Alexandre Dolgui 
email: alexandre.dolgui@imt-atlantique.fr
  
Sergey Kovalev 
email: skovalev@inseec.com
  
Mikhail Y Kovalyov 
email: kovalyovmy@newman.bas-net.by
  
Sergey Malyutin 
  
Ameur Soukhal 
email: ameur.soukhal@univ-tours.fr
  
Optimal workforce assignment to operations of a paced assembly line

Keywords: combinatorial optimization, assembly line, workforce assignment, scheduling, complexity analysis, mixed integer linear programming, heuristics

We study a paced assembly line intended for manufacturing different products. Workers with identical skills perform non-preemptable operations whose assignment to stations is known. Operations assigned to the same station are executed sequentially, and they should follow the given precedence relations. Operations assigned to different stations can be performed in parallel. The operation's processing time depends on the number of workers performing this operation.

The problem consists in assigning workers to operations such that the maximal number of workers employed simultaneously in the assembly line is minimized, the line cycle time is not exceeded and the box constraints specifying the possible number of workers for each operation are not violated. We show that the general problem is NP-hard in the strong sense, develop conventional and randomized heuristics, propose a reduction to a series of feasibility problems, present a MILP model for the feasibility problem, show relation of the feasibility problem to multi-mode project scheduling and multiprocessor scheduling, establish computational complexity of several special cases based on this relation and provide computer experiments with real and simulated data.

Introduction

We study a paced unidirectional assembly line consisting of m stations and manufacturing different products. Every station switches from processing a current product to the next one simultaneously. The time interval between two consecutive switches is called cycle and its duration is called cycle time. Cycle time remains the same for every cycle. Motivated by an industrial case, we study a workforce assignment problem for a single cycle of such a line. Without loss of generality, it is assumed that the cycle starts at time zero. In a given cycle, workers at station k execute a given set N k of operations, k = 1, . . . , m. Parallel execution of operations is possible if these operations belong to different stations. The order of operations assigned to the same station should follow a given technological process characterized by precedence relations between the operations. If operation i is followed by operation j, then i must be completed before the start time of j. If operations i and j have no precedence relation, then they are called independent and can be performed in any order. Operations without predecessors can start at time zero. The set of precedence relations of operations at station k is represented by a directed acyclic graph G k = (N k , U k ), where N k is the set of operations assigned to station k and U k , U k ⊂ N k × N k , is the set of oriented pairs of operations (i, j) of station k such that (i, j) ∈ U k if and only if operation i is followed by operation j. Let N = ∪ m k=1 N k , n = |N |, and U = ∪ m k=1 U k . Define graph G = (N, U ). Operations are executed by at most r max identical workers. Processing time p j (r) of an operation j is a positive non-increasing function of the number of workers r assigned to this operation. Operations are non-preemptive, and if a worker starts performing an operation, he or she cannot switch to any other operation before finishing the current one. Workers cannot execute more than one operation simultaneously. The time spent by a worker to move from one station to another is negligibly small compared to any processing time of any operation. Therefore, it is assumed that any worker can move from one operation to another in zero time.

Workforce assignment consists in creating a schedule, in which the start time of each operation, its processing time and the sequence of operations for each worker are determined. Given a schedule, the number r j of workers assigned to operation j, the operation start time S j and the operation completion time C j can be calculated for each operation j such that C j = S j + p j (r j ), j = 1, . . . , n. The makespan of a schedule is defined as C max = max j∈N {C j }. This value is equal to the line cycle time.

The following constraints must be satisfied in a feasible schedule:

• Box constraints. For technical reasons, the number of workers assigned to an operation must be within certain limits: a j ≤ r j ≤ b j , where a j and b j are given positive integer numbers, j = 1, . . . , n.

• Cycle time constraint. In order to achieve the desired level of productivity, the line cycle time must not be exceeded: C max ≤ d, j = 1, . . . , n, where d is a given upper bound on the line cycle time.

The criterion of the problem, that we denote as M inN umber, is the minimization of the maximal number of workers employed simultaneously in the line,

W max = max 0≤t≤d { ∑ j∈N (t) r j } ,
where N (t) is the set of operations executed at time instant t. Let W * max denote the minimal W max value. Assume without loss of generality that the number of available workers is such that

r max ≤ ∑ j∈N b j , because otherwise we can reset r max =
∑ j∈N b j , and that

∑ j∈N k p j (b j ) ≤ d for k = 1, . . . , m and max { max j∈N {a j }, ⌈ ∑ j∈N p j (b j )/d ⌉ } ≤ r max , because otherwise the problem M inN umber has no solution.
For the sake of clarity, consider an example in which the assembly line consists of two stations. There are eight operations and four available workers. Precedence graph for this example is presented in Figure 1. Processing times of operations depending on the number of workers are given in Table 1.

An empty entry for a given number of workers and operation j means that this number of workers is either less than a j or greater than b j . Note that all four workers can be used on the line, but only one, two or three of them can be used to perform the same operation. A Gantt chart illustrating a feasible schedule with an upper bound on line cycle time d = 44 and maximum number of workers r max = 4 is given in Figure 2. Problem M inN umber appeared as a sub-problem on workforce planning for an assembly line that produces three automobile engine models in the European project amePLM [1]. Each engine model visits stations in the same order and requires the same set of operations. Operation processing times depend on the engine model and they are also inversely proportional to the number of used workers. A detailed description of this industrial case is given in Battaïa et al. [START_REF] Battaïa | Workforce minimization for a mixed-model assembly line in the automotive industry[END_REF]. Preliminary results of our studies of the problem M inN umber are presented at the 15th IFAC Symposium [START_REF] Dolgui | Minimizing the number of workers for one cycle of a paced production line[END_REF]. In [START_REF] Dolgui | Minimizing the number of workers for one cycle of a paced production line[END_REF], a special case of the problem M inN umber is addressed, in which graphs G k are connected, as they are in the industrial case, though, this specificity is not precisely mentioned. The current paper studies a more general problem formulation where the graph is disconnected. Here we correct and improve the draft heuristics and MILP model suggested in [START_REF] Dolgui | Minimizing the number of workers for one cycle of a paced production line[END_REF]. This paper additionally contains an updated and extended literature review, a classification of computational complexity of special cases and an extensive computational study. A particular result of this new research is that the number of workers in the real life problem of the project amePLM is decreased from 26, obtained by Battaïa et al. [START_REF] Battaïa | Workforce minimization for a mixed-model assembly line in the automotive industry[END_REF], to 25.

