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Abstract. Agricultural residues are among the most abun-
dant biomass burned globally, especially in China. However,
there is little information on primary emissions and photo-
chemical evolution of agricultural residue burning. In this
study, indoor chamber experiments were conducted to in-
vestigate primary emissions from open burning of rice, corn
and wheat straws and their photochemical aging as well.
Emission factors of NOx , NH3, SO2, 67 non-methane hydro-
carbons (NMHCs), particulate matter (PM), organic aerosol
(OA) and black carbon (BC) under ambient dilution condi-
tions were determined. Olefins accounted for > 50 % of the
total speciated NMHCs emission (2.47 to 5.04 g kg−1), indi-
cating high ozone formation potential of straw burning emis-
sions. Emission factors of PM (3.73 to 6.36 g kg−1) and pri-
mary organic carbon (POC, 2.05 to 4.11 gC kg−1), measured
at dilution ratios of 1300 to 4000, were lower than those re-
ported in previous studies at low dilution ratios, probably due
to the evaporation of semi-volatile organic compounds under
high dilution conditions. After photochemical aging with an
OH exposure range of (1.97–4.97)× 1010 molecule cm−3 s
in the chamber, large amounts of secondary organic aerosol
(SOA) were produced with OA mass enhancement ratios (the

mass ratio of total OA to primary OA) of 2.4–7.6. The 20
known precursors could only explain 5.0–27.3 % of the ob-
served SOA mass, suggesting that the major precursors of
SOA formed from open straw burning remain unidentified.
Aerosol mass spectrometry (AMS) signaled that the aged OA
contained less hydrocarbons but more oxygen- and nitrogen-
containing compounds than primary OA, and carbon oxida-
tion state (OSc) calculated with AMS resolved O /C and
H /C ratios increased linearly (p< 0.001) with OH exposure
with quite similar slopes.

1 Introduction

On the global scale, biomass burning (BB) is the main source
of primary organic carbon (OC) (Bond et al., 2004; Huang et
al., 2015), black carbon (BC) (Bond et al., 2013; Cheng et
al., 2016), and brown carbon (BrC) (Laskin et al., 2015). It is
also the second largest source of non-methane organic gases
(NMOGs) in the atmosphere (Yokelson et al., 2008; Stock-
well et al., 2014). In addition, atmospheric aging of biomass
burning plumes produces substantial secondary pollutants.
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The increase in tropospheric ozone (O3) in aged biomass
burning plumes could last for days and even months (Thomp-
son et al., 2001; Duncan et al., 2003; Real et al., 2007) with
complex atmospheric chemistry (Arnold et al., 2015; Müller
et al., 2016). Moreover, biomass and biofuel burning could
contribute up to 70 % of the global secondary organic aerosol
(SOA) burden (Shrivastava et al., 2015) and hence influence
the seasonal variation of global SOA (Tsigaridis et al., 2014).
Since it produces large amounts of primary and secondary
pollutants, it is essential to characterize primary emissions
and photochemical evolution of biomass burning in order to
better understand its impacts on air quality (Huang et al.,
2014), human health (Alves et al., 2015) and climate change
(Andreae et al., 2004; Koren et al., 2004; Laskin et al., 2015;
X. Huang et al., 2016).

Open burning of agricultural residues, a convenient and
inexpensive way to prepare for the next crop planting, could
induce severe regional haze events (Cheng et al., 2013; Tariq
et al., 2016). Among all the biomass burning types, agri-
cultural