the property that π◦σ = f◦π follows directly from the construction
of σ and π.

We prove now the first item. Suppose that a, b ∈ Ω are as in (2.3) and write

g0, . . . , gN =

(w0, `0), . . . , (w0, h(w0)− 1), (w1, 0), . . . , (w1, h(w1)− 1), . . . , (wk, 0), . . . , (wk, `k) ,

where 0 ≤ `0 < h(w0), 0 ≤ `k < h(wk) and h(w0) − `0 +
∑k−1

i=1 h(wi) + `k = N . Then
both π(a) and π(b) belong to f `0(Yw0···wk).

Suppose that `0 6= 0. Then s(a, b) = k. Since |f ′| ≥ 1 and |F ′| ≥ λ,

diam f `0(Yw0···wk) ≤ diamYw1···wk ≤ λ−k.

Then |π(a) − π(b)| ≤ λ−s(a,b) = d(a, b). If `0 = 0, then s(a, b) = k + 1 and
diam f `0(Yw0···wk) ≤ λ−(k+1). Again, |π(a)− π(b)| ≤ d(a, b), as required.

It remains to prove the second item, namely: π∗PΩ = µ. Let Ω0 = {(g0, g1, . . .) ∈
Ω: g0 ∈ S0}. Then PΩ(Ω0) > 0. Let

PΩ0(·) =
PΩ(· ∩ Ω0)

PΩ(Ω0)

be the corresponding conditional probability measure. We shall use the following inter-
mediate result whose proof is given later.

Proposition 2.6. π∗PΩ0 = m.

Let us complete the proof of the second item with the help of this proposition. Note
that σ : Ω → Ω preserves the ergodic probability measure PΩ. Since f ◦ π = π ◦ σ, the
measure υ := π∗PΩ on [0, 1] is f -invariant and ergodic, as is µ.

Suppose that υ and µ are different measures. Since they are both f -invariant and
ergodic, they are singular with respect to each other: there exists A ⊂ [0, 1] such that
µ(A) = 1 and υ(A) = 0.

Let υ|Y and µ|Y denote the restrictions on Y . By Proposition 2.6, m � υ|Y . Since
in turn µ|Y � m, it follows that µ|Y � υ|Y . Hence µ(A ∩ Y ) = υ(A ∩ Y ) = 0. Also,
µ(Y \A) = 0, so µ(Y ) = 0, which contradicts the fact that µ is equivalent to the Lebesgue
measure on [0, 1]. Thus µ = υ.

To end the proof of the second item, it remains to show Proposition 2.6.

Proof of Proposition 2.6. Our strategy is to show that for each w ∈ A,

PΩ0(π−1(Yw)) = m(Yw) .

Then the result follows from Carathéodory’s extension theorem.
Let m =

∑
w∈A PA(w)mw be the decomposition from Proposition 2.2. Recall that each

mw is supported on Yw and (F |w|)∗mw = m. Since F |w| : Yw → Y is a diffeomorphism
between two intervals, the measures mw are uniquely determined by these properties.
It is straightforward to write mw =

∑
w′∈A PA(w′)mww′ for each w. (Here ww′ is the
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concatenation of w,w′ and the measures mww′ are from the same decomposition.) Thus
we obtain a decomposition

m =
∑

w,w′∈A

PA(w)PA(w′)mww′ .

Further, for n ≥ 0, we write

m =
∑

w0,...,wn∈A

PA(w0) · · ·PA(wn)mw0···wn .

Suppose that w ∈ A with |w| = n+ 1. For every w0, . . . , wn ∈ A, either Yw0···wn ⊂ Yw
(when the word w0 · · ·wn starts with w) or Yw0···wn ∩ Yw = ∅ (otherwise). Hence

m(Yw) =
∑

w0,...,wn∈A :
Yw0···wn⊂Yw

PA(w0) · · ·PA(wn) . (2.5)

For w0, . . . , wn, let Ωw0,...,wn denote the subset of Ω0 with the first coordinates

(w0, 0), . . . , (w0, h(w0)− 1), . . . , (wn, 0), . . . , (wn, h(wn)− 1) .

Note that π(Ωw0,...,wn) = Yw0···wn and by (2.1),

PΩ0(Ωw0,...,wn) = PA(w0) · · ·PA(wn) .

Then

PΩ0(π−1(Yw)) =
∑

w0,...,wn∈A :
Yw0···wn⊂Yw

PΩ0(Ωw0,...,wn) =
∑

w0,...,wn∈A :
Yw0···wn⊂Yw

PA(w0) · · ·PA(wn) . (2.6)

Combining (2.5) and (2.6), we obtain that PΩ0(π−1(Yw)) = m(Yw), as required.

3 Meeting time

In Section 2 we constructed the stationary and aperiodic Markov chain (gn)n≥0. In this
section we introduce a meeting time on it and use it to prove a number of statements
which shall play a central role in the proof of the ASIP.

We work with the notation of Section 2. Without changing the distribution, we
redefine the Markov chain g0, g1, . . . on a new probability space as follows. Let g0 ∈ S be
distributed according to ν (the stationary distribution defined by (2.2)). Let ε1, ε2, . . .
be a sequence of independent identically distributed random variables with values in A,
distribution PA, independent from g0. For n ≥ 0 let

gn+1 = U(gn, εn+1) , (3.1)

where

U((w, `), ε) =

{
(w, `+ 1), ` < h(w)− 1 ,

(ε, 0), ` = h(w)− 1 .
(3.2)

9



We refer to (εn)n≥1 as innovations.
Let g∗0 be a random variable in S with distribution ν, independent from g0 and (εn)n≥1.

Let g∗0, g
∗
1, g
∗
2, . . . be a Markov chain given by

g∗n+1 = U(g∗n, εn+1) for n ≥ 0 . (3.3)

Thus the chains (gn)n≥0 and (g∗n)n≥0 have independent initial states, but share the same
innovations. Define the meeting time:

T = inf{n ≥ 0: gn = g∗n} . (3.4)

For β, η > 1, define ψβ,η, ψ̃β,η : [0,∞)→ [0,∞),

ψβ,η(x) = xβ(log(1 + x))−η , ψ̃β,η(x) = xβ−1(log(1 + x))−η

for x > 0 and ψβ,η(0) = ψ̃β,η(0) = 0.
For the maps (1.1) and (1.5), moments of T can be estimated by Proposition 2.2 and

the following lemma:

Lemma 3.1. Suppose that β > 1.

(a) If PA(h ≥ k)� k−β, then E(ψ̃β,η(T )) <∞ for all η > 1.

(b) If
∫
hβ dPA <∞, then E(T β−1) <∞.

Proof. Let Sc = {(w, `) ∈ S : ` = h(w)− 1} be the “ceiling” of S and

T ∗ = inf{n ≥ 0: gn ∈ Sc and g∗n ∈ Sc} .

From the representation (3.1), it is clear that T ≤ T ∗ + 1.
Now, the segments (g0, g1, . . . , gT ∗) and (g∗0, g

∗
1, . . . , g

∗
T ∗) never use the same innovations

and behave independently. In addition, gT ∗+1 = g∗T ∗+1 = (εT ∗+1, 0) and gn+T ∗ = g∗n+T ∗

for any n ≥ 1.
Consider (ε′n)n≥1, an independent copy of (εn)n≥1, independent also from g0. Let g′0

be a random variable in S with distribution ν, independent from (g0, (εn)n≥1, (ε
′
n)n≥1).

Define the Markov chain (g′n)n≥0 by

g′n+1 = U(g′n, ε
′
n+1) for n ≥ 0 .

Let
T ′ = inf{n ≥ 0: gn ∈ Sc and g′n ∈ Sc} .

Due to the previous considerations, T ′ is equal to T ∗ in law.
Note that Sc is a recurrent atom for the Markov chain (gn)n≥0. Let

τ0 = inf{n ≥ 0: gn ∈ Sc}

be the first renewal time. If PA(h ≥ k)� k−β, we claim that for all η > 1,

E(ψ̃β,η(τ0)) <∞ .

10



Then, according to Lindvall [16] (see also Rio [23, Prop. 9.6]), since the chain (gn)n≥0 is

aperiodic (see Remark 2.3), E(ψ̃β,η(T
′)) < ∞ and (a) follows. For (b), the argument is

similar, with xβ instead of ψβ,η(x) and xβ−1 instead of ψ̃β,η(x).
It remains to verify the claim. Note that if g0 = (w, `), then τ0 = h(w)− `− 1 and

ψ̃β,η(τ0) =
(h(w)− `− 1)β−1

(log(h(w)− `))η
≤ Cβ,η

h(w)β−1

(log h(w))η
.

