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Abstract

We study a paced assembly line intended for manufacturing different products. Workers with

identical skills perform non-preemptable operations whose assignment to stations is known. Op-

erations assigned to the same station are executed sequentially, and they should follow the given

precedence relations. Operations assigned to different stations can be performed in parallel.

The operation’s processing time depends on the number of workers performing this operation.

The problem consists in assigning workers to operations such that the maximal number of

workers employed simultaneously in the assembly line is minimized, the line cycle time is not

exceeded and the box constraints specifying the possible number of workers for each operation

are not violated. We show that the general problem is NP-hard in the strong sense, develop

conventional and randomized heuristics, propose a reduction to a series of feasibility problems,

present a MILP model for the feasibility problem, show relation of the feasibility problem to

multi-mode project scheduling and multiprocessor scheduling, establish computational com-

plexity of several special cases based on this relation and provide computer experiments with

real and simulated data.

Keywords: combinatorial optimization; assembly line; workforce assignment; scheduling;

complexity analysis; mixed integer linear programming; heuristics.
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1 Introduction

We study a paced unidirectional assembly line consisting of m stations and manufacturing dif-

ferent products. Every station switches from processing a current product to the next one

simultaneously. The time interval between two consecutive switches is called cycle and its

duration is called cycle time. Cycle time remains the same for every cycle. Motivated by an in-

dustrial case, we study a workforce assignment problem for a single cycle of such a line. Without

loss of generality, it is assumed that the cycle starts at time zero. In a given cycle, workers at

station k execute a given set Nk of operations, k = 1, . . . ,m. Parallel execution of operations is

possible if these operations belong to different stations. The order of operations assigned to the

same station should follow a given technological process characterized by precedence relations

between the operations. If operation i is followed by operation j, then i must be completed

before the start time of j. If operations i and j have no precedence relation, then they are

called independent and can be performed in any order. Operations without predecessors can

start at time zero. The set of precedence relations of operations at station k is represented by

a directed acyclic graph Gk = (Nk, Uk), where Nk is the set of operations assigned to station k

and Uk, Uk ⊂ Nk × Nk, is the set of oriented pairs of operations (i, j) of station k such that

(i, j) ∈ Uk if and only if operation i is followed by operation j. Let N = ∪m
k=1Nk, n = |N |, and

U = ∪m
k=1Uk. Define graph G = (N,U).

Operations are executed by at most rmax identical workers. Processing time pj(r) of an

operation j is a positive non-increasing function of the number of workers r assigned to this

operation. Operations are non-preemptive, and if a worker starts performing an operation, he

or she cannot switch to any other operation before finishing the current one. Workers cannot

execute more than one operation simultaneously. The time spent by a worker to move from

one station to another is negligibly small compared to any processing time of any operation.

Therefore, it is assumed that any worker can move from one operation to another in zero time.

Workforce assignment consists in creating a schedule, in which the start time of each operation,

its processing time and the sequence of operations for each worker are determined. Given a

schedule, the number rj of workers assigned to operation j, the operation start time Sj and the

operation completion time Cj can be calculated for each operation j such that Cj = Sj+pj(rj),

j = 1, . . . , n. The makespan of a schedule is defined as Cmax = maxj∈N{Cj}. This value is

equal to the line cycle time.

The following constraints must be satisfied in a feasible schedule:
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• Box constraints. For technical reasons, the number of workers assigned to an operation

must be within certain limits: aj ≤ rj ≤ bj, where aj and bj are given positive integer

numbers, j = 1, . . . , n.

• Cycle time constraint. In order to achieve the desired level of productivity, the line cycle

time must not be exceeded: Cmax ≤ d, j = 1, . . . , n, where d is a given upper bound on

the line cycle time.

The criterion of the problem, that we denote as MinNumber, is the minimization of the

maximal number of workers employed simultaneously in the line,

Wmax = max
0≤t≤d

{ ∑
j∈N(t)

rj

}
,

where N(t) is the set of operations executed at time instant t. Let W ∗
max denote the minimal

Wmax value. Assume without loss of generality that the number of available workers is such that

rmax ≤
∑

j∈N bj, because otherwise we can reset rmax =
∑

j∈N bj, and that
∑

j∈Nk
pj(bj) ≤ d

for k = 1, . . . ,m and max
{
maxj∈N{aj},

⌈∑
j∈N pj(bj)/d

⌉}
≤ rmax, because otherwise the

problem MinNumber has no solution.

For the sake of clarity, consider an example in which the assembly line consists of two

stations. There are eight operations and four available workers. Precedence graph for this

example is presented in Figure 1.
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Figure 1: Precedence graph

Processing times of operations depending on the number of workers are given in Table 1.

An empty entry for a given number of workers and operation j means that this number of

workers is either less than aj or greater than bj. Note that all four workers can be used on

the line, but only one, two or three of them can be used to perform the same operation. A

Gantt chart illustrating a feasible schedule with an upper bound on line cycle time d = 44 and

maximum number of workers rmax = 4 is given in Figure 2.
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Operations\ 1 2 3 4 5 6 7 8
Number of workers

1 50 10 10 9 11 24 20
2 30 6 5 7 12 12 9
3 8 7 6

Table 1: Processing times of operations

6

-

0 5 10 15 20 25 30 35 40 45

d

Cmax

Time

Worker 1

Worker 2

Worker 3

Worker 4 Operation 5 Op 4 Operation 6 Oper 7 Oper 8

Operation 3 Op 4 Operation 6 Oper 7 Oper 8

Operation 1 Oper 7 Oper 8

Operation 1 Operation 2

Figure 2: A feasible schedule. Dashed rectangles represent idle times of workers.