The rest of the paper is organized as follows. The next section presents a literature review.

In Section 3, we present the exact bisection search procedure, which consists in an iterative solution of feasibility problems F easible(Q) for a given number Q of workers. This section also provides the description of a Mixed Integer Linear Programming (MILP) model for problems

F easible(Q).
In Section 4, we show the relationship of the problem F easible(Q) to the multimode project scheduling problems and multiprocessor scheduling problems and establish the computational complexity of several special cases of the problem M inN umber based on the relationship to the latter problems. Three constructive, two conventional and one randomized heuristics are given in Section 5. Computational study of the heuristics and MILP model is described in Section 6. Section 7 contains a summary of the results and suggestions for future research.

Literature review

The assembly line design, balancing and scheduling problems are widely studied in the literature [START_REF] Dolgui | Supply chain engineering: useful methods and techniques[END_REF]. The earliest studies of optimal workforce assignment problems concentrated on the two-dimensional assignment models with simple constraints. They were initiated in the 19th century and have become classics of combinatorial optimization, see the monograph of Burkard et al. [START_REF] Burkard | Assignment problems[END_REF]. Later on, a number of practical constraints were taken into consideration in timetabling, rostering, shift scheduling and resource constrained project scheduling models, as it was described, e.g., in Willemen [START_REF] Willemen | School timetable construction: algorithms and complexity[END_REF], Ernst et al. [START_REF] Ernst | Staff scheduling and rostering: A review of applications, methods and models[END_REF], Naveh et al. [START_REF] Naveh | Workforce optimization: Identification and assignment of professional workers using constraint programming[END_REF], Rocha et al. [START_REF] Rocha | Quantitative approaches on staff scheduling and rostering in hospitality management: An overview[END_REF],

Miller [START_REF] Miller | Fundamentals of shiftwork scheduling, 3rd Edition: Fixing Stupid[END_REF] and Artigues et al. [START_REF] Artigues | Resource-constrained project scheduling: models, algorithms, extensions and applications[END_REF].

There exists a vast body of literature on the assignment of workers to operations of a production line. Vidic [START_REF] Vidic | Developing methods to solve the workforce assignment problem considering worker heterogeneity and learning and forgetting[END_REF] studies the effect of the assignment of a fully cross-trained workforce on the throughput of a serial production line. She focuses on dynamic work-sharing and fixed workforce assignment and suggests two models. One model assumes that workers performance is determined by their steady-state productivity rate and the other model assumes that workers' productivity rates depend of their learning and forgetting characteristics. Heuristic methods are developed.

A recent review and classification of the literature related to workforce planning problems with skills is presented by De Bruecker et al. [START_REF] De Bruecker | Workforce planning incorporating skills: State of the art[END_REF]. Corominas et al. [START_REF] Corominas | Balancing assembly line with skilled and unskilled workers[END_REF] study a problem in which skilled permanent and unskilled temporary workers have to be assigned to an assembly line.

Skilled workers require less time to finish a task than unskilled ones, and unskilled workers must work alongside at least one skilled worker. The criterion is to minimize the number of unskilled workers. The authors suggest a binary linear programming formulation for this problem.

Blum and Miralles [START_REF] Blum | On solving the assembly line worker assignment and balancing problem via beam search[END_REF] employ beam search heuristics for the problem of minimizing the production line cycle time, provided that the number of workers is fixed. Karabak et al. [START_REF] Karabak | An optimization model for worker assignment of a mixed model vehicle production assembly line under worker mobility[END_REF] study a workforce assignment problem in which some workers are qualified to perform a task while others are not. Walking durations between different tasks are taken into consideration.

The criterion is to minimize the number of workers. Due to the high complexity of the problem, the authors apply heuristics for instances with up to 30 operations. Araujo et al. [START_REF] Araújo | Two extensions for the ALWABP: Parallel stations and collaborative approach[END_REF] The case of uncertain worker dependent processing times, expressed by intervals of possible values, is considered by Moreira and Costa [START_REF] Moreira | Robust assembly line balancing with heterogeneous workers[END_REF]. The goal is to integrate workers with disabilities in an assembly line while minimizing the number of extra stations needed. An extension of the ALWABP to minimize the expected cycle time under uncertain worker availability is proposed by Ritt et al. [START_REF] Ritt | The assembly line worker assignment and balancing problem with stochastic worker availability[END_REF]. The case of non-identical workers of this problem is studied by Moreira and Costa [START_REF] Moreira | Hybrid heuristics for planning job rotation schedules in assembly lines with heterogeneous workers[END_REF]. A job rotation schedule has to be developed. Two goals are considered: minimization of the sum of cycle times and maximization of the number of different operations each worker executes in a complete rotation period, considering all the sub-period schedules.

A three-steps solution procedure is used by the authors. The first step builds single period schedules. In the second step a MIP formulation is applied to find a complete rotation plan.

The third step improves the obtained solutions. Mutlu et al. [START_REF] Mutlu | An iterative genetic algorithm for the assembly line worker assignment and balancing problem of type II[END_REF] develop iterative genetic algorithm for ALWABP with the cycle time minimization criterion. Vilá and Pereira [START_REF] Vilà | A branch-and-bound algorithm for assembly line worker assignment and balancing problems[END_REF] propose an exact enumeration procedure for the same problem. The new lower bounds allowed the authors to improve results for a benchmark set of instances. Koltai and Tatay [START_REF] Koltai | Formulation of workforce skill constraints in assembly line balancing models[END_REF] propose a general framework to model skill requirements and skill conditions for assembly line balancing models.