For any η > 1, using that ν(w, `) ≤ PA(w)/EA(h), write

E(ψ̃β,η(τ0)) =
∑
w∈A,

0≤`<h(w)

Eg0=(w,`)(ψ̃β,η(τ0))ν(w, `)

≤ Cβ,η(EA(h))−1
∑
w∈A

h(w)β

(log h(w))η
PA(w) = Cβ,η(EA(h))−1EA(ψβ,η(h)) <∞ ,

by taking into account Proposition 2.2.

Let ψ : Ω→ R be a Hölder continuous observable with
∫
ψ dPΩ = 0. (Such as ψ = ϕ◦π

in Section 2.) For ` ≥ 0, define δ` : Ω→ R,

δ`(g0, g1, . . .) = sup
∣∣ψ(g0, g1, . . . , g`+1, g`+2, . . .)− ψ(g0, g1, . . . , g̃`+1, g̃`+2, . . .)

∣∣ ,
where the supremum is taken over all possible trajectories (g̃`+1, g̃`+2, . . .).

Proposition 3.2. Assume that E(T ) <∞. For all r ≥ 1,

E(δ`)� `−r/2 + P(T ≥ [`/r]) .

Proof. By (2.4) and the first item of Lemma 2.4, there exist C > 0 (depending on the
Hölder norm of ψ) and θ ∈ (0, 1) (depending on λ and on the Hölder exponent of ψ) such
that δ` ≤ Cθs` , where s` = #{k ≤ ` : gk ∈ S0}. Write

C−1E(δ`) ≤ E(θs`) ≤ θ
1
2

(`+1)P(g0∈S0) + E
(
θs`1s`< 1

2
(`+1)P(g0∈S0)

)
≤ θ

1
2

(`+1)P(g0∈S0) + P
(
s` <

1

2
(`+ 1)P(g0 ∈ S0)

)
.

(3.5)

Next,

P
(
s` <

1

2
(`+ 1)P(g0 ∈ S0)

)
≤ P

(∣∣∣∑̀
i=0

1{gi∈S0} − (`+ 1)ν(S0)
∣∣∣ > 1

2
(`+ 1)ν(S0)

)
.

Recall now the definition (3.4) of the meeting time T and the following coupling inequality:
for all n ≥ 1,

β(n) :=
1

2

∫
‖δ(x,y)(P × P )n − ν × ν‖v d(ν × ν)(x, y) ≤ P(T ≥ n) , (3.6)

where ‖ · ‖v denotes the total variation norm of a signed measure and P is the transition
function of the Markov chain (gk)k≥0. From E(T ) <∞, it follows that

∑
n≥1 β(n) <∞.
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Applying [23, Thm. 6.2] and using that α(n) ≤ β(n), where (α(n))n≥1 is the sequence of
strong mixing coefficients defined in [23, (2.1)], we infer that for all r ≥ 1,

P
(∣∣∣ ∑̀

i=0

1{gi∈S0} − (`+ 1)ν(S0)
∣∣∣ > 1

2
(`+ 1)ν(S0)

)
≤ c1`

−r/2 + c2P(T ≥ [`/r]) , (3.7)

where c1 and c2 are positive constant independent of `. The result follows.

For n ≥ 0, let
Xn = ψ ◦ σn = ψ(gn, gn+1, . . .) .

Then (Xn)n≥0 is a stationary random process. It is straightforward to use the meeting
time to estimate correlations:

Lemma 3.3. Assume that E(T ) <∞. Then for all k ≥ 1 and α ≥ 1,

|Cov (X0, Xk)| � k−α/2 + P(T ≥ [k/4α]) .

Proof. Let k ≥ 2. Let (ε′i)i≥1 be an independent copy of the innovations (εi)i≥1, in-
dependent also from g0. Define (g′i)i≥k−[k/2]+1 by g′k−[k/2]+1 = U(gk−[k/2], ε

′
k−[k/2]+1) and

g′i+1 = U(g′i, ε
′
i+1) for i > k − [k/2].

Let
X0,k = Eg

(
ψ(g0, g1, . . . , gk−[k/2], (g

′
i)i≥k−[k/2]+1)

)
,

where Eg denotes the conditional expectation given g := (gn)n≥0. Write

|Cov (X0, Xk)| ≤ ‖Xk‖∞‖X0 −X0,k‖1 + |E(X0,kXk)| .

Note that ‖Xk‖∞ ≤ |ψ|∞ <∞. By Proposition 3.2, for any α ≥ 1,

‖X0 −X0,k‖1 � k−α/2 + P(T ≥ [k/(4α)]) .

Hence it is enough to show that

|E(X0,kXk)| � P(T ≥ [k/2]) . (3.8)

With this aim, note that by the Markovian property and stationarity,

|E(X0,kXk)| ≤ ‖X0,k‖∞‖E(Xk | gk−[k/2])‖1 ≤ |ψ|∞‖E(X[k/2] | g0)‖1 .

Recall the definition of the Markov chain (g∗n)n≥0. For all n ≥ 0, let X∗n = ψ((g∗k)k≥n).
Since E(X∗[k/2]) = 0 and X∗[k/2] is independent from g0,

‖E(X[k/2] | g0)‖1 ≤ ‖X[k/2] −X∗[k/2]‖1 .

Note now that X[k/2] 6= X∗[k/2] only if T > [k/2]. Hence

‖X[k/2] −X∗[k/2]‖1 ≤ 2|ψ|∞P(T > [k/2]) ,

which proves (3.8) and thus completes the proof of the lemma.

For n ≥ 1, let Sn =
∑n

k=1Xk. From Lemma 3.3, we get

12



Corollary 3.4. Assume that E(T ) <∞. Then the limit

c2 = lim
n→∞

1

n
‖Sn‖2

2

exists and

c2 = ‖X0‖2
2 + 2

∞∑
n=1

Cov (X0, Xn) .

Lemma 3.5. Assume that E(T ) <∞. Then, for any x > 0 and any r ≥ 1,

P
(

max
k≤n
|Sk| ≥ 5x

)
� n

x

(
x−r + P(T ≥ Cx)

)
+
(

1 + κx2/n
)−r/2

, (3.9)

where C and κ are constants depending on |ψ|∞ and r, and the constant involved in �
does not depend on (n, x).

Proof. Our proof is similar to that of [23, Thm. 6.1].
Let (ε′n)n≥1 be an independent copy of the innovations (εn)n≥1, independent also of

g0.
Fix n ≥ 1 and 1 ≤ q ≤ n. For k ≥ 0, let

X ′k = Eg
(
ψ(gk, gk+1, . . . , gk+[q/2], (g̃i)i≥k+[q/2]+1)

)
,

where Eg denotes the conditional expectation given (gn)n≥0, while (g̃i)i≥k+[q/2]+1 is defined
by g̃k+[q/2]+1 = U(gk+[q/2], ε

′
k+[q/2]+1) and g̃i+1 = U(g̃i, ε

′
i+1) for i > k+ [q/2]. The function

U is given by (3.2).
Let

S ′n =
n∑
k=1

X ′k .

Observe that

max
k≤n
|Sk| ≤

n∑
k=1

|Xk −X ′k|+ max
1≤k≤n

∣∣S ′k∣∣ .
Now, set kn = [n/q] and U ′i = S ′iq − S ′(i−1)q for 1 ≤ i ≤ kn and U ′kn+1 = S ′n − S ′knq. Since

all integers j are on the distance of at most [q/2] from qN, we write

max
k≤n
|Sk| ≤

n∑
k=1

|Xk −X ′k|+ 2[q/2]|ψ|∞

+ max
2j≤kn+1

∣∣∣ j∑
k=1

U ′2k

∣∣∣+ max
2j−1≤kn+1

∣∣∣ j∑
k=1

U ′2k−1

∣∣∣ . (3.10)

We shall now construct random variables (U∗i )1≤i≤kn+1 such that a) U∗i has the same
distribution as U ′i for all 1 ≤ i ≤ kn+1, b) the variables (U∗2i)2≤2i≤kn+1 are independent as
well as the random variables (U∗2i−1)1≤2i−1≤kn+1 and c) we can suitably control ‖Ui−U∗i ‖1.

This is done recursively as follows. Let U∗2 = U ′2 and let us first construct U∗4 . With
this aim, we note that

X ′k = hq(gk, gk+1, . . . , gk+[q/2])

13



for some centered function hq with |hq|∞ ≤ |ψ|∞. Let g
(2)
2q+[q/2] be a random variable in S

with law ν and independent from (g0, (εk)k≥1) and define the Markov chain (g
(2)
k )k≥2q+[q/2]

by:
g

(2)
k+1 = U(g

(2)
k , εk+1) for k ≥ 2q + [q/2] .