Problem MinNumber appeared as a sub-problem on workforce planning for an assembly

line that produces three automobile engine models in the European project amePLM [1]. Each

engine model visits stations in the same order and requires the same set of operations. Operation

processing times depend on the engine model and they are also inversely proportional to the

number of used workers. A detailed description of this industrial case is given in Battäıa et

al. [7]. Preliminary results of our studies of the problem MinNumber are presented at the

15th IFAC Symposium [23]. In [23], a special case of the problem MinNumber is addressed,

in which graphs Gk are connected, as they are in the industrial case, though, this specificity is

not precisely mentioned. The current paper studies a more general problem formulation where

the graph is disconnected. Here we correct and improve the draft heuristics and MILP model

suggested in [23]. This paper additionally contains an updated and extended literature review,

a classification of computational complexity of special cases and an extensive computational

study. A particular result of this new research is that the number of workers in the real life

problem of the project amePLM is decreased from 26, obtained by Battäıa et al. [7], to 25.

The rest of the paper is organized as follows. The next section presents a literature review.

In Section 3, we present the exact bisection search procedure, which consists in an iterative

solution of feasibility problems Feasible(Q) for a given number Q of workers. This section also

provides the description of a Mixed Integer Linear Programming (MILP) model for problems
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Feasible(Q). In Section 4, we show the relationship of the problem Feasible(Q) to the multi-

mode project scheduling problems and multiprocessor scheduling problems and establish the

computational complexity of several special cases of the problem MinNumber based on the

relationship to the latter problems. Three constructive, two conventional and one randomized

heuristics are given in Section 5. Computational study of the heuristics and MILP model is

described in Section 6. Section 7 contains a summary of the results and suggestions for future

research.

2 Literature review

The assembly line design, balancing and scheduling problems are widely studied in the lit-

erature [22]. The earliest studies of optimal workforce assignment problems concentrated on

the two-dimensional assignment models with simple constraints. They were initiated in the

19th century and have become classics of combinatorial optimization, see the monograph of

Burkard et al. [16]. Later on, a number of practical constraints were taken into consideration

in timetabling, rostering, shift scheduling and resource constrained project scheduling models,

as it was described, e.g., in Willemen [63], Ernst et al. [27], Naveh et al. [47], Rocha et al. [51],

Miller [42] and Artigues et al. [5].

There exists a vast body of literature on the assignment of workers to operations of a

production line. Vidic [59] studies the effect of the assignment of a fully cross-trained workforce

on the throughput of a serial production line. She focuses on dynamic work-sharing and fixed

workforce assignment and suggests two models. One model assumes that workers performance

is determined by their steady-state productivity rate and the other model assumes that workers’

productivity rates depend of their learning and forgetting characteristics. Heuristic methods

are developed.

A recent review and classification of the literature related to workforce planning problems

with skills is presented by De Bruecker et al. [20]. Corominas et al. [19] study a problem in which

skilled permanent and unskilled temporary workers have to be assigned to an assembly line.

Skilled workers require less time to finish a task than unskilled ones, and unskilled workers must

work alongside at least one skilled worker. The criterion is to minimize the number of unskilled

workers. The authors suggest a binary linear programming formulation for this problem.

Blum and Miralles [13] employ beam search heuristics for the problem of minimizing the

production line cycle time, provided that the number of workers is fixed. Karabak et al. [32]
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study a workforce assignment problem in which some workers are qualified to perform a task

while others are not. Walking durations between different tasks are taken into consideration.

The criterion is to minimize the number of workers. Due to the high complexity of the problem,

the authors apply heuristics for instances with up to 30 operations. Araujo et al. [4] consider

the Assembly Line Worker Assignment and Balancing Problem (ALWABP) with non-identical

workers. They are interested in the insertion of slow or limited workers into the production

process. Two cases of this problem are studied: parallel workstations (one worker is assigned

to the same station) and collaborative workstations (several workers are assigned to the same

station). Although the criterion is to minimize the cycle time, the proposed solution method is

concerned with the inverse problem of minimizing the number of stations, subject to an upper

bound on the cycle time. Different cycle time upper bounds are iteratively tested starting from

a lower bound. If a feasible solution for the desired number of stations is not found, then the

problem is solved again with a marginally increased cycle time. Borba and Ritt [14] propose

a MIP model, a heuristic algorithm based on a beam search, and a task oriented branch-and-

bound procedure for the same problem with the non-identical workers.

The case of uncertain worker dependent processing times, expressed by intervals of possible

values, is considered by Moreira and Costa [45]. The goal is to integrate workers with disabilities

in an assembly line while minimizing the number of extra stations needed. An extension of the

ALWABP to minimize the expected cycle time under uncertain worker availability is proposed

by Ritt et al. [50]. The case of non-identical workers of this problem is studied by Moreira

and Costa [44]. A job rotation schedule has to be developed. Two goals are considered:

minimization of the sum of cycle times and maximization of the number of different operations

each worker executes in a complete rotation period, considering all the sub-period schedules.

A three-steps solution procedure is used by the authors. The first step builds single period

schedules. In the second step a MIP formulation is applied to find a complete rotation plan.

The third step improves the obtained solutions. Mutlu et al. [46] develop iterative genetic

algorithm for ALWABP with the cycle time minimization criterion. Vilá and Pereira [60]

propose an exact enumeration procedure for the same problem. The new lower bounds allowed

the authors to improve results for a benchmark set of instances. Koltai and Tatay [35] propose

a general framework to model skill requirements and skill conditions for assembly line balancing

models.