A simultaneous minimization of the number of workers and sequence-dependent setups in mixed-model assembly lines is studied by Giard and Jeunet [START_REF] Giard | Optimal sequencing of mixed models with sequence-dependent setups and utility workers on an assembly line[END_REF]. The goal is to avoid line stoppages with the minimal number of temporarily hired utility workers. They propose an exact method allowing to obtain optimal solutions in reasonable time for instances with up to 15 production items. A new assembly line problem with qualification requirements of operations and qualification levels of workers is introduced by Sungur and Yavuz [START_REF] Sungur | Assembly line balancing with hierarchical worker assignment[END_REF]. In the hierarchical workforce structure, a lower qualified worker can be substituted by a higher qualified one (but not vice versa) with a certain cost. The objective is to minimize the total cost, while respecting a given cycle time. An ILP model is used to solve this problem. The part supply scheduling problem in line-integrated supermarkets with the workforce minimization criterion and no stock out constraint is studied by Boysen and Emde [START_REF] Boysen | Scheduling the part supply of mixed-model assembly lines[END_REF]. The authors use a heuristic decomposition approach to solve this problem and draw important conclusions for managers. A scheduling problem with the criterion of workforce minimization is treated by Camm et al. [START_REF] Camm | Scheduling parallel assembly workstations to minimize a shared pool of labor[END_REF].

The authors deal with a paced line composed of identical parallel workstations. The number of workers needed at a workstation depends on the job processed and it is fixed. A two-stage approach is applied. The first stage is a MILP model that determines starting times. The second stage is a polynomial time procedure which assigns jobs to specific assembly workstations.

There is a stream of publications in which workforce requirements of the operations are assumed to be fixed, there is one operation for any product on each station of the transfer line, and the problem is to find a cyclic sequence of products such that the maximum number of workers needed at any time is minimized. The relevant results can be found in Akagi et al.

[3], Wilson [START_REF] Wilson | Formulation of a problem involving assembly lines with multiple manning of work stations[END_REF], Lutz and Davis [START_REF] Lutz | Development of operator assignment schedules: a DSS approach[END_REF], Lee and Vairaktarakis [START_REF] Lee | Workforce planning in mixed model assembly systems[END_REF], Vairaktarakis and Winch [START_REF] Vairaktarakis | Worker cross-training in paced assembly lines[END_REF],

Kouvelis and Karabati [START_REF] Kouvelis | Cyclic scheduling in synchronous production lines[END_REF], Vairaktarakis et al. [START_REF] Vairaktarakis | Workforce planning in synchronous production systems[END_REF], Vairaktarakis and Cai [START_REF] Vairaktarakis | Complexity of workforce scheduling in transfer lines[END_REF] and Kovalyov et al. [START_REF] Kovalyov | Workforce planning for cyclic production of multiple parts[END_REF].

Exact bisection search procedure

In order to solve problem M inN umber we use an exact bisection search procedure, which consists in an iterative solution of feasibility problems. In a feasibility problem we try to find a feasible schedule for a given number Q of workers. We denote this problem as F easible(Q).

Let LB and U B be lower bound and upper bound, respectively, on the value of Q. The general description of the bisection search procedure is as follows.

Step 1 Calculate LB and U B.

• If a feasible solution of problem F easible(LB) is found, then it is an optimal solution of the problem M inN umber, stop. Otherwise, solve the problem F easible(U B).

• If a feasible solution of F easible(U B) is found, then go to Step 2. Otherwise, solve the problem F easible(r max ).

• If no feasible solution of F easible(r max ) is found, then the problem M inN umber has no feasible solution, stop. Otherwise, set U B = r max and go to Step 2.

Step 2 Generic iteration of bisection search.

• If LB + 1 = U B, then an optimal solution for the problem M inN umber is found.

It is the feasible schedule obtained for the problem F easible(U B) in Step 1. Once passed to Step 2, the bisection search procedure delivers an optimal solution in

• If LB + 2 ≤ U B, then set Q = ⌈ U B+LB
O(log 2 (U B -LB)) iterations. The problem F easible(Q) for a certain Q, Q ∈ {LB, LB + 1, . . . , U B} is solved within each iteration.
We now describe a MILP model for the problem F easible(Q). It is convenient to introduce the following notation:

• N -: subset of vertices from N , which have no successor;

• I: set of vertex pairs (i, j) that are independent with respect to the precedence constraints,

I = {(i, j) | i ∈ N, j ∈ N, i ̸ = j, (i, j) ̸ ∈ U, (j, i) ̸ ∈ U }; • I k = {(i, j) | (i, j) ∈ I, i ∈ N k , j ∈ N k }, k = 1, . . . , m; • I gk = {(i, j) | (i, j) ∈ I, i ∈ N g , j ∈ N k }, g = 1, . . . , m, k = 1, . . . , m, g ̸ = k.
Decision variables are the following:

• x ir ∈ {0, 1}, i ∈ N , r = 1, . . . , Q: x ir = 1 if worker r is assigned to operation i, and

x ir = 0, otherwise;

• y ij ∈ {0, 1}, (i, j) ∈ I: y ij = 1 if operation j starts after or on the completion of operation i, and y ij = 0, otherwise. If y ij = 0 it means that one of two possible situations occurs:

i starts after or on the completion of j, i and j are partially performed in parallel. In a feasible schedule i and j must be, in such case, performed by different workers.

• z ir ∈ {0, 1}, i ∈ N , r = 1, . . . , Q: z ir = 1 if r workers execute operation i, and z ir = 0, otherwise;

• S ir ≥ 0, i ∈ N , r = 1, . . . , Q: start time of operation i if it is executed by worker r, and any non-negative value otherwise.