Let
X

(2)
k = hq(g

(2)
k , g

(2)
k+1, . . . , g

(2)
k+[q/2]) for k ≥ 2q + [q/2]

and

U∗4 =

4q∑
k=3q+1

X
(2)
k .

It is clear that U∗4 is independent of of U∗2 and equal to U ′4 in law.

Now, for any i ≥ 3, we define Markov chains (g
(i)
k )k≥2(i−1)q+[q/2] in the following it-

erative way : g
(i)
2(i−1)q+[q/2] is a random variable in S with law ν and independent from(

g0, (εk)k≥1,
(
g

(j)
2(j−1)q+[q/2]

)
2≤j<i

)
and we set

g
(i)
k+1 = U(g

(i)
k , εk+1) for k ≥ 2(i− 1)q + [q/2] .

Next,
X

(i)
k = hq(g

(i)
k , g

(i)
k+1, . . . , g

(i)
k+[q/2]) for k ≥ 2(i− 1)q + [q/2]

and

U∗2i =

2iq∑
k=(2i−1)q+1

X
(i)
k .

It is clear that the so-constructed (U∗2i)2≤2i≤kn+1 are independent and that U∗2i is equal in
law to U ′2i for all i.

By stationarity, for all 1 ≤ i ≤ [(kn + 1)/2],

‖U∗2i − U ′2i‖1 ≤ ‖U∗4 − U ′4‖1 ≤
4q∑

k=3q+1

‖X ′k −X
(2)
k ‖1 .

But, by stationarity again,

4q∑
k=3q+1

‖Xk −X(2)
k ‖1 =

2q−[q/2]∑
k=q−[q/2]+1

‖hq(gk, gk+1, . . . , gk+[q/2])− hq(g∗k, g∗k+1, . . . , g
∗
k+[q/2])‖1 ,

where (g∗k)k≥0 is the Markov chain defined in (3.3). Hence, for all 1 ≤ i ≤ [(kn + 1)/2],

‖U∗2i − U ′2i‖1 ≤ 2|ψ|∞
2q−[q/2]∑

k=q−[q/2]+1

P(T ≥ k) ≤ 2q|ψ|∞P(T ≥ [q/2]) . (3.11)

Similarly for the odd blocks, we can construct random variables (U∗2i−1)1≤2i−1≤kn+1

which are independent and such that U∗2i−1 equals in law to U ′2i−1 for all i and

‖U∗2i−1 − U ′2i−1‖1 ≤ 2q|ψ|∞P(T ≥ [q/2]) . (3.12)
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Overall, from (3.10), (3.11) and (3.12), we deduce that for all x > 1 and 1 ≤ q ≤ n
such that q|ψ|∞ ≤ x,

P
(

max
k≤n
|Sk| ≥ 5x

)
≤ x−1

n−1∑
k=0

‖Xk −X ′k‖1 + 2nx−1|ψ|∞P(T ≥ [q/2])

+P
(

max
2j≤kn+1

∣∣∣ j∑
k=1

U∗2k

∣∣∣ ≥ x
)

+ P
(

max
2j−1≤kn+1

∣∣∣ j∑
k=1

U∗2k−1

∣∣∣ ≥ x
)
.

(3.13)

By Proposition 3.2, for all α ≥ 1,

‖Xk −X ′k‖1 � q−α/2 + P(T ≥ [q/2]/α) , (3.14)

where the constant involved in� does not depend on k or q. Using that ‖U∗2i‖∞ ≤ q|ψ|∞,
we apply Bennet’s inequality and derive

P
(

max
2j≤kn+1

∣∣∣ j∑
k=1

U∗2k

∣∣∣ ≥ x
)
≤ 2 exp

(
− x

2q|ψ|∞
log
(
1 + xq|ψ|∞/vq

))
,

where one can take vq any real such that

vq ≥
[(kn+1)/2]∑

i=1

‖U∗2i‖2
2 =

[(kn+1)/2]∑
i=1

‖U ′2i‖2
2 .

But, by stationarity,

‖U ′2i‖2 = ‖S ′q‖2 ≤ ‖Sq‖2 + (2|ψ|∞)1/2

q∑
k=1

‖Xk −X ′k‖
1/2
1 .

By Corollary 3.4, ‖Sq‖2
2 � q. Since nP(T ≥ n)� 1, we infer that

q∑
k=1

‖Xk −X ′k‖
1/2
1 � q1/2 .

Therefore, ‖U ′2i‖2
2 � q. Hence, taking vq = n/κ′ where κ′ is a sufficiently small positive

constant not depending on x, n and q, we get

P
(

max
2j≤kn+1

∣∣∣ j∑
k=1

U∗2k

∣∣∣ ≥ x
)
≤ 2 exp

(
− x

2q|ψ|∞
log
(
1 + κ′xq|ψ|∞/n

))
. (3.15)

It follows from (3.13), (3.14) and (3.15), that for all α ≥ 1, x > 0 and 1 ≤ q < n with
q|ψ|∞ ≤ x,

P
(

max
k≤n
|Sk| ≥ 5x

)
� nx−1

(
q−α/2 + P(T ≥ [q/2]/α)

)
+ exp

(
− x

2q|ψ|∞
log
(
1 + κ′xq|ψ|∞/n

))
.

Let now r ≥ 1. Then, for x ∈ [r|ψ|∞, n|ψ|∞/5], choose q = [x/(r|ψ|∞)] and α = 2r in
the previous inequality and the result follows. To end the proof, note that if x > n|ψ|∞/5,
the deviation probability obviously equals zero and if 0 < x < r|ψ|∞, the inequality
follows easily from Markov’s inequality at order 1.
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The following Rosenthal-type inequality relates T to the moments of Sn.

Proposition 3.6. Assume that E(T ) <∞. Then, for each p ≥ 2, there exist κ1, κ2, κ3 >
0 such that for all n ≥ 1,

E
(

max
k≤n
|Sk|p

)
≤ κ1n

p/2 + κ2n

[κ3n]∑
i=1

ip−2P(T ≥ i) .

Proof. Write

E
(
max
k≤n
|Sk|p

)
= p5p

∫ n|ψ|∞/5

0

xp−1P
(
max
k≤n
|Sk| > 5x

)
dx . (3.16)

Using Lemma 3.5 with r = p+ 1, we get that for p ≥ 2,∫ n|ψ|∞/5

r|ψ|∞
xp−1P

(
max
k≤n
|Sk| ≥ 5x

)
dx� np/2 + n

∫ n|ψ|∞/5

r|ψ|∞
xp−2P(T ≥ Cx) dx .

Together with (3.16), the above implies that for any p ≥ 2,

E
(

max
k≤n
|Sk|p

)
� np/2 + n

∫ Cn|ψ|∞/5

0

xp−2P(T ≥ x) dx ,

where the constant involved in � depends on p but not on n. The result follows.

4 Proof of Theorem 1.3

4.1 Outline

Let g0, g1, . . . be the stationary Markov chain constructed in Section 2. Suppose that
ψ : Ω→ R is a Hölder continuous observable with

∫
ψ dPΩ = 0. Let

Xn = ψ ◦ σn = ψ(gn, gn+1, . . .) and Sn =
n∑
k=1

Xk .

By Corollary 2.5, the proof of Theorem 1.3 reduces to proving ASIP with the same rates
for the process (Sn)n≥1. This is the aim of this section. Our strategy is to adapt the
argument in [3].

Remark 4.1. We restrict to the case when the variance c2, given by (1.4), is positive. The
case c2 = 0 requires a different approach, and it is addressed by Remark 1.5.

The Markov chain (gn)n≥0 behaves similarly to the Markov chain (Wn)n≥0 on the
state space N, studied in [3, Sec. 3.3.1]. Let us briefly recall [3, Cor. 5]: For any bounded
and centered function h : N → R, the process

(∑n
k=1 h(Wk)

)
n≥1

satisfies the ASIP with

rate o(n1/p), p > 2, provided that
∑

k≥1 k
p−2P(T ≥ k) < ∞ where ν is the stationary

distribution of (Wn)n∈N and T is the meeting time of the Markov chain.