A simultaneous minimization of the number of workers and sequence-dependent setups in
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mixed-model assembly lines is studied by Giard and Jeunet [30]. The goal is to avoid line

stoppages with the minimal number of temporarily hired utility workers. They propose an

exact method allowing to obtain optimal solutions in reasonable time for instances with up to

15 production items. A new assembly line problem with qualification requirements of operations

and qualification levels of workers is introduced by Sungur and Yavuz [54]. In the hierarchical

workforce structure, a lower qualified worker can be substituted by a higher qualified one

(but not vice versa) with a certain cost. The objective is to minimize the total cost, while

respecting a given cycle time. An ILP model is used to solve this problem. The part supply

scheduling problem in line-integrated supermarkets with the workforce minimization criterion

and no stock out constraint is studied by Boysen and Emde [15]. The authors use a heuristic

decomposition approach to solve this problem and draw important conclusions for managers. A

scheduling problem with the criterion of workforce minimization is treated by Camm et al. [17].

The authors deal with a paced line composed of identical parallel workstations. The number

of workers needed at a workstation depends on the job processed and it is fixed. A two-stage

approach is applied. The first stage is a MILP model that determines starting times. The second

stage is a polynomial time procedure which assigns jobs to specific assembly workstations.

There is a stream of publications in which workforce requirements of the operations are

assumed to be fixed, there is one operation for any product on each station of the transfer line,

and the problem is to find a cyclic sequence of products such that the maximum number of

workers needed at any time is minimized. The relevant results can be found in Akagi et al.

[3], Wilson [64], Lutz and Davis [41], Lee and Vairaktarakis [38], Vairaktarakis and Winch [58],

Kouvelis and Karabati [37], Vairaktarakis et al. [57], Vairaktarakis and Cai [56] and Kovalyov

et al. [36].

3 Exact bisection search procedure

In order to solve problem MinNumber we use an exact bisection search procedure, which

consists in an iterative solution of feasibility problems. In a feasibility problem we try to find

a feasible schedule for a given number Q of workers. We denote this problem as Feasible(Q).

Let LB and UB be lower bound and upper bound, respectively, on the value of Q. The general

description of the bisection search procedure is as follows.

Step 1 Calculate LB and UB.
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• If a feasible solution of problem Feasible(LB) is found, then it is an optimal solution

of the problem MinNumber, stop. Otherwise, solve the problem Feasible(UB).

• If a feasible solution of Feasible(UB) is found, then go to Step 2. Otherwise, solve

the problem Feasible(rmax).

• If no feasible solution of Feasible(rmax) is found, then the problem MinNumber has

no feasible solution, stop. Otherwise, set UB = rmax and go to Step 2.

Step 2 Generic iteration of bisection search.

• If LB + 1 = UB, then an optimal solution for the problem MinNumber is found.

It is the feasible schedule obtained for the problem Feasible(UB) in Step 1.

• If LB + 2 ≤ UB, then set Q = ⌈UB+LB
2

⌉ and solve the problem Feasible(Q). If

a feasible solution for the problem Feasible(Q) is found, then reset UB := Q and

repeat Step 2. Otherwise, reset LB := Q and repeat Step 2.

Once passed to Step 2, the bisection search procedure delivers an optimal solution in

O(log2(UB−LB)) iterations. The problem Feasible(Q) for a certain Q, Q ∈ {LB,LB+

1, . . . , UB} is solved within each iteration.

We now describe a MILP model for the problem Feasible(Q). It is convenient to introduce

the following notation:

• N−: subset of vertices from N , which have no successor;

• I: set of vertex pairs (i, j) that are independent with respect to the precedence constraints,

I = {(i, j) | i ∈ N, j ∈ N, i ̸= j, (i, j) ̸∈ U, (j, i) ̸∈ U};

• Ik = {(i, j) | (i, j) ∈ I, i ∈ Nk, j ∈ Nk}, k = 1, . . . ,m;

• Igk = {(i, j) | (i, j) ∈ I, i ∈ Ng, j ∈ Nk}, g = 1, . . . ,m, k = 1, . . . ,m, g ̸= k.

Decision variables are the following:

• xir ∈ {0, 1}, i ∈ N , r = 1, . . . , Q: xir = 1 if worker r is assigned to operation i, and

xir = 0, otherwise;

• yij ∈ {0, 1}, (i, j) ∈ I: yij = 1 if operation j starts after or on the completion of operation

i, and yij = 0, otherwise. If yij = 0 it means that one of two possible situations occurs:
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– i starts after or on the completion of j,

– i and j are partially performed in parallel. In a feasible schedule i and j must be,

in such case, performed by different workers.

• zir ∈ {0, 1}, i ∈ N , r = 1, . . . , Q: zir = 1 if r workers execute operation i, and zir = 0,

otherwise;

• Sir ≥ 0, i ∈ N , r = 1, . . . , Q: start time of operation i if it is executed by worker r, and

any non-negative value otherwise.