A Mixed Integer Linear Programming (MILP) formulation of the problem F easible(Q) is as follows.

Problem F easible(Q):

S ir + Q ∑ q=1 p i (q)z iq ≤ d, i ∈ N -, r = 1, . . . , Q, (1) ∑ i∈N Q ∑ q=1 p i (q)z iq ≤ Qd, ( 2 
) Q ∑ r=1 z ir = 1, i ∈ N, ( 3 
) Q ∑ r=1 x ir = Q ∑ r=1 rz ir , i ∈ N, ( 4 
)
S jh -S iq ≥ Q ∑ r=1 p i (r)z ir , (i, j) ∈ U, h, q = 1, . . . , Q, ( 5 
)
S jh -S iq ≥ Q ∑ r=1 p i (r)z ir -(d + 1)(3 -y ij -x ih -x jq ), (i, j) ∈ I k , ( 6 
) k = 1, . . . , m, h, q = 1, . . . , Q, S jh -S ih ≥ Q ∑ r=1 p i (r)z ir -(d + 1)(3 -y ij -x ih -x jh ), (i, j) ∈ I gk , (7) 
g, k = 1, . . . , m, g ̸ = k, h = 1, . . . , Q, S ih -S iq ≤ (d + 1)(2 -x ih -x iq ), i ∈ N, h = 1, . . . , Q, q = h + 1, . . . , Q, ( 8 
)
S iq -S ih ≤ (d + 1)(2 -x ih -x iq ), i ∈ N, h = 1, . . . , Q, q = h + 1, . . . , Q, ( 9 
)
y ij + y ji ≤ 1, (i, j) ∈ I, ( 10 
)
x ir + x jr -1 ≤ y ij + y ji , (i, j) ∈ I, r = 1, . . . , Q, ( 11 
) Q ∑ r=1 rz ir ≤ b i , i ∈ N, ( 12 
)
a i ≤ Q ∑ r=1 rz ir , i ∈ N, ( 13 
)
x ir , y ij , z ir ∈ {0, 1}, i, j ∈ N, r = 1, . . . , Q, ( 14 
)
S ir ≥ 0, i ∈ N, r = 1, . . . , Q. ( 15 
)
Constraints (1) address the cycle time d on each station by considering completion times of operations that have no successors. Constraints (2) guarantee that n small rectangles with dimensions (number of workers, operation time) fit the rectangle with dimensions (Q, d). Constraints (3) oblige every operation to be processed by only one number of workers. Constraints (4) verify that if some operation i has to be executed by a certain number of workers, for instance v, and, therefore, Z iv = 1, then exactly v variables x ir are equal to 1. Constraints [START_REF] Artigues | Resource-constrained project scheduling: models, algorithms, extensions and applications[END_REF] require that the starting times of operations i and j performed by any number of workers are at least p i (r) time units away from each other if i precedes j. Constraints (6) enforce worker h to start operation j after or at the time when worker q completes operation i, if i and j belong to the same station k. In such case y ij = 1, x iq = 1, x jh = 1. Constraints (7) do the same as [START_REF] Barketau | Scheduling arbitrary number of malleable tasks on multiprocessor systems[END_REF], but in the case when operations i and j are on different stations and they are performed by the same worker. Constraints ( 8) and ( 9) force all workers assigned to the same operation to start at the same time. Constraints [START_REF] Blazewicz | Scheduling multiprocessor tasks to minimize schedule length[END_REF] guarantee that, for a pair of independent operations i and j, i.e. operations without precedence relation between them, the situation in which both y ij = 1 and y ji = 1 does not occur. Constraints [START_REF] Blazewicz | Handbook on parallel and distributed processing[END_REF] ensure that if a pair of independent operations i and j are assigned to the same worker r, then one of them must start after or on the completion of the other, i.e., y ij = 1 and y ji = 1 cannot happen at the same time. Suppose, for example, that a pair of independent operations i and j are performed by the same worker r. In such case x ir = 1 and x jr = 1. Constraints ( 10) and ( 11) ensure that y ij = 1 and y ji = 1 cannot happen at the same time. Besides, constraints [START_REF] Artigues | Resource-constrained project scheduling: models, algorithms, extensions and applications[END_REF], for which r = h = q, rule out a simultaneous execution of operations i and j by worker r. If, for example, worker r is assigned to only one of two operations i and j, or not assigned to any of them, then operations i and j can be performed independently in time. In such case y ij = 0 and y ji = 0. Constraints [START_REF] Besikci | Resource dedication problem in a multi-project environment[END_REF] and [START_REF] Blum | On solving the assembly line worker assignment and balancing problem via beam search[END_REF] verify that the number of workers assigned to every operation respects the predetermined limits.

Building a schedule implies the knowledge of operations' start times, their durations and sequence for every worker. A solution of the MILP problem F easible(Q) provides this information. The MILP model is tested in the computational study in Section 6.

Relation to multi-mode project scheduling and multiprocessor scheduling. Computational complexity