Remark 4.2. By [3, Prop. 15], the condition
∑

k≥1 k
p−2P(T ≥ k) <∞ is sharp to get the

rate o(n1/p) in the ASIP.
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The strategy used in [3] was to adapt the method of Berkes, Liu and Wu [2] for
functions of iid r.v.’s to functions of Markov chains, in order to obtain sufficient conditions
for the ASIP with rate o(n1/p) in terms of an L1-coupling coefficient. For the Markov
chain (Wn)n∈N, this L1-coupling condition can be obtained from the tails of the meeting
time.

The main difference between our situation and the one considered in [3] is thatXn’s are
functions of not only gn, but the whole future gn, gn+1, . . . However, using the regularity
of our observables, we shall see that it is possible to approximate Xn by a measurable
function of a finite number of coordinates. Then the proof in [2] can be adapted also to
our situation, and the rate in the ASIP is, as in [3], related to the tail of the meeting
time of the chain (gn)n≥0 (see Section 3).

4.2 The proof

Let c2 be given by (1.4). From Corollaries 2.5 and 3.4, c2 = limn→∞ n
−1‖Sn‖2

2 = ‖X0‖2
2 +

2
∑∞

n=1 Cov (X0, Xn). If the process (Sn)n≥0 satisfies the ASIP, this has to be the variance
of the limiting Brownian motion. Recall that we suppose that c2 > 0.

All along the proof, we set β = 1/γ (so β > 2 since γ < 1/2), and η will designate a
constant, which is equal either to 1 in case of the map (1.1) or to 0 in case of the map
(1.5).

It suffices to prove the following strong approximation: one can redefine (Sn)n≥1

without changing its distribution on a probability space (possibly richer than (Ω,PΩ)) on
which there exists a sequence (Ni)i≥1 of iid centered Gaussian r.v.’s with variance c2 such
that for all κ > 1/β,

sup
k≤n

∣∣∣Sn − k∑
i=1

Ni

∣∣∣ = o(n1/β(log n)ηκ) a.s. (4.1)

The proof of (4.1) is divided in several steps. Throughout, we use the notation bn =
d(log n)/(log 3)e for n ≥ 2 (so that bn is the unique integer such that 3bn−1 < n ≤ 3bn),
and fix κ > 1/β.

Step 1. For ` ≥ 0, let
m` = [3`/β`ηκ] (4.2)

and define, for k ≥ 0,

X`,k = Eg
(
ψ(gk, gk+1, . . . , gk+m` , (g̃i)i≥k+m`+1)

)
,

where Eg denotes the conditional expectation given g := (gn)n≥0. Here (g̃i)i≥k+m`+1 is
defined as follows: g̃k+m`+1 = U(gk+m` , ε

′
k+m`+1) and g̃i+1 = U(g̃i, ε

′
i+1) for any i > k+m`,

where (ε′i)i≥1 is an independent copy of (εi)i≥1, independent of g0, and U is given by (3.2).
Note that the X`,k’s are centered. Define

W`,i =
i+3`−1∑

k=1+3`−1

Xk , W `,i =
i+3`−1∑

k=1+3`−1

X`,k and W ′
`,i = W`,i −W `,i .
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The fist step is to prove that

bn−1∑
`=1

W ′
`,3`−3`−1 +W ′

bn,n−3bn−1 = o(n1/β(log n)ηκ) a.s. (4.3)

This will hold provided that for all ε > 0,

∑
j≥1

P

 j∑
`=1

3`∑
k=3`−1+1

|Xk −X`,k| > ε3j/βjηκ

 <∞ . (4.4)

By Proposition 3.2, for all k ≥ 0, ` ≥ 1 and r ≥ 1,

‖Xk −X`,k‖1 � m
−r/2
` + P(T ≥ [m`/r]) , (4.5)

where the constant involved in � does not depend on k and `. By Markov inequality at
order 1, for all ε > 0 and r ≥ 1,

∑
j≥1

P

 j∑
`=1

3`∑
k=3`−1+1

|Xk −X`,k| > ε3j/βjηκ


�
∑
j≥1

1

ε3j/βjηκ

j∑
`=1

3`m
−r/2
` +

∑
j≥1

1

ε3j/βjηκ

j∑
`=1

3`P(T ≥ [m`/r]) .

Taking into account the fact that m` = [3`/β`ηκ], the first term in the right-hand side is
finite provided we take r > 2(β − 1) whereas, by a change of variables, we have, for any
r ≥ 1, ∑

j≥1

1

3j/βjηκ

j∑
`=1

3`P(T ≥ [m`/r]) ≤ C
∑
n≥2

nβ−2

(log n)ηκβ
P(T ≥ n) . (4.6)

where C is a constant depending on r, β, κ and η. In case of the map (1.1), η = 1 and

the series above converge iff E(ψ̃β,κβ(T )) < ∞, which holds by Lemma 3.1(a) and the
fact that κβ > 1. Now in case of the map (1.5), η = 0 and then, again from Lemma 3.1,
the series above converges since E(T β−1) <∞. It follows that (4.4) is satisfied and then
(4.3) holds.

This completes the proof of step 1.

Step 2. Let
X̃`,k = E(X`,k|εk−m` , . . . , εk+m`) . (4.7)

Let W̃`,i =
∑i+3`−1

k=1+3`−1 X̃`,k and W ′′
`,i = W `,i − W̃`,i. The second step consists of proving

that
bn−1∑
`=1

W ′′
`,3`−3`−1 +W ′′

bn,n−3bn−1 = o(n1/β(log n)ηκ) a.s. . (4.8)

Clearly, (4.8) will follow from the Kronecker lemma, if one can prove that

∑
`≥1

1

3`/β`ηκ

3`∑
k=3`−1+1

‖X`,k − X̃`,k‖1 <∞ . (4.9)
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We claim that
‖X`,k − X̃`,k‖1 ≤ 2|ψ|∞P(T ≥ m`) . (4.10)

Then, using (4.10),

∑
`≥1

1

3`/β`ηκ

3`∑
k=3`−1+1

‖X`,k − X̃`,k‖1 ≤ 2|ψ|∞
∑
`≥1

3`

3`/β`ηκ
P(T ≥ m`) .

Therefore (4.9) holds by using (4.6) and Lemma 3.1 (as quoted right after (4.6)).
It remains to prove the claim (4.10). This follows closely the proof of [3, Lem. 24].

Indeed, we can write
X`,k = h`(gk, gk+1, . . . , gk+m`) ,

where h` is a measurable function such that |h`|∞ ≤ |ψ|∞ and PΩ(h`) = 0. Hence

X`,k − X̃`,k = h`(gk, gk+1, . . . , gk+m`)− E
(
h`(gk, gk+1, . . . , gk+m`)|εk−m` , . . . , εk+m`

)
.

Recall that for all k ≥ 1, gk = U(gk−1, εk) where U is a measurable function from S ×A
to S. For any i ≥ 1, let then Ui be the function from S×A⊗i to S defined in the following
iterative way:

U1 = U and Ui(a, x1, x2, . . . , xi) = Ui−1

(
U(a, x1), x2, . . . , xi

)
, i ≥ 2 .

Then for all i ≥ 0 and k ≥ m` + 1,

gk+i = Ui+m`+1(gk−m`−1, εk−m` , . . . , εk+i) .

Hence,

h`(gk, gk+1, . . . , gk+m`)

= h`

(
Um`+1(gk−m`−1, εk−m` , . . . , εk), . . . , U2m`+1(gk−m`−1, εk−m` , . . . , εk+m`)

)
=: H`,m`

(
gk−m`−1, εk−m` , . . . , εk+m`

)
.

Let now (ε′k)k≥1 be an independent copy of (εk)k≥1, independent of g0. Let g′0 be a random
variable in S with distribution ν and independent from (g0, (εk)k≥1, (ε

′
k)k≥1). Define a

Markov chain (g′n)n≥0 by

g′n+1 = U(g′n, ε
′
n+1) for n ≥ 0 .

Denoting Vk,m` = (g0, ε1, . . . , εk+m`) and EVk,m` (·) = E(·|Vk,m`), we have

X`,k − X̃`,k = EVk,m`
(
H`,m`

(
gk−m`−1, εk−m` , . . . , εk+m`

))
− EVk,m`

(
H`,m`

(
g′k−m`−1, εk−m` , . . . , εk+m`

))
.

Hence, using the stationarity,

‖X`,k−X̃`,k‖1 ≤ ‖H`,m`

(
gk−m`−1, εk−m` , . . . , εk+m`

)
−H`,m`

(
g′k−m`−1, εk−m` , . . . , εk+m`

)
‖1

= ‖H`,m`

(
g0, ε1, . . . , ε2m`+1

)
−H`,m`

(
g′0, ε1, . . . , ε2m`+1

)
‖1 .