A Mixed Integer Linear Programming (MILP) formulation of the problem Feasible(Q) is

as follows.
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Problem Feasible(Q):

Sir +

Q∑
q=1

pi(q)ziq ≤ d, i ∈ N−, r = 1, . . . , Q, (1)

∑
i∈N

Q∑
q=1

pi(q)ziq ≤ Qd, (2)

Q∑
r=1

zir = 1, i ∈ N, (3)

Q∑
r=1

xir =

Q∑
r=1

rzir, i ∈ N, (4)

Sjh − Siq ≥
Q∑

r=1

pi(r)zir, (i, j) ∈ U, h, q = 1, . . . , Q, (5)

Sjh − Siq ≥
Q∑

r=1

pi(r)zir − (d+ 1)(3− yij − xih − xjq), (i, j) ∈ Ik, (6)

k = 1, . . . ,m, h, q = 1, . . . , Q,

Sjh − Sih ≥
Q∑

r=1

pi(r)zir − (d+ 1)(3− yij − xih − xjh), (i, j) ∈ Igk, (7)

g, k = 1, . . . ,m, g ̸= k, h = 1, . . . , Q,

Sih − Siq ≤ (d+ 1)(2− xih − xiq), i ∈ N, h = 1, . . . , Q, q = h+ 1, . . . , Q, (8)

Siq − Sih ≤ (d+ 1)(2− xih − xiq), i ∈ N, h = 1, . . . , Q, q = h+ 1, . . . , Q, (9)

yij + yji ≤ 1, (i, j) ∈ I, (10)

xir + xjr − 1 ≤ yij + yji, (i, j) ∈ I, r = 1, . . . , Q, (11)
Q∑

r=1

rzir ≤ bi, i ∈ N, (12)

ai ≤
Q∑

r=1

rzir, i ∈ N, (13)

xir, yij, zir ∈ {0, 1}, i, j ∈ N, r = 1, . . . , Q, (14)

Sir ≥ 0, i ∈ N, r = 1, . . . , Q. (15)

Constraints (1) address the cycle time d on each station by considering completion times

of operations that have no successors. Constraints (2) guarantee that n small rectangles with

dimensions (number of workers, operation time) fit the rectangle with dimensions (Q, d). Con-

straints (3) oblige every operation to be processed by only one number of workers. Constraints

(4) verify that if some operation i has to be executed by a certain number of workers, for

instance v, and, therefore, Ziv = 1, then exactly v variables xir are equal to 1. Constraints (5)
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require that the starting times of operations i and j performed by any number of workers are

at least pi(r) time units away from each other if i precedes j. Constraints (6) enforce worker h

to start operation j after or at the time when worker q completes operation i, if i and j belong

to the same station k. In such case yij = 1, xiq = 1, xjh = 1. Constraints (7) do the same as

(6), but in the case when operations i and j are on different stations and they are performed by

the same worker. Constraints (8) and (9) force all workers assigned to the same operation to

start at the same time. Constraints (10) guarantee that, for a pair of independent operations

i and j, i.e. operations without precedence relation between them, the situation in which both

yij = 1 and yji = 1 does not occur. Constraints (11) ensure that if a pair of independent

operations i and j are assigned to the same worker r, then one of them must start after or on

the completion of the other, i.e., yij = 1 and yji = 1 cannot happen at the same time. Suppose,

for example, that a pair of independent operations i and j are performed by the same worker

r. In such case xir = 1 and xjr = 1. Constraints (10) and (11) ensure that yij = 1 and yji = 1

cannot happen at the same time. Besides, constraints (5), for which r = h = q, rule out a

simultaneous execution of operations i and j by worker r. If, for example, worker r is assigned

to only one of two operations i and j, or not assigned to any of them, then operations i and j

can be performed independently in time. In such case yij = 0 and yji = 0. Constraints (12) and

(13) verify that the number of workers assigned to every operation respects the predetermined

limits.

Building a schedule implies the knowledge of operations’ start times, their durations and

sequence for every worker. A solution of the MILP problem Feasible(Q) provides this infor-

mation. The MILP model is tested in the computational study in Section 6.

4 Relation to multi-mode project scheduling and multi-

processor scheduling. Computational complexity

The problem Feasible(Q) can be viewed as a multi-mode project scheduling problem, in which

an activity (operation) is assigned a mode (set of workers) and has a mode-dependent duration,

see Kolisch et al. [34], Tseng and Chen [55] and Artigues et al. [5] for the definitions of the latter

problem. Mathematical programming formulations of multi-mode project scheduling problems

encountered in literature have decision variables with indices whose number equals the number

of modes, see Kolisch and Sprecher [33]. A solution of the problem Feasible(Q) should specify

not only the number of workers executing an operation, but also identify them. Therefore,
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there can be 2Q − 1 different modes and as many variables in a problem’s formulation based

on modes. In order to solve multi-mode project scheduling problems, authors often recur to

branch-and-bound methods, metaheuristics, time- and event-indexed MILP formulations, see,

for example, Monma et al. [43], Demeulemeester et al. [21], Salewski et al. [52], Ranjbar and

Kianfar [49], Li and Womer [39], Besikci et al. [12], and Ghoddousi et al. [29].

Problem Feasible(Q) is related to the multiprocessor moldable task scheduling problem, in

which the number of identical processors allocated to a computer task influences its processing

time. Once a task is started, the number of allocated processors cannot be changed. Processors

play the role of workers. Box constraints on the number of processors allocated to the same

task are not considered.

Drozdowski [24] provides a state-of-the-art of multiprocessor task scheduling problems. Ac-

cording to this paper, the makespan minimization equivalent of the problem Feasible(Q), in

which a single operation is assigned to each station, is denoted as P |spdp− lin− δj|Cmax if task

processing times are inversely proportional to the number of assigned processors, pj(r) = pj/r.

It is denoted as P |spdp − any|Cmax if processing times are arbitrary functions of the number

of processors.