The problem F easible(Q) can be viewed as a multi-mode project scheduling problem, in which an activity (operation) is assigned a mode (set of workers) and has a mode-dependent duration, see Kolisch et al. [START_REF] Kolisch | Characterization and generation of a general class of resource-constrained project scheduling problems[END_REF], Tseng and Chen [START_REF] Tseng | Two-phase genetic local search method for multimode resource-constrained project scheduling problem[END_REF] and Artigues et al. [START_REF] Artigues | Resource-constrained project scheduling: models, algorithms, extensions and applications[END_REF] for the definitions of the latter problem. Mathematical programming formulations of multi-mode project scheduling problems encountered in literature have decision variables with indices whose number equals the number of modes, see Kolisch and Sprecher [START_REF] Kolisch | PSPLIB -A project scheduling problem library: OR Software -ORSEP Operations Research Software Exchange Program[END_REF]. A solution of the problem F easible(Q) should specify not only the number of workers executing an operation, but also identify them. Therefore, there can be 2 Q -1 different modes and as many variables in a problem's formulation based on modes. In order to solve multi-mode project scheduling problems, authors often recur to branch-and-bound methods, metaheuristics, time-and event-indexed MILP formulations, see, for example, Monma et al. [START_REF] Monma | Convex resource allocation problems on directed acyclic graphs: duality, complexity, special cases, and extensions[END_REF], Demeulemeester et al. [START_REF] Demeulemeester | Optimal procedures for the discrete time/cost tradeoff problem in project networks[END_REF], Salewski et al. [START_REF] Salewski | Project scheduling under resource and mode identity constraints: Model, complexity, methods, and application[END_REF], Ranjbar and Kianfar [START_REF] Ranjbar | Solving the discrete time/resource trade-off problem in project scheduling with genetic algorithms[END_REF], Li and Womer [START_REF] Li | Optimizing the supply chain configuration for make-to-order manufacturing[END_REF], Besikci et al. [START_REF] Besikci | Resource dedication problem in a multi-project environment[END_REF], and Ghoddousi et al. [START_REF] Ghoddousi | Multi-mode resource-constrained discrete time-cost-resource optimization in project scheduling using non-dominated sorting genetic algorithm[END_REF].

Problem F easible(Q) is related to the multiprocessor moldable task scheduling problem, in which the number of identical processors allocated to a computer task influences its processing time. Once a task is started, the number of allocated processors cannot be changed. Processors play the role of workers. Box constraints on the number of processors allocated to the same task are not considered.

Drozdowski [START_REF] Drozdowski | Scheduling multiprocessor tasks -An overview[END_REF] provides a state-of-the-art of multiprocessor task scheduling problems. According to this paper, the makespan minimization equivalent of the problem F easible(Q), in which a single operation is assigned to each station, is denoted as P |spdp -lin -δ j |C max if task processing times are inversely proportional to the number of assigned processors, p j (r) = p j /r.

It is denoted as P |spdp -any|C max if processing times are arbitrary functions of the number of processors.

Off-and on-line heuristics with performance guarantees are often developed for multiprocessor task scheduling problems, see, for example, Wang and Cheng [START_REF] Wang | List scheduling of parallel tasks[END_REF][START_REF] Wang | A heuristic of scheduling parallel tasks and its analysis[END_REF], Choundhary et al. [START_REF] Choundhary | Optimal processor assignment for a class of pipelined computations[END_REF], Srinivasa Prasanna and Musicus [START_REF] Srinivasa Prasanna | Generalized multiprocessor scheduling for directed acyclic graphs[END_REF], Blazewicz et al. [START_REF] Blazewicz | Handbook on parallel and distributed processing[END_REF], Blazewicz et al. [START_REF] Blazewicz | Berth and quay crane allocation: a moldable task scheduling model[END_REF], Dutot et al. [START_REF] Dutot | Scheduling parallel tasks approximation algorithms[END_REF] and Hunold [START_REF] Hunold | One step toward bridging the gap between theory and practice in moldable task scheduling with precedence constraints[END_REF].

The relation with multiprocessor task scheduling allows establishing the computational complexity of the following special cases of the problem F easible(Q), in which a single operation is assigned to each station: 1) p j (r) = 1 for any r, a j = b j , j ∈ N ; 2) p j (r) = 1 for any r,

a j = b j , b j ∈ {1, . . . , ∆}, j ∈ N , ∆ is a given constant; 3) Q = 5, a j = b j , j ∈ N ; 4) Q ∈ {2, 3}, a j = b j , j ∈ N ; 5) a j = 0, b j = Q, p j (r) = p j /g j (r), g j (r
) is a convex increasing function; 6) and Barketau et al. [START_REF] Barketau | Scheduling arbitrary number of malleable tasks on multiprocessor systems[END_REF]. In an optimal solution of the latter problem, each task is assigned to all available processors. Case 6) is strongly NP-hard, because it is equivalent to the decision version of the classic scheduling problem P ||C max , which is NP-hard in the strong sense due to Garey and Johnson [START_REF] Garey | Computers and intractability: A guide to the theory of NP-completeness[END_REF].

a j = b j = 1, j ∈ N .
We now prove that the problem M inN umber is NP-hard in the strong sense if each station is composed of only one operation, values a j and b j differ by one unit, and operation processing times are inversely proportional to the number of assigned workers, as they are in the industrial case of the project amePLM [1], which motivates our studies.

Theorem 1 Problem M inN umber is NP-hard in the strong sense if a single operation is assigned to each station, a j = b j -1 and p j (r) = p j /r, j ∈ N .

Proof: We use a reduction from the NP-complete problem 3-Partition, see Garey and Johnson [START_REF] Garey | Computers and intractability: A guide to the theory of NP-completeness[END_REF].

3-Partition: Given 3v+1 positive integer numbers h 1 , . . . , h 3v and H satisfying ∑ 3v j=1 h j = vH, does there exist a partition of the set {1, . . . , 3v} into subsets Y 1 , . . . , Y v such that ∑ j∈Yt h j = H for t = 1, . . . , v? Assume without loss of generality that h j ≥ v +1, j = 1, . . . , 3v. Otherwise, all numbers h 1 , . . . , h 3v and H can be multiplied by v + 1 without any influence on the problem's complexity.

Using an instance of 3-Partition, construct an instance of the problem M inN umber, in which there are n = 3v operations and the same number of stations, operation j is assigned to station j, p j (r) = h j /r, a j = h j -1, b j = h j , j = 1, . . . , n, and d = v. Thus, the processing time of operation j can take one of the two values:

1 or 1 + 1 h j -1 , where 1 ≤ 1 + 1 h j -1 ≤ 1 + 1 v , j = 1, . . . , n.
Note that any pair of operations can be performed in parallel if they are assigned to different workers. We will prove that a feasible solution for this instance with value W * max ≤ H exists if and only if the original instance of 3-Partition has a solution.