19



Let (g∗n)n≥0 be the Markov chain in the definition of the meeting time, see (3.3). Then

‖X`,k − X̃`,k‖1 ≤ ‖H`,m`

(
g0, ε1, . . . , ε2m`+1

)
−H`,m`

(
g∗0, ε1, . . . , ε2m`+1

)
‖1

= ‖h`(gm`+1, gm`+2, . . . , g2m`+1)− h`(g∗m`+1, g
∗
m`+2, . . . , g

∗
2m`+1)‖1 .

Recall that for every k ≥ T , gk = g∗k. Therefore

‖X`,k − X̃`,k‖1 ≤ 2|h`|∞P(T ≥ m`) ,

proving (4.10). This ends the proof of step 2.

Step 3. Setting S̃n :=
∑bn−1

`=1 W̃`,3`−3`−1 + W̃bn,n−3bn−1 , the rest of the proof consists
in showing that, enlarging the underlying probability space if necessary, there exists a
sequence (Ni)i≥1 of iid centered Gaussian r.v.’s with variance c2 such that

sup
k≤n

∣∣∣S̃k − k∑
i=1

Ni

∣∣∣ = o(nγ(log n)ηκ) a.s. (4.11)

This can be achieved using the method of [2]. Indeed the constructed X̃`,k can be rewritten
as

X̃`,k := G`(εk−m` , . . . , εk+m`) ,

where G` is a measurable function. So X̃`,k is a measurable function of (εk−m` , . . . , εk+m`)
instead of (εk−m` , . . . , εk) as in [2]. However, this difference can be handled by only
minor adjustments, mainly taking 2m` instead of m` in [2]. More precisely, the blocks
B`,j in [2] can be defined as follows: for ` ≥ k0 := inf{k ≥ 1 : mk ≤ 4−13k−2} and
j = 1, . . . , q` := d3`−2/m`e − 2,

B`,j =

(6j+5)m`∑
i=1+(6j−1)m`

X̃`,i+m`+3`−1 .

Define, for j ≥ 1,

J`,j = {3`−1 + (6j − 1)m` + k, k = 1, 2, . . . , 2m`} ,

U`,j = (εi, i ∈ J`,j) and U = (U`,j, j = 1, . . . , q` + 1)∞`=k0
.

Then

B`,j =

(6j+1)m`∑
i=1+(6j−1)m`

X̃`,i+m`+3`−1 +

(6j+3)m`∑
i=1+(6j+1)m`

X̃`,i+m`+3`−1 +

(6j+5)m`∑
i=1+(6j+3)m`

X̃`,i+m`+3`−1

:= H`

(
U`,j, {εi+3`−1}1+(6j+1)m`≤i≤(6j+5)m` ,U`,j+1

)
On the set {U = u}, (B`,j(u))j=1,...,q` are then independent between them. Then, fol-
lowing [2], we use Sakhanenko’s strong approximation [24] to get a bound for the ap-
proximation error between S̃n(u) and a Wiener process with variance depending on u.
To get the unconditional ASIP, we use the arguments given in [2, step 3.4]. So, as it is

20



summarized in [3, Prop. 21], we infer that (4.11) will follow if one can prove that there
exists r ∈ (2,∞) such that∑

`≥k0

3`

3`r/β`ηκrm`

E
(

max
1≤k≤6m`

∣∣W̃`,k

∣∣r) <∞ , (4.12)

and
3`(ν

1/2
` − c)2 = o(32`/β`2ηκ(log `)−1) , as `→∞ , (4.13)

where
ν` = (2m`)

−1
{
E(W̃ 2

`,2m`
) + 2E(W̃`,2m`(W̃`,4m` − W̃`,2m`))

}
. (4.14)

To end the proof, it remains to prove the two conditions above. We start with (4.12).
Note first that for all r ≥ 1,∥∥∥ max

1≤k≤6m`

∣∣Wk − W̃`,k

∣∣∥∥∥
r
≤

6m`+3`−1∑
k=1+3`−1

‖Xk − X̃`,k‖r .

Using that ‖Xk‖∞ ≤ |ψ|∞ and ‖X̃`,k‖∞ ≤ 2|ψ|∞, we get∥∥∥ max
1≤k≤6m`

∣∣Wk − W̃`,k

∣∣∥∥∥
r
≤ (3|ψ|∞)(r−1)/r

6m`+3`−1∑
k=1+3`−1

(
‖Xk −X`,k‖1/r

1 + ‖X`,k − X̃`,k‖1/r
1

)
.

But according to (4.5) and (4.10), for all α ≥ 1,

‖Xk − X̃`,k‖1 � m
−α/2
` + P(T ≥ [m`/α]) , (4.15)

where the constant involved in � does not depend on k and `. Therefore, for all r ≥ 1
and α ≥ 1,∑

`≥k0

3`

3`r/β`ηκrm`

E
(

max
1≤k≤6m`

∣∣Wk − W̃`,k

∣∣r)�∑
`≥k0

3`mr
`

3`r/β`ηκrm`

(
m
−α/2
` + P(T ≥ [m`/α])

)
�
∑
`≥k0

3`(β−1)/β

`ηκ
3−α`/(2β)`−αηκ/2 +

∑
`≥k0

3`(β−1)/β

`ηκ
P(T ≥ 3`/β`ηκ/α) .

The first term in the right-hand side is finite provided that we take α > 2(β−1) whereas,
the second series converge for any α ≥ 1, by using once again (4.6) and Lemma 3.1.
Therefore, to prove (4.12), it suffices to show that there exists r ∈]2,∞[ such that∑

`≥k0

3`

3`r/β`ηκrm`

E
(

max
1≤k≤6m`

∣∣Wk

∣∣r) <∞ . (4.16)

By Lemma 3.1, E(T ) < ∞ since β > 2 for both maps. Using stationarity and
Proposition 3.6, we get that for any r ≥ 2,∑

`≥k0

3`

3`r/β`ηκrm`

E
(

max
1≤k≤6m`

∣∣Wk

∣∣r)

�
∑
`≥k0

3`

3`r/β`ηκr
m
r/2−1
` +

∑
`≥k0

3`

3`r/β`ηκr

[6κ3m`]∑
i=1

ir−2P(T ≥ i) .
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Since m` = [3`/β`ηκ], the first term of the right-hand side is finite provided that we take
r > 2(β − 1). To control the second term, we note that for any r > β, by a change of
variables, ∑

`≥k0

3`

3`r/β`(1+η)r

[6κ3m`]∑
i=1

ir−2P(T ≥ i)�
∑
i≥2

iβ−2

(log i)ηκr
P(T ≥ i)

which is finite by Lemma 3.1 as it was quoted after (4.6). So, provided that we take
r > 2(β − 1), since β > 2, (4.16) holds (and then (4.12)).

We turn now to the proof of (4.13). Proceeding as to get the relation [3, (66)], we
have

ν` = c̃`,0 + 2

2m∑̀
k=1

c̃`,k ,

where, for any i ≥ 0,
c̃`,i = Cov (X̃`,m`+1, X̃`,i+m`+1) .

Note also that since c2 is assumed to be positive, to prove (4.13), it suffices to prove that

3`(ν` − c2)2 = o(32`/β`2ηκ(log `)−1) , as `→∞ . (4.17)

To show that (4.17) is satisfied, we first note that, by stationarity, for all i ≥ 0,∣∣c̃`,i−Cov (X0, Xi)
∣∣ =

∣∣Cov (X̃`,m`+1−Xm`+1, X̃`,i+m`+1)+Cov (Xm`+1, X̃`,i+m`+1−Xi+m`+1)
∣∣

≤ 2|ψ|∞
(
‖X̃`,m`+1 −Xm`+1‖1 + ‖X̃`,i+m`+1 −Xi+m`+1‖1

)
.

Let α ≥ 1. Then, according to (4.15), for all i ≥ 0,∣∣c̃`,i − Cov (X0, Xi)
∣∣� m

−α/2
` + P(T ≥ [m`/α]) .

It follows that

|ν` − c2| � m
1−α/2
` +m`P(T ≥ [m`/α]) + 2

∑
i>2m`

∣∣Cov (X0, Xi)
∣∣ .

Recall that β > 2. By Lemma 3.1 (since κβ > 1),

P(T ≥ n) = o
(
(log n)ηκβn1−β) , as n→∞ .