Off- and on-line heuristics with performance guarantees are often developed for multipro-

cessor task scheduling problems, see, for example, Wang and Cheng [62, 61], Choundhary et

al. [18], Srinivasa Prasanna and Musicus [53], Blazewicz et al. [11], Blazewicz et al. [9], Dutot

et al. [25] and Hunold [31].

The relation with multiprocessor task scheduling allows establishing the computational com-

plexity of the following special cases of the problem Feasible(Q), in which a single operation

is assigned to each station: 1) pj(r) = 1 for any r, aj = bj, j ∈ N ; 2) pj(r) = 1 for any r,

aj = bj, bj ∈ {1, . . . ,∆}, j ∈ N , ∆ is a given constant; 3) Q = 5, aj = bj, j ∈ N ; 4) Q ∈ {2, 3},

aj = bj, j ∈ N ; 5) aj = 0, bj = Q, pj(r) = pj/gj(r), gj(r) is a convex increasing function; 6)

aj = bj = 1, j ∈ N . Case 1) is strongly NP-hard, because, in the notation of Drozdowski [24],

problem P |sizej, pj = 1|Cmax is strongly NP-hard due to Lloyd [40]. Case 2) is solvable in

O(n) time, because problem P |sizej ∈ {1, . . . ,∆}, pj = 1|Cmax is solvable in O(n) time due to

Blazewicz et al. [10]. Case 3) is strongly NP-hard and case 4) is pseudo-polynomially solvable,

because problem P5|sizej|Cmax is strongly NP-hard and problem Pm|sizej|Cmax, m ∈ {2, 3},

is pseudo-polynomially solvable due to Du and Leung [26]. Case 5) is solvable in O(n) time,

because it reduces to the malleable task scheduling problem studied by Blazewicz et al. [8]
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and Barketau et al. [6]. In an optimal solution of the latter problem, each task is assigned to

all available processors. Case 6) is strongly NP-hard, because it is equivalent to the decision

version of the classic scheduling problem P ||Cmax, which is NP-hard in the strong sense due to

Garey and Johnson [28].

We now prove that the problem MinNumber is NP-hard in the strong sense if each station

is composed of only one operation, values aj and bj differ by one unit, and operation processing

times are inversely proportional to the number of assigned workers, as they are in the industrial

case of the project amePLM [1], which motivates our studies.

Theorem 1 Problem MinNumber is NP-hard in the strong sense if a single operation is

assigned to each station, aj = bj − 1 and pj(r) = pj/r, j ∈ N .

Proof: We use a reduction from the NP-complete problem 3-Partition, see Garey and John-

son [28].

3-Partition: Given 3v+1 positive integer numbers h1, . . . , h3v and H satisfying
∑3v

j=1 hj =

vH, does there exist a partition of the set {1, . . . , 3v} into subsets Y1, . . . , Yv such that∑
j∈Yt

hj = H for t = 1, . . . , v? Assume without loss of generality that hj ≥ v+1, j = 1, . . . , 3v.

Otherwise, all numbers h1, . . . , h3v and H can be multiplied by v + 1 without any influence on

the problem’s complexity.

Using an instance of 3-Partition, construct an instance of the problem MinNumber, in

which there are n = 3v operations and the same number of stations, operation j is assigned to

station j, pj(r) = hj/r, aj = hj − 1, bj = hj, j = 1, . . . , n, and d = v. Thus, the processing

time of operation j can take one of the two values: 1 or 1 + 1
hj−1

, where 1 ≤ 1 + 1
hj−1

≤ 1 + 1
v
,

j = 1, . . . , n. Note that any pair of operations can be performed in parallel if they are assigned

to different workers. We will prove that a feasible solution for this instance with valueW ∗
max ≤ H

exists if and only if the original instance of 3-Partition has a solution.

Suppose that the problem MinNumber has a feasible solution with rj workers assigned

to operation j, j = 1, . . . , n, and the maximal number of workers employed simultaneously in

the line W ∗
max ≤ H. In order to illustrate this solution, let us represent an assignment of a

worker i to operation j as a small rectangle of length pj(rj) and height 1, located in line i of

a large rectangle of length v and height H. Thus, the solution of MinNumber can be viewed

as a large rectangle with a set of small rectangles inscribed into it, so that small rectangles

do not overlap one another. Figure 2 can serve as an example of such representation. Since
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rpj(r) = hj for any r, each operation j adds hj to the total area of the large rectangle regardless

of the workforce assignment. The union of small non-overlapping rectangles must form the large

rectangle, because
∑n

j=1 hj = vH.

Now we will prove that every operation j is assigned hj workers. Assume the contrary:

there exists at least one operation q with hq − 1 workers assigned to it. Consider one of these

workers. Let he or she be employed to perform w operations. Let J be a subset of w. Each

operation j ∈ J is assigned hj − 1 workers. Since w = v, we have w ≤ v − 1. Knowing that

any operation must be processed for at least one time unit, and the duration of at least one

operation exceeds one time unit, we conclude that this worker’s total working time is greater

than v. Therefore, the cycle time is exceeded. The total working time of this worker is equal

to

w +
∑
j∈J

1

hj − 1
≤ v − 1 +

|J |
v

≤ v − 1 +
w

v
≤ v − 1 +

v − 1

v
< v.

This strict inequality means that there is a space in the large rectangle, which is not filled in

by any small rectangle. This is a contradiction. Therefore, each operation j is assigned hj

workers. As a result, processing times of all operations are equal to 1.