Suppose that the problem M inN umber has a feasible solution with r j workers assigned to operation j, j = 1, . . . , n, and the maximal number of workers employed simultaneously in the line W * max ≤ H. In order to illustrate this solution, let us represent an assignment of a worker i to operation j as a small rectangle of length p j (r j ) and height 1, located in line i of a large rectangle of length v and height H. Thus, the solution of M inN umber can be viewed as a large rectangle with a set of small rectangles inscribed into it, so that small rectangles do not overlap one another. Figure 2 can serve as an example of such representation. Since rp j (r) = h j for any r, each operation j adds h j to the total area of the large rectangle regardless of the workforce assignment. The union of small non-overlapping rectangles must form the large rectangle, because ∑ n j=1 h j = vH. Now we will prove that every operation j is assigned h j workers. Assume the contrary: there exists at least one operation q with h q -1 workers assigned to it. Consider one of these workers. Let he or she be employed to perform w operations. Let J be a subset of w. Each operation j ∈ J is assigned h j -1 workers. Since w = v, we have w ≤ v -1. Knowing that any operation must be processed for at least one time unit, and the duration of at least one operation exceeds one time unit, we conclude that this worker's total working time is greater than v. Therefore, the cycle time is exceeded. The total working time of this worker is equal to

w + ∑ j∈J 1 h j -1 ≤ v -1 + |J| v ≤ v -1 + w v ≤ v -1 + v -1 v < v.
This strict inequality means that there is a space in the large rectangle, which is not filled in by any small rectangle. This is a contradiction. Therefore, each operation j is assigned h j workers. As a result, processing times of all operations are equal to 1.

Let Y t be the set of operations executed simultaneously in the time interval [t-1, t]. Since the union of small rectangles forms the large rectangle, equality ∑ j∈Yt h j = H holds for t = 1, . . . , v, as required for the part "only if" of the proof.

Part "if" is trivial. If Y 1 , . . . , Y v is a solution of the problem 3-Partition, then assign h j workers to operation j, j = 1, . . . , n, and execute operations of the set Y t simultaneously in the time interval [t -1, t], t = 1, . . . , v.

Computational complexity results are summarized in Table 2. 

(r) = 1, a j = b j strongly NP-hard p j (r) = 1, a j = b j , b j ∈ {1, . . . , ∆}, ∆ is a given constant O(n log r max ) r max = 5, a j = b j strongly NP-hard r max ∈ {2, 3}, a j = b j pseudo-polynomially solvable p j (r) = p j /g j (r), g j (r) is convex increasing, a j = 0, b j = r max O(n log r max ) a j = b j = 1 strongly NP-hard p j (r) = h j /r, a j = h j -1, b j = h j strongly NP-hard

Heuristics

Besides the exact bisection search procedure, we also use three parametrized constructive heuristics: two conventional ones and one randomized. All the heuristics use a numerical parameter α, 0 ≤ α ≤ 1, which affects their behavior in such a way that a higher value of α tends to assign workers with larger ready times to a selected operation.

Conventional heuristics T opLong(α) and T opLongP ath(α)

Step 1 Determine an initial hypothetical minimal total number of workers, W , such that max j∈N {a j } ≤ W ≤ r max . A specialist in production planning can provide the initial value of W . Otherwise, we can set W = max

{ max j∈N {a j }, ⌈ ∑ j∈N p j (b j )/d ⌉ } .
Set r j = a j and calculate p j (r j ) for j = 1, . . . , n. Initiate ready times T i of workers:

T i = 0, i = 1, .
. . , W , and ready times t j of operations: t j := 0, j = 1, . . . , n.

Step 2 Identify the set N + of operations without predecessor in graph G. In heuristic T opLongP ath(α), calculate the longest path P * connecting a vertex of N + with any other vertex of graph G. Path length is the total weight of its vertices, and the weight of vertex j is p j (r j ).

Step 3 In heuristic T opLong(α) select j * ∈ N + with the largest value p j (r j ). In heuristic T opLongP ath(α) select j * as the first vertex of the longest path P * .

Let the workers be ordered such that

T i 1 ≤ • • • ≤ T i W . Determine sets of r j * workers X h := {i h-r j * +1 , i h-r j * +2 , . . . , i h }, h = r j * , r j * +1, . . . , k, where k satisfies T i k ≤ αT i W +(1-α)T ir j * and T i k+1 > αT i W + (1 -α)T ir j * , T i W +1 := +∞. For example, X k = {i 1 , . . . , i r j * } if α = 0 and X k = {i W -r j * +1 , . . . , i W } if α = 1. Select index h which minimizes max{t j * , T i h } - T h-r j * +1 for r j * ≤ h ≤ k. Let it be index h * .
Assign workers of the set X h * to operation j * so that all of them start performing this operation at the same time t * := max{t j * , T i h * }. Note that index h * is selected such that the maximum idle time of workers in the sets X h , h = r j * , r j * + 1, . . . , k, just before they start processing operation j * , is minimized.

Update ready times of workers so that T h := t * + p j * (r j * ), h ∈ X h * . Update ready times of immediate successors of vertex j * so that t j := max{t j , t * } + p j * (r j * ), j ∈ A(j * ), where

A(j * ) is the set of immediate successors of j * in graph G. Update graph G by removing vertex j * from it.
If G is empty, then a complete schedule is constructed and the following computations are performed:

1. Determine the makespan C max = max{T i | i = 1, . . . , W }.

2. If the line cycle time is not violated, C max ≤ d, then return the constructed feasible schedule with W workers and stop.

3. Suppose that C max > d.

• If W = r max , then return the infeasible schedule with r max workers and stop.

Even with the maximal possible number of workers, the heuristic could not find a feasible schedule. If G is not empty, then perform Step 2.

• If W ≤ r max -1,
There are three possible outputs of heuristics T opLong(α) or T opLongP ath(α):

• Feasible schedule is obtained.

• Infeasible schedule with r max workers is found.