Using, in addition, Lemma 3.3, we derive that for all α ≥ 1,

|ν` − c2| � 3`(2−α)/(2β)`ηκ(2−α)/2 + o
(
3`(2−β)/β`2ηκ

)
,

proving (4.17) (and then (4.13)) using the fact that β > 2 and taking α ≥ 2β − 2. This
ends the proof of Theorem 1.3 when c2 > 0.
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4.3 Extension to other observables

As already mentioned in Remark 1.6, it is possible to relax the Hölder continuity as-
sumption. For instance, if m ≥ 1 is an integer, assume that ϕ is Hölder on the interior of
Ya0···am−1 for every a0, . . . , am−1 ∈ α. Denote by α(a0, . . . , am−1) the corresponding Hölder
exponent and by |ϕ|α(a0,...,am−1) the corresponding Hölder norm. Assume further that
α∗ := infa0,...,am−1∈α α(a0, . . . , am−1) > 0 and that |ϕ|α∗ := supa0,...,am−1∈α |ϕ|α(a0,...,am−1) <
∞. Under the above assumptions, the conclusion of Theorem 1.3 holds.

Let us briefly give the arguments explaining why such an extension is possible. We
just give the necessary arguments to prove the estimate (4.5) (or more generally Propo-
sition 3.2). Similar arguments may be used at each place where the Hölder property has
been used to get similar estimates as (4.5). To do so one has to bound

|ψ(g0, . . . , gn, gn+1, . . .)− ψ(g0, . . . , gn, (g̃k)k≥n+1, . . .)| (4.18)

If #{k ≤ n : gk ∈ S0} < m we bound (4.18) by 2|ϕ|∞ .

Assume now that #{k ≤ n : gk ∈ S0} ≥ m. Set g0 = (w0, `0). Assume that we can
write that w0 = ww′ with h(w) = `0 and w may be an emptyword (in which case `0 = 0).
Hence, π(g0, . . . , gn, gn+1, . . .) and π(g0, . . . , gn, (g̃k)k≥n+1, . . .) belong to Y and even, since
#{k ≤ n : gk ∈ S0} ≥ m, to some Ya0···am−1 (on which ϕ is Hölder). In particular one
may bound (4.18) by |ϕ|α∗λ−α∗#{k≤n : gk∈S0}.

If w0 cannot be written as above then, π(g0, . . . , gn, gn+1, . . .) and
π(g0, . . . , gn, (g̃k)k≥n+1, . . .) belongs to [0, 1/2) and we infer a similar bound.

So at the end, there exists C > 0 depending on |ϕ|∞ and |ϕ|α∗, such that

|ψ(g0, . . . , gn, gn+1, . . .)− ψ(g0, . . . , gn, (g̃k)k≥n+1, . . .)| ≤ Cθ#{k≤n : gk∈S0}−m .

The end of the proof of Proposition 3.2 remains unchanged.

5 Nonuniformly expanding dynamical systems

We stated and proved Theorem 1.3 for two particular families of maps. In this section we
extend our result to the class of nonuniformly expanding systems which admit inducing
schemes as in Young [27] with polynomially decaying tails of return times.

5.1 Nonuniformly expanding maps

Let X be a complete bounded separable metric space with the Borel σ-algebra. Sup-
pose that f : X → X is a measurable transformation which admits an inducing scheme
consisting of:

• a closed subset Y of X with a reference probability measure m on Y ;

• a finite or countable partition α of Y (up to a zero measure set) with m(a) > 0 for
all a ∈ α;
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• an integrable return time function τ : Y → {1, 2, . . .} which is constant on each
a ∈ α with value τ(a) and f τ(a)(y) ∈ Y for all y ∈ a, a ∈ α. (We do not require
that τ is the first return time to Y .)

Define F : Y → Y , F (y) = f τ(y)(y). We assume that there are constants κ > 1, K > 0
and η ∈ (0, 1] such that for each a ∈ α and all x, y ∈ a:

• F restricts to a (measure-theoretic) bijection from a to Y , nonsingular with respect
to the measure m;

• d(F (x), F (y)) ≥ κd(x, y);

• d(fk(x), fk(y)) ≤ Kd(F (x), F (y)) for all 0 ≤ k ≤ τ(a);

• the inverse Jacobian ζa = dm
dm◦F of the restriction F : a→ Y satisfies∣∣log |ζa(x)| − log |ζa(y)|

∣∣ ≤ Kd(F (x), F (y))η.

The map f as above is said to be nonuniformly expanding. It is standard [1, Cor. p. 199],
[27, Proof of Thm. 1] that there is a unique absolutely continuous F -invariant probability
measure µY on Y with 1

c
≤ dµY /dm ≤ c for some c > 0, and the corresponding f -invariant

probability measure µ on X.
We make an additional assumption, which is not part of the usual definition of nonuni-

formly expanding maps, but is straightforward to verify in examples. Denote by A
the set of all finite words in the alphabet α (not including the empty word) and set
Yw := ∩nk=0F

−k(ak) for w = a0 · · · an in A. We assume that

m(Yw) = m(Ȳw) for every w ∈ A. (5.1)

We say that the return times of f have:

• a weak polynomial moment of order β ≥ 1, if m(τ ≥ n)� n−β;

• a strong polynomial moment of order β ≥ 1, if
∫
τβ dm <∞.

Remark 5.1. Intermittent maps (1.1) and (1.5) are nonuniformly expanding. Their return
times have respective weak and strong moments of order β = 1/γ.

More generally, our results apply to nonuniformly expanding and nonuniformly hy-
perbolic dynamical systems which can be modelled by Young towers [26, 27]. A notable
example with polynomial return times is the class of non-Markov maps with indifferent
fixed points in [27, Sec. 7]. (C.f. AFN maps in Zweimüller [28].)

5.2 Rates in the ASIP

Suppose that ϕ : X → R is a Hölder continuous observable such that µ(ϕ) = 0. Let
Sn(ϕ) =

∑n−1
k=0 ϕ ◦ fk be the corresponding random process, defined on the probability

space (X,µ). Assume in addition that the return times of f have a polynomial moment
of order β > 2 (weak or strong). Let

c2 = lim
n→∞

1

n

∫
|Sn(ϕ)|2 dµ . (5.2)
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Remark 5.2. The limit above exists by e.g. [15, Cor. 2.12]. In case of summable correla-
tions, c2 can be computed by the formula (1.4), but in the setup of this section, f may
be non-mixing and the correlations may not decay.

The ASIP for Sn(ϕ) with variance c2 was first proved in [18]. Prior to our work, the
best available rates were due to [4, 15], formulated for the strong polynomial moment of
order β:

Sn(ϕ)−Wn =

{
o
(
n1/β(log n)1/2

)
β ∈ (2, 4),

O
(
n1/4(log n)1/2(log log n)1/4

)
β ≥ 4.

Again those rates are not better than O(n1/4). Our main result is:

Theorem 5.3. Suppose that the return times of f have a weak polynomial moment of
order β > 2. Then Sn(ϕ) satisfies the ASIP with variance c2 given by (5.2) and rate
o(n1/β(log n)1/β+ε) for all ε > 0. Further, if the return times of f have a strong polynomial
moment of order β > 2, then the rate is o(n1/β).

In the remainder of this Section we prove Theorem 5.3. First we consider the special
case when c2 = 0.

Proposition 5.4. Suppose that the return times of f have a weak polynomial moment of
order β. Then on the probability space (Y, µY ),

max
k≤n

τ ◦ F k = o(n1/β(log n)1/β+ε) almost surely for all ε > 0 .

With a strong polynomial moment of order β,

max
k≤n

τ ◦ F k = o(n1/β) almost surely.

Proof. The sequence (τ ◦F n)n≥0 is stationary and by the Borel-Cantelli lemma, it suffices
to check that for all δ > 0,∑

n≥1

µY
(
τ > δn1/β(log n)1/β+ε

)
<∞ .

Since dµY /dµ is bounded, it is enough to verify that∑
n≥1

m
(
τ > δn1/β(log n)1/β+ε

)
<∞ ,

which follows immediately from our assumptions.
The proof for the strong polynomial moments is similar. (See also [15, Prop. 2.6].)

Corollary 5.5. Theorem 5.3 holds when c2 = 0.

Proof. In [15], the ASIP for nonuniformly expanding dynamical systems uses the
martingale-coboundary decomposition. With c2 = 0, the martingale part vanishes [15,
Cor. 2.12, Cor. 3.4]. The estimates of the coboundary part are reduced to those in
Proposition 5.4, see the proof of [15, Prop. 2.6].
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From here on, we assume that c2 > 0. We construct a Markov chain as in Section 2.
The general setup of nonuniformly expanding maps brings in a few minor technical com-
plications that we explain below:

• Proposition 2.2 is the basis of the Markov chain construction, providing a “regen-
erative” decomposition of the reference measure. It is proved in the general setup
in [13].