Let Yt be the set of operations executed simultaneously in the time interval [t−1, t]. Since the

union of small rectangles forms the large rectangle, equality
∑

j∈Yt
hj = H holds for t = 1, . . . , v,

as required for the part “only if” of the proof.

Part “if” is trivial. If Y1, . . . , Yv is a solution of the problem 3-Partition, then assign hj

workers to operation j, j = 1, . . . , n, and execute operations of the set Yt simultaneously in the

time interval [t− 1, t], t = 1, . . . , v.

Computational complexity results are summarized in Table 2.

Table 2: Complexity of special cases of MinNumber, in which a single operation is assigned
to each station

Problem characteristics Complexity

pj(r) = 1, aj = bj strongly NP-hard
pj(r) = 1, aj = bj, bj ∈ {1, . . . ,∆}, ∆ is a given constant O(n log rmax)

rmax = 5, aj = bj strongly NP-hard
rmax ∈ {2, 3}, aj = bj pseudo-polynomially solvable

pj(r) = pj/gj(r), gj(r) is convex increasing, aj = 0, bj = rmax O(n log rmax)
aj = bj = 1 strongly NP-hard

pj(r) = hj/r, aj = hj − 1, bj = hj strongly NP-hard
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5 Heuristics

Besides the exact bisection search procedure, we also use three parametrized constructive heuris-

tics: two conventional ones and one randomized. All the heuristics use a numerical parameter

α, 0 ≤ α ≤ 1, which affects their behavior in such a way that a higher value of α tends to

assign workers with larger ready times to a selected operation.

Conventional heuristics TopLong(α) and TopLongPath(α)

Step 1 Determine an initial hypothetical minimal total number of workers, W , such that

maxj∈N{aj} ≤ W ≤ rmax. A specialist in production planning can provide the initial

value of W . Otherwise, we can set W = max
{
maxj∈N{aj},

⌈∑
j∈N pj(bj)/d

⌉}
.

Set rj = aj and calculate pj(rj) for j = 1, . . . , n. Initiate ready times Ti of workers:

Ti = 0, i = 1, . . . ,W , and ready times tj of operations: tj := 0, j = 1, . . . , n.

Step 2 Identify the set N+ of operations without predecessor in graph G. In heuristic

TopLongPath(α), calculate the longest path P ∗ connecting a vertex of N+ with any

other vertex of graph G. Path length is the total weight of its vertices, and the weight of

vertex j is pj(rj).

Step 3 In heuristic TopLong(α) select j∗ ∈ N+ with the largest value pj(rj). In heuristic

TopLongPath(α) select j∗ as the first vertex of the longest path P ∗.

Let the workers be ordered such that Ti1 ≤ · · · ≤ TiW . Determine sets of rj∗ workersXh :=

{ih−rj∗+1, ih−rj∗+2, . . . , ih}, h = rj∗ , rj∗+1, . . . , k, where k satisfies Tik ≤ αTiW +(1−α)Tirj∗

and Tik+1
> αTiW + (1− α)Tirj∗

, TiW+1
:= +∞. For example, Xk = {i1, . . . , irj∗} if α = 0

and Xk = {iW−rj∗+1, . . . , iW} if α = 1. Select index h which minimizes max{tj∗ , Tih} −

Th−rj∗+1 for rj∗ ≤ h ≤ k. Let it be index h∗.

Assign workers of the set Xh∗ to operation j∗ so that all of them start performing this

operation at the same time t∗ := max{tj∗ , Tih∗}. Note that index h∗ is selected such that

the maximum idle time of workers in the sets Xh, h = rj∗ , rj∗ + 1, . . . , k, just before they

start processing operation j∗, is minimized.

Update ready times of workers so that Th := t∗ + pj∗(rj∗), h ∈ Xh∗ . Update ready times

of immediate successors of vertex j∗ so that tj := max{tj, t∗}+ pj∗(rj∗), j ∈ A(j∗), where

A(j∗) is the set of immediate successors of j∗ in graph G. Update graph G by removing

vertex j∗ from it.
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If G is empty, then a complete schedule is constructed and the following computations

are performed:

1. Determine the makespan Cmax = max{Ti | i = 1, . . . ,W}.

2. If the line cycle time is not violated, Cmax ≤ d, then return the constructed feasible

schedule with W workers and stop.

3. Suppose that Cmax > d.

• If W = rmax, then return the infeasible schedule with rmax workers and stop.

Even with the maximal possible number of workers, the heuristic could not find

a feasible schedule.

• If W ≤ rmax − 1, a feasible schedule still may exist. Determine operations of

a critical path that do not intersect in time and whose processing times sum

up to Cmax. Reset rj := min{rj + 1, bj,W + 1} for every such operation, reset

W := W + 1, restore original graph G, and go to Step 2.

If G is not empty, then perform Step 2.

There are three possible outputs of heuristics TopLong(α) or TopLongPath(α):

• Feasible schedule is obtained.

• Infeasible schedule with rmax workers is found.

• Solving time limit is reached. The last found infeasible schedule is returned.

If the solution time limit permits, then heuristics TopLong(α) and TopLongPath(α) can

be run for several values of α, 0 ≤ α ≤ 1.

The randomized heuristic TopRandom(α) is similar to TopLong(α) with only one dif-

ference. At Step 3 of TopRandom(α) operation j∗ ∈ N+ is selected at random. Heuristic

TopRandom(α) can be run several times and for several values of α until the solving time limit

is reached. Computational experiments with the heuristics are described in Section 6.