• Solving time limit is reached. The last found infeasible schedule is returned.

If the solution time limit permits, then heuristics T opLong(α) and T opLongP ath(α) can be run for several values of α, 0 ≤ α ≤ 1.

The randomized heuristic T opRandom(α) is similar to T opLong(α) with only one difference. At Step 3 of T opRandom(α) operation j * ∈ N + is selected at random. Heuristic

T opRandom(α) can be run several times and for several values of α until the solving time limit is reached. Computational experiments with the heuristics are described in Section 6.

Computational study

We performed two series of computational experiments with the problem M inN umber. The goal of the first series is to establish the maximum problem size in terms of the number of operations that can be solved to optimality in a reasonable time based on the bisection search and the MILP formulation. The goal of the second series is to establish the quality of the heuristics. We used the data generator for the simple assembly line balancing problem described in Otto et al. [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF], extending it to match the specificity of the problem M inN umber. This generator constructs instances with the number of operations n = 20 and n = 50. We did the same. The number of stations, the assignment of operations to the stations and the box constraints are selected to conform with the real life problem of our industrial partner, see Battaïa et al. [START_REF] Battaïa | Workforce minimization for a mixed-model assembly line in the automotive industry[END_REF]. Processing times are set to p j (1) = p j , where p j are generated as in [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF], and p j (r) = p j /r for r ≥ 2. We assumed that each connected component of a precedence graph, generated as in [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF], corresponds to a station. Values a j ∈ {1, 2} are generated with probability 2/3 for a j = 1 and probability 1/3 for a j = 2, and values b j = 4 for all j, as in the industrial application. The source code of the experiment is available on request at GitHub [2].

Note that an introduction of the workforce assignment aspect to the instances in Otto et al. [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF] drastically increases the solution search space, multiplying its cardinality by approximately n 2 , where the power of 2 is the difference between upper and lower bounds on the number of workers for each operation. Therefore, if an instance with n = 50 in [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF] can be solved to optimality in one hour, then one can expect that the corresponding instance of our problem can be solved to optimality in about 2500 hours (more than three months). Our experiment with 525 generated instances for n = 20 has taken 308 hours (almost 13 days) of continuous computations. We have also spent few days trying to solve instances with n = 50, but no such instance was solved. Therefore, below we do not present results for instances with n = 50.

Exact solution by MILP solver

The Otto et al. [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF] suggested a factorial analysis to categorize performance of heuristic algorithms with respect to the input parameters. Since our MILP method is a heuristic because of the time limit, we applied the analysis in [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF] to it. The only parameter which separated solved and unsolved instances in our experiments was the parameter "trickiness", which is a statistically estimated share of non-optimal solutions in the solution space of a problem instance. The statistics is formed by 10000 solutions generated randomly. In our experiments, all unsolved instances where "extremely tricky" or "open". The characteristic "open" applies if an optimal solution of the problem instance is not known. Note that we used values of the parameter "trickiness" which apply to the original instances in [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF], and not to the corresponding instances of the problem F easible(Q), because otherwise we would need several months of computations to collect the required statistics. We also noticed that the idle time parameter calculated as Idle = Qd-∑ j∈N p j Qd impacts the performance of the MILP method. This impact is illustrated in Fig. 4 for instances of the problem F easible [START_REF] Akagi | A method for assembly line balancing with more than one worker in each station[END_REF]. One can see that the higher values of Idle imply the smaller solution time of the problem F easible [START_REF] Akagi | A method for assembly line balancing with more than one worker in each station[END_REF].

We conducted experiments with the real life problem from the project amePLM [1], where n = 170. In this problem, there are 20 production cycles, which differ by the assignment of the same set of products (engines) to the stations, see [START_REF] Battaïa | Workforce minimization for a mixed-model assembly line in the automotive industry[END_REF]. The time of the same operation for different products is different. The cycles are independent because the travel times between stations are neglected. The problem is to minimize the number of workers needed for each cycle.

The number of workers employed in the line will be equal to the maximal number of workers obtained for all cycles. For this problem, the straightforward solution of the MILP model was not possible because of the memory limitation, which is mainly caused by the constraints [START_REF] Barketau | Scheduling arbitrary number of malleable tasks on multiprocessor systems[END_REF] and [START_REF] Battaïa | Workforce minimization for a mixed-model assembly line in the automotive industry[END_REF]. We noted that the matrix of these constraints contains many zero entries and decided to modify the model such that it is populated by non-zero entries only. This modification removed the memory problem, but the required CPU time increased dramatically such that 24 hours were not enough to populate the model. In order to find a compromise between the time and memory requirements, we have tried to balance the model population with non-zero row entries only. However, we failed in all our attempts. Then we have applied a heuristic approach which is to aggregate operations on the same station, whose intervals [a j , b j ] intersect, into one operation, say J, associated with the interval [a J , b J ] being the intersection of the original intervals, and solve the problem with the aggregated operations. By doing this, we reduced the number of operations from 170 to 28. A feasible solution to the problem M inN umber with 25 workers was found in one day by solving the problem M inN umber for each of the 20 production cycles. In order to better demonstrate the performance, we conducted experiments with the problems F easible(Q) for all values of Q from the interval [LB, U B], see Fig. 5. Note that, though LB = 23 for several production cycles, the entire line can not operate with less than 24 workers. Therefore, we did not solve F easible(Q) for Q = 23. We also did not solve result is better than the previously obtained result of 26 workers obtained by Battaïa et al. [START_REF] Battaïa | Workforce minimization for a mixed-model assembly line in the automotive industry[END_REF] for the same problem.

Quality of heuristics

We performed experiments with 525 instances of the problem F easible(LB) for n = 20, where 3 contains numbers of instances for which heuristics found a feasible Computational experiments demonstrated that the instances with up to 20 operations and 15 workers can be solved to optimality in a reasonable time on a standard computer. They also showed that the quality of the heuristic solutions for the industrial problem with 170 operations is sufficiently good. The results can also be useful for modeling and solving relevant multi-mode project scheduling problems and moldable task scheduling problems.