• Construction of the semiconjugacy π : Ω → X needs additional work, because we
may not be able to define it everywhere as we did for the intermittent maps. Nev-
ertheless, using assumption (5.1) we define it almost everywhere as follows.

Let An ⊂ A denote the set of all words with length n+ 1. Let

Z = ∪n∈N ∪w 6=w′∈An (Ȳw ∩ Ȳw′) ,
Ỹ = (∩n∈N ∪w∈An Yw) \ Z .

Then m(Z) = 0 and m(Ỹ ) = 1, and for every y ∈ Ỹ there exists a unique sequence
(an)n∈N ∈ αN such that y ∈ ∩n∈NYa0···an .

We endow αN with the metric δ((an)n∈N, (a
′
n)n∈N) = κ−s, where s ≥ 0 is the largest

such that a0 · · · as−1 = a′0 · · · a′s−1. Define a map χ : αN → Y by χ((an)n∈N) = y,
where {y} = ∩n∈NȲwn . It follows from completeness of X and expansion of F that
χ is defined everywhere and is Lipschitz. Set X := χ−1(Ỹ ). Then X is measurable
and {χ((an)n∈N)} = ∩n∈NYa0···an for every (an)n∈N ∈ X .

Every g ∈ Ω can be written as

g =
(
(w0, `0), . . . , (w0, h(w0)− 1), (w1, 0), . . . , (w1, h(w1)− 1), (w2, 0), . . .

)
.

Let Ω0 = {g ∈ Ω : `0 = 0}. Define ι : Ω0 → αN by ι(g) = (a0, a1, . . .) where a0a1 · · ·
= w0w1 · · · . Define Ω′0 = ι−1(X ) and π0 : Ω′0 → Ỹ , π0 = χ ◦ ι. Let

Ω′ = {σ`(g) : g ∈ Ω′0, 0 ≤ ` < h(w0)} .

Observe that PΩ(Ω′) = 1. Define a projection π : Ω′ → X by π(g) = f `0(π0(g(0))).
Following the proof of Lemma 2.4 with straightforward changes, we see that π is
Lipschitz on Ω′.

Remark 5.6. Construction of the Markov chain for nonuniformly expanding dynamical
systems can be found in [14], done in different notation. There the space X is not assumed
complete, and a more general, though less hands-on, assumption is used in place of (5.1):
that the set

{(a0, a1, . . .) ∈ αN : there exists y ∈ Y with F k(y) ∈ ak for all k}

is measurable in αN (in the product topology with Borel sigma algebra).

Further we work in notation of Section 2. Let

p = gcd{h(w) : w ∈ A}.
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For the maps (1.1) and (1.5) we showed that p = 1. This means that the Markov chain
g0, g1, . . . is aperiodic, which was necessary to control the moments of the meeting time
in Section 3. In the general case, however, it could be that p ≥ 2. This is typical for
example for logistic maps with Collet-Eckmann parameters.

For p = 1, our proof proceeds without changes. Below we treat the periodic case
p ≥ 2. For 0 ≤ k < p, define

S̃k = {(w, `) ∈ S : ` ≡ k (mod p)}

and
Ωk = {(g0, g1, . . .) ∈ Ω: g0 ∈ S̃k}.

The sets Ωk partition Ω, and they are cyclically permuted by σ: σ(Ωk) = Ωk+1 mod p.
Note that if gnp = (w, `) ∈ S̃0 for some n ≥ 0, then gnp+k = (w, ` + k) for 0 ≤ k < p.

Thus we can identify Ω0 with

Ω̃ = {(g0, gp, g2p . . .) ∈ Ω: g0 ∈ S̃0}.

Let now (g̃0, g̃1, . . .) be a Markov chain with state space S̃0 and transition probabilities

P(g̃n+1 = (w, `p) | g̃n = (w′, `′p))

=


1, ` = `′ + 1 and `′ + 1 < h(w)/p and w = w′

PA(w), ` = 0 and `′ + 1 = h(w′)/p

0, else

This Markov chain admits a unique (ergodic) invariant probability measure ν̃ on S̃0 given
by

ν̃(w, `p) = p
PA(w)1{0≤`<h(w)/p}

EA(h)
. (5.3)

The Markov chain (g̃n)n≥0 starting from ν̃ defines a probability measure PΩ̃ on the space
Ω̃. Note that PΩ̃ corresponds to PΩ conditioned on Ω0. Note also that g̃0, g̃1, . . . is
a Markov chain, identical to g0, g1, . . . in structure except that it is aperiodic and the
return times to S0 = {(w, `) ∈ S : ` = 0} are divided by p.

Following Section 2, we define the separation time s̃ and the separation metric d̃ on Ω̃,
using the same constant λ > 1. Suppose that ã, b̃ ∈ Ω̃ with the corresponding a, b ∈ Ω0.
The separation time is measured in terms of returns to S0, hence

s̃(ã, b̃) = s(a, b) and d̃(ã, b̃) = d(a, b) .

Further, d(σk(a), σk(b)) = d(a, b) for 0 ≤ k < p. Let ψ̃ : Ω̃→ R,

ψ̃(ã) =

p−1∑
k=0

ψ(σk(a)) .

It follows that Lip ψ̃ ≤ pLipψ. Also, ψ̃ is mean zero with respect to PΩ̃.
In Corollary A.2 of Appendix A we show that the ASIP for

∑n−1
k=0 ψ ◦ σk on (Ω,PΩ)

(and hence the ASIP for
∑n−1

k=0 ϕ ◦ fk on (X,µ)) follows from the ASIP for
∑n−1

k=0 ψ̃ ◦ σ̃k
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on (Ω̃,PΩ̃) with the same rates and variance v2/p, where v2 is the variance of the Wiener
process on (Ω̃,PΩ̃).

Now, as in Section 4, the ASIP for
∑n−1

k=0 ψ̃ ◦ σ̃k on (Ω̃,PΩ̃) follows from the ASIP for∑n−1
k=0 X̃k where, for any k ≥ 0,

X̃k = ψ̃
(
(g̃`)`≥k

)
,

and (g̃n)n≥0 is the stationary Markov chain defined above with the state space S̃0 and
stationary distribution ν̃. The proof of the ASIP for

∑n
k=1 X̃k with the adequate rates

is, as in Section 4, mainly based on suitable bounds for the tails of the meeting time T̃
for the Markov chain (g̃n)n∈N, which is defined as follows. First, without changing the
distribution, we redefine (g̃n)n∈N on a new probability space as follows. Let g̃0 ∈ S̃0 be
distributed according to ν̃ (the stationary distribution defined by (5.3)). Let ε1, ε2, . . .
be a sequence of independent identically distributed random variables with values in A,
distribution PA and independent from g̃0. For n ≥ 0, let

g̃n+1 = Ũ(g̃n, εn+1) ,

where, for any ` ∈ N,

Ũ((w, `p), ε) =

{
(w, (`+ 1)p), `p < h(w)− p ,
(ε, 0), `p = h(w)− p .

(5.4)

The meeting time T̃ of the Markov chain (g̃n)n∈N is then defined by

T̃ = inf{n ≥ 0: g̃n = g̃∗n} , (5.5)

where (g̃∗n, n ∈ N) is the Markov chain defined as follows: g̃∗0 is a random variable in S̃0

with distribution ν̃ and independent from (g̃0, {εn}n≥1) and, for n ≥ 0, g̃∗n+1 = Ũ(g̃∗n, εn+1).
Proceeding as in the proof of Lemma 3.1 and taking into account the bounds on the tails
of h proved in [13], we infer that the following lemma holds:

Lemma 5.7.

• If the return times of f have weak polynomial moment of order β > 1, then, for
any η > 1, E(ψ̃β,η(T̃ )) <∞, where ψ̃β,η(x) = xβ−1(log(1 + x))−η for x > 0.

• If the return times of f have strong polynomial moment of order β > 1, then
E(T̃ β−1) <∞.

In addition, proceeding as in the proof of Lemma 3.3, we also get the bound:

Lemma 5.8. Assume that E(T̃ ) <∞. Then, for any k ≥ 1 and any α ≥ 1,

|Cov (X̃0, X̃k)| � k−α/2 + P(T̃ ≥ [k/4α]) .