6 Computational study

We performed two series of computational experiments with the problem MinNumber. The

goal of the first series is to establish the maximum problem size in terms of the number of
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operations that can be solved to optimality in a reasonable time based on the bisection search

and the MILP formulation. The goal of the second series is to establish the quality of the

heuristics. We used the data generator for the simple assembly line balancing problem described

in Otto et al. [48], extending it to match the specificity of the problem MinNumber. This

generator constructs instances with the number of operations n = 20 and n = 50. We did

the same. The number of stations, the assignment of operations to the stations and the box

constraints are selected to conform with the real life problem of our industrial partner, see

Battäıa et al. [7]. Processing times are set to pj(1) = pj, where pj are generated as in [48], and

pj(r) = pj/r for r ≥ 2. We assumed that each connected component of a precedence graph,

generated as in [48], corresponds to a station. Values aj ∈ {1, 2} are generated with probability

2/3 for aj = 1 and probability 1/3 for aj = 2, and values bj = 4 for all j, as in the industrial

application. The source code of the experiment is available on request at GitHub [2].

Note that an introduction of the workforce assignment aspect to the instances in Otto

et al. [48] drastically increases the solution search space, multiplying its cardinality by ap-

proximately n2, where the power of 2 is the difference between upper and lower bounds on

the number of workers for each operation. Therefore, if an instance with n = 50 in [48] can

be solved to optimality in one hour, then one can expect that the corresponding instance of

our problem can be solved to optimality in about 2500 hours (more than three months). Our

experiment with 525 generated instances for n = 20 has taken 308 hours (almost 13 days) of

continuous computations. We have also spent few days trying to solve instances with n = 50,

but no such instance was solved. Therefore, below we do not present results for instances with

n = 50.

6.1 Exact solution by MILP solver

The MILP model Feasible(Q) was handled by the solver IBM ILOG CPLEX Optimization

Studio 12.6.2, which was run on a computer Intel Xeon with CPU E5-2673 v3 2.4 GHz, 8

GB of RAM, MS Windows Server 2008 R2 Datacenter 64bit and 4 treads. The time limit for

solving each instance was set to one hour.

Since functions pj(r) = pj/r are convex, the relaxed problem with aj = 1, bj = W ∗
max,

no precedence constraints and the possibility to perform any operations in parallel if they are

assigned to different workers, is the special case 5) in Section 4, which is solved by assigning

all W ∗
max workers to each operation. Therefore, W ∗

max ≥ LB =
⌈∑

i∈N pi/d
⌉
in this case, and
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we used the latter lower bound LB in the experiments. We calculated an upper bound UB on

the number of workers as the sum of the minimal numbers of workers required for each station

independently: UB =
∑m

k=1max
{
maxj∈Nk

{aj},
⌈∑

j∈Nk
pj/d

⌉}
. The upper bound did not

exceed 15 for all the instances with n = 20.

Recall that the bisection search procedure includes solving the problem Feasible(Q) for

Q = LB =
⌈∑

i∈N pi/d
⌉
. Fig. 3 shows the numbers of solved and unsolved instances of the

problem Feasible(LB) for n = 20. In this stacked histogram, the horizontal axis represents

the values of LB that were calculated for all the generated instances. The height of the color

column corresponding to a given LB represents the number of instances with this LB. One

Figure 3: Numbers of solved and unsolved instances of Feasible(LB) in one hour for n = 20
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can see that the number of solved instances decreases as the number of workers increases. We

observed that the solver finds a feasible solution of the problem Feasible(Q) quite fast if it

exists, but it takes a lot of time to detect infeasibility. This observation can be used to solve

the problem Feasible(Q) heuristically: if a feasible solution is not found within a certain time

limit, then it can be decided that the problem Feasible(Q) has no solution. This observation

is confirmed by the fact that the ratio of the number of solved instances to the number of

unsolved instances increases as the value of Q increases from LB to UB.

Otto et al. [48] suggested a factorial analysis to categorize performance of heuristic algo-

rithms with respect to the input parameters. Since our MILP method is a heuristic because

of the time limit, we applied the analysis in [48] to it. The only parameter which separated

solved and unsolved instances in our experiments was the parameter “trickiness”, which is a

statistically estimated share of non-optimal solutions in the solution space of a problem in-

stance. The statistics is formed by 10000 solutions generated randomly. In our experiments,

all unsolved instances where “extremely tricky” or “open”. The characteristic “open” applies

if an optimal solution of the problem instance is not known. Note that we used values of the

parameter “trickiness” which apply to the original instances in [48], and not to the correspond-

ing instances of the problem Feasible(Q), because otherwise we would need several months of

computations to collect the required statistics. We also noticed that the idle time parameter

calculated as Idle =
Qd−

∑
j∈N pj

Qd
impacts the performance of the MILP method. This impact

is illustrated in Fig. 4 for instances of the problem Feasible(3). One can see that the higher

values of Idle imply the smaller solution time of the problem Feasible(3).

We conducted experiments with the real life problem from the project amePLM [1], where

n = 170. In this problem, there are 20 production cycles, which differ by the assignment of

the same set of products (engines) to the stations, see [7]. The time of the same operation for

different products is different. The cycles are independent because the travel times between

stations are neglected. The problem is to minimize the number of workers needed for each cycle.