LB = ⌈∑ i∈N p i /d ⌉ . Table
Developing metaheuristic and matheuristic approaches, which are able to find near optimal solutions of the problem M inN umber, is interesting from the practical point of view, and investigating computational complexity of special cases of this problem is interesting from the theoretical point of view. For example, what is the complexity of the problem M inN umber, in which p j (r) = p/r and r j ∈ {a, b}, j ∈ N , for given p, a and b?

The studied problem can be extended by relaxing the assumption that the number of stations and the assignment of operations to the stations are fixed. The relationship between the number of stations and the minimum number of workers W * max in this setting would be of significant interest.

  Figure 1: Precedence graph

2⌉

  and solve the problem F easible(Q). If a feasible solution for the problem F easible(Q) is found, then reset U B := Q and repeat Step 2. Otherwise, reset LB := Q and repeat Step 2.

  a feasible schedule still may exist. Determine operations of a critical path that do not intersect in time and whose processing times sum up to C max . Reset r j := min{r j + 1, b j , W + 1} for every such operation, reset W := W + 1, restore original graph G, and go to Step 2.

Figure 4 :

 4 Figure 4: Impact of parameter Idle on solution time of the problem F easible(3)

Figure 5 :

 5 Figure 5: Solution time in seconds for the real life instance of the problem F easible(Q) with n = 28 aggregated operations

Figure 6 :

 6 Figure 6: Heuristic solutions for the real life instance with n = 170

Figure 7 :

 7 Figure 7: Heuristic solutions for the real life instance with n = 28 aggregated operations

  

  Case 1) is strongly NP-hard, because, in the notation of Drozdowski[START_REF] Drozdowski | Scheduling multiprocessor tasks -An overview[END_REF], problem P |size j , p j = 1|C max is strongly NP-hard due to Lloyd[START_REF] Lloyd | Concurrent task systems[END_REF]. Case 2) is solvable in

O(n) time, because problem P |size j ∈ {1, . . . , ∆}, p j = 1|C max is solvable in O(n) time due to Blazewicz et al.

[START_REF] Blazewicz | Scheduling multiprocessor tasks to minimize schedule length[END_REF]

. Case 3) is strongly NP-hard and case 4) is pseudo-polynomially solvable, because problem P 5|size j |C max is strongly NP-hard and problem P m|size j |C max , m ∈ {2, 3}, is pseudo-polynomially solvable due to Du and Leung

[START_REF] Du | Complexity of scheduling parallel task systems[END_REF]

. Case 5) is solvable in O(n) time, because it reduces to the malleable task scheduling problem studied by Blazewicz et al.

[START_REF] Blazewicz | Scheduling malleable tasks on parallel processors to minimize the makespan[END_REF] 

Table 2 :

 2 Complexity of special cases of M inN umber, in which a single operation is assigned to each station

	Problem characteristics	Complexity
	p j	

  MILP model F easible(Q) was handled by the solver IBM ILOG CPLEX OptimizationSince functions p j (r) = p j /r are convex, the relaxed problem with a j = 1, b j = W * max , no precedence constraints and the possibility to perform any operations in parallel if they are assigned to different workers, is the special case 5) in Section 4, which is solved by assigning all W that the number of solved instances decreases as the number of workers increases. We observed that the solver finds a feasible solution of the problem F easible(Q) quite fast if it exists, but it takes a lot of time to detect infeasibility. This observation can be used to solve the problem F easible(Q) heuristically: if a feasible solution is not found within a certain time limit, then it can be decided that the problem F easible(Q) has no solution. This observation is confirmed by the fact that the ratio of the number of solved instances to the number of unsolved instances increases as the value of Q increases from LB to U B.

	Studio 12.6.2, which was run on a computer Intel Xeon with CPU E5-2673 v3 2.4 GHz, 8
	GB of RAM, MS Windows Server 2008 R2 Datacenter 64bit and 4 treads. The time limit for
	solving each instance was set to one hour.

* max workers to each operation. Therefore, W * max ≥ LB = ⌈∑ i∈N p i /d ⌉ in this case, and can see

Acknowledgment

This work was partially supported by the European project amePLM [1]. We are also grateful to a reviewer who suggested to apply the operation aggregation approach to solving the real life problem from this project.

we used the latter lower bound LB in the experiments. We calculated an upper bound U B on the number of workers as the sum of the minimal numbers of workers required for each station independently:

. The upper bound did not exceed 15 for all the instances with n = 20.

Recall that the bisection search procedure includes solving the problem F easible(Q) for We compared the solution quality of the heuristics T opLong(α), T opLongP ath(α) and T opRandom(α). They were tested on the real life instance with 170 operations. We made experiments for α ∈ {0, 0.1, 0.2, . . . , 1}. The heuristic TopRandom(α) was applied in two scenarios, with 100 and 1000 runs for each α. The obtained results are demonstrated in Fig. 6.

We noted that 1000 runs of TopRandom(α) for a given α take about 30 minutes and provide better result than 100 runs of the same heuristic. Heuristic T opLong(α) is not mentioned in Fig. 6 because it finds unreasonably high numbers of workers for all values of α. We also applied heuristics to solve the problem with 28 aggregated operations. TopRandom(α) was run 100000 times for each value of α, and all these runs required less than 30 minutes. The results are given in Fig. 7. Heuristic T opRandom(α) with 10000 runs takes about one minute on average when applied to the real problem with the 28 aggregated operations. Comparing this fact with Fig. 5 we can conclude that all our heuristics are at least 10000 faster than the MILP solver for the same problem F easible(Q).

The role of the heuristics is important, because in many cases they are able to find a feasible solution for the problem F easible(Q) without running the time consuming MILP solver.

Furthermore, the minimal number of workers delivered by all the heuristics can be used as an upper bound U B in the exact bisection search procedure for the problem M inN umber.