Now, with the same arguments as those developed in Section 4 and taking into account
Lemmas 5.7 and 5.8, we infer that, enlarging the underlying probability space if necessary,
there exists a sequence (Ni)i≥1 of iid centered Gaussian r.v.’s with variance

v2 = Var (X̃0) + 2
∑
k≥1

Cov (X̃0, X̃k) (5.6)
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such that, for any κ > 1/β,

sup
k≤n

∣∣∣ k−1∑
i=0

X̃i −
k∑
i=1

Ni

∣∣∣ = o(n1/β(log n)ηκ) a.s.

where η = 0 if the return times of f have strong polynomial moment of order β > 2 and
η = 1 if the return times of f have weak polynomial moment of order β > 2.

Now, according to Corollary A.2, the ASIP for
∑n−1

k=0 ψ ◦ σk on (Ω,PΩ) (and then the
ASIP for

∑n−1
k=0 ϕ ◦ fk on (X,µ)) holds with variance v2/p and rate o(n1/β(log n)ηκ). It

remains to check that v2/p = c2, with c2 given by (5.2). Since by Lemmas 5.8 and 5.7,
the series defined in (5.6) is absolutely convergent, we have

v2 = lim
n→∞

1

n
Var

( n−1∑
k=0

X̃n

)
= lim

n→∞

1

n
EPΩ̃

(( n−1∑
k=0

ψ̃ ◦ σ̃k
)2)

.

Hence, according to Lemma A.1,

v2 = lim
n→∞

1

n
EPΩ

(( np−1∑
k=0

ψ ◦ σk
)2)

= lim
n→∞

1

n
‖Snp(ϕ)‖2

2,µ = pc2 .

This ends the proof of Theorem 5.3 when c2 > 0.

5.3 Optimality of the rates

In this subsection we prove Proposition 1.4. In fact we prove a stronger statement as
follows. We consider a nonuniformly expanding map f : X → X as above. We assume
that:

• τ is the first return time to Y ;

• for some β > 2, κ > 0 and all n ≥ 1,

m(τ ≥ n) ≥ κ

nβ
.

These assumptions are verified for the map (1.1) with β = 1/γ and Y = [1/2, 1].

Proposition 5.9. Let ψ be a bounded observable such that ψ ≡ 0 on X\Y and µ(ψ) > 0,
and let ϕ = ψ − µ(ψ). Then for every process (Zn)n∈N with the same law as (ϕ ◦ fn)n∈N
and every stationary and Gaussian centered sequence (gk)k∈Z such that n−1Var

(∑n
i=1 gi

)
converges, living on a same probability space,

lim sup
n→∞

(n log n)−1/β
∣∣∣ n∑
k=1

Zk −
n∑
k=1

gk

∣∣∣ > 0 almost surely.

Remark 5.10. Under relaxed assumptions, there exist Lipshitz observables ϕ with∫
ϕdµ = 0 satisfying the hypotheses of Proposition 5.9. Indeed, if m is regular and
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µ(Y̊ ) 6= 0, then there is a compact K ⊂ Y̊ such that µ(K) > 0. Note that K and X\Y
are closed disjoint sets. Thus ψ : X → R,

ψ(x) :=
d(x,X\Y )

d(x,X\Y ) + d(x,K)

is Lipschitz, and so is ϕ = ψ −
∫
ψ dµ.

Remark 5.11. If f : X → X is a Young tower [27], then one can take ϕ = 1Y − µ(Y ).
Then ϕ is Lipschitz with respect to the distance on the tower.

Proof of Proposition 5.9. Recall that µY is the F -invariant probability measure on Y .
For n ≥ 0, let τn = τ ◦ F n. We claim that µY -almost surely, n−1

∑n
i=1 τi →

∫
τ dµ as

n → ∞ and τn ≥ (n log n)1/β infinitely often. Then our result follows as in the proof of
[3, Prop. 15].

It remains to verify the claim. Its first part is provided by the pointwise ergodic
theorem, so further we verify the second part. We follow Gouëzel [8].

For n ≥ 0, let An = {y ∈ Y : τn(y) ≥ (n log n)1/β}. Recall that there is a constant
c > 0 such that for all n, k ≥ 0,

µY (τn = k) ≥ cm(τ = k) .

Thus
∞∑
n=0

µY (An) ≥ c
∞∑
n=0

m
(
τ ≥ (n log n)1/β

)
=∞ . (5.7)

Next, there are constants C > 0 and θ ∈]0, 1[ such that for all k 6= n ≥ 0,∣∣µY (Ak ∩ An)− µY (Ak)µY (An)
∣∣ ≤ Cθ|n−k|µY (Ak)µY (An) .

(See for instance the last line of [1, Sec. 1].) Therefore,∣∣∣ ∑
1≤k,`≤n

µY (Ak ∩ A`)−
∑

1≤k,`≤n

µY (Ak)µY (A`)
∣∣∣ ≤ ∑

1≤k,`≤n

∣∣µY (Ak ∩ A`)− µY (Ak)µY (A`)
∣∣

�
n∑
k=1

µY (Ak) +
∑

1≤k,`≤n

θ|`−k|µY (Ak)µY (A`)�
n∑
k=1

µY (Ak) .

Taking into account (5.7), we obtain

lim
n→∞

∑
1≤k,`≤n µY (Ak ∩ A`)(∑n

k=1 µY (Ak)
)2 = 1 .

By [5, Lemma C], we verify a criterion for the second Borel-Cantelli lemma and prove
that µY (∩∞n=1 ∪∞k=n Ak) = 1, i.e. that µY -almost surely, τn ≥ (n log n)1/β infinitely often.
This completes the proof of the claim.
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A ASIP for periodic dynamical systems

Suppose that (Ω,P) is a probability space and σ : Ω→ Ω is a measure preserving trans-
formation.

Suppose that p ≥ 2 is an integer and σ is p-periodic in the sense that Ω can be
partitioned into disjoint subsets Ω0, . . . ,Ωp−1 which are permuted by σ cyclically: σ(Ωk) =
Ωk+1 mod p. In particular P(Ωk) = 1/p for any k = 0, . . . , p− 1.

Let σ̃ : Ω0 → Ω0, σ̃ = σp. We refer to σ̃ as the induced map. The space Ω0 is endowed
with a probability measure P0, which is P conditioned on Ω0. Note that P0 is invariant
under σ̃.

Suppose that ψ : Ω → R is an observable with |ψ|∞ = supΩ |ψ| < ∞. Define the

induced observable ψ̃ : Ω0 → R,

ψ̃(x) =

p−1∑
k=0

ψ(σk(x)) .

Denote

ψn =
n−1∑
k=0

ψ ◦ σk and ψ̃n =
n−1∑
k=0

ψ̃ ◦ σ̃k .

We consider ψn and ψ̃n as random processes, defined on probability spaces (Ω,P) and
(Ω,P0) respectively. Define a projection π0 : Ω→ Ω0 by

π0(x) =

{
x if x ∈ Ω0

σp−k(x) if x ∈ Ωk , k = 1, . . . , p− 1 .
(A.1)

Lemma A.1. We have
|ψn − ψ̃[n/p] ◦ π0|∞ ≤ 2p|ψ|∞ . (A.2)

Moreover, if limn→∞ n
−1
∫

Ω
ψ2
nP(ω) dω = c2, then limn→∞ n

−1
∫

Ω0
ψ̃2

[n/p]P0(ω) dω = c2.

Proof. The bound (A.2) is obvious. Indeed, for instance if x ∈ Ω1, it suffices to write

|ψn − ψ̃[n/p] ◦ π0| =
∣∣∣ n−1∑
k=0

ψ ◦ σk −
p[n/p]+p−2∑
k=p−1

ψ ◦ σk
∣∣∣ ≤ 2(p− 1)|ψ|∞ .

To end the proof of the lemma, note that (π0)∗P = P0, thus ψ̃n ◦ π0, defined on the

probability space (Ω,P), has the same distribution as ψ̃n on (Ω0,P0).

Corollary A.2. Let (bn)n≥1 be a regularly varying sequence with values in R+, and such
that bn(log n)−1/2 → ∞ as n → ∞. Assume that Ω can be enlarged in such a way that
there exists a Brownian motion W̃t (with variance v2) such that

ψ̃n ◦ π0 = W̃n + o(bn) almost surely.

Then, on the same probability space, there is a Brownian motion Wt (with variance c2 =
v2/p) such that

ψn = Wn + o(bn) almost surely.
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Proof. By assumption and Lemma A.1,

ψn = W̃[n/p] + o(bn) almost surely.

Then Wt = W̃t/p is a Brownian motion (with variance c2 = v2/p), and

sup
s≤t
|W̃s/p − W̃[s/p]| = O((log t)1/2) almost surely.

(See, for instance, Theorem 3.2A in [9]). The result follows.
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Budapest. Eötvös. Sect. Math. 2 (1959), 93–109.
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