The number of workers employed in the line will be equal to the maximal number of workers

obtained for all cycles. For this problem, the straightforward solution of the MILP model was

not possible because of the memory limitation, which is mainly caused by the constraints (6)

and (7). We noted that the matrix of these constraints contains many zero entries and decided

to modify the model such that it is populated by non-zero entries only. This modification

removed the memory problem, but the required CPU time increased dramatically such that 24
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Figure 4: Impact of parameter Idle on solution time of the problem Feasible(3)

hours were not enough to populate the model. In order to find a compromise between the time

and memory requirements, we have tried to balance the model population with non-zero row

entries only. However, we failed in all our attempts. Then we have applied a heuristic approach

which is to aggregate operations on the same station, whose intervals [aj, bj] intersect, into

one operation, say J , associated with the interval [aJ , bJ ] being the intersection of the original

intervals, and solve the problem with the aggregated operations. By doing this, we reduced

the number of operations from 170 to 28. A feasible solution to the problem MinNumber

with 25 workers was found in one day by solving the problem MinNumber for each of the 20

production cycles. In order to better demonstrate the performance, we conducted experiments

with the problems Feasible(Q) for all values of Q from the interval [LB,UB], see Fig. 5. Note

that, though LB = 23 for several production cycles, the entire line can not operate with less

than 24 workers. Therefore, we did not solve Feasible(Q) for Q = 23. We also did not solve
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Figure 5: Solution time in seconds for the real life instance of the problem Feasible(Q) with
n = 28 aggregated operations

Feasible(Q) for Q > UB. The corresponding entries are blank. A solution with 25 workers for

the problem with the 28 aggregated operations was converted into a feasible solution for the

original real life problem with 170 operations by addressing the precedence constraints. This

result is better than the previously obtained result of 26 workers obtained by Battäıa et al. [7]

for the same problem.

6.2 Quality of heuristics

We performed experiments with 525 instances of the problem Feasible(LB) for n = 20, where

LB =
⌈∑

i∈N pi/d
⌉
. Table 3 contains numbers of instances for which heuristics found a feasible
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solution. Column “CPLEX found (320 instances)” indicates the number of such instances

among 320 instances for which CPLEX was able to find a feasible solution in one hour. Column

“CPEX did not found (205 instances)” indicates the number of such instances among 205

instances for which CPLEX was not able to find a feasible solution in one hour. In total,

heuristics found a feasible solution for 105 instances, that is, for 20% of the instances. CPLEX

with the time limit of one hour managed to find feasible solution for more than 60% of the

instances.

Heuristic CPLEX found CPLEX did not found
(320 instances) (205 instances)

TopLong(α) 1 0
TopLongPath(α) 3 2

TopRandom(α) 1000 runs 30 49
TopRandom(α) 10000 runs 29 60

Table 3: Number of instances of Feasible(LB) with n = 20 for which heuristics found a feasible
solution

We compared the solution quality of the heuristics TopLong(α), TopLongPath(α) and

TopRandom(α). They were tested on the real life instance with 170 operations. We made

experiments for α ∈ {0, 0.1, 0.2, . . . , 1}. The heuristic TopRandom(α) was applied in two

scenarios, with 100 and 1000 runs for each α. The obtained results are demonstrated in Fig. 6.

We noted that 1000 runs of TopRandom(α) for a given α take about 30 minutes and provide

better result than 100 runs of the same heuristic. Heuristic TopLong(α) is not mentioned in

Fig. 6 because it finds unreasonably high numbers of workers for all values of α. We also applied

heuristics to solve the problem with 28 aggregated operations. TopRandom(α) was run 100000

times for each value of α, and all these runs required less than 30 minutes. The results are

given in Fig. 7. Heuristic TopRandom(α) with 10000 runs takes about one minute on average

when applied to the real problem with the 28 aggregated operations. Comparing this fact with

Fig. 5 we can conclude that all our heuristics are at least 10000 faster than the MILP solver

for the same problem Feasible(Q).

The role of the heuristics is important, because in many cases they are able to find a

feasible solution for the problem Feasible(Q) without running the time consuming MILP solver.

Furthermore, the minimal number of workers delivered by all the heuristics can be used as an

upper bound UB in the exact bisection search procedure for the problem MinNumber.
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Figure 6: Heuristic solutions for the real life instance with n = 170

7 Conclusions and suggestions for future research

The following results are obtained for the problem MinNumber: two conventional and one ran-

domized heuristics, a bisection search reduction to a series of feasibility problems Feasible(Q),

a MILP model for the feasibility problem, a relation of the feasibility problem to the multi-mode

project scheduling problems and multiprocessor moldable task scheduling problems, which is

used to establish computational complexity of several special cases of the problemMinNumber,

and computer experiments with the suggested exact and heuristic solution approaches. The

number of workers in the real life problem of the project amePLM is decreased from the earlier

obtained number of 26 to 25.

Computational experiments demonstrated that the instances with up to 20 operations and

15 workers can be solved to optimality in a reasonable time on a standard computer. They also
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Figure 7: Heuristic solutions for the real life instance with n = 28 aggregated operations

showed that the quality of the heuristic solutions for the industrial problem with 170 operations

is sufficiently good. The results can also be useful for modeling and solving relevant multi-mode

project scheduling problems and moldable task scheduling problems.

Developing metaheuristic and matheuristic approaches, which are able to find near optimal

solutions of the problem MinNumber, is interesting from the practical point of view, and

investigating computational complexity of special cases of this problem is interesting from the

theoretical point of view. For example, what is the complexity of the problem MinNumber,

in which pj(r) = p/r and rj ∈ {a, b}, j ∈ N , for given p, a and b?

The studied problem can be extended by relaxing the assumption that the number of stations

and the assignment of operations to the stations are fixed. The relationship between the number

of stations and the minimum number of workers W ∗
max in this setting would be of significant

interest.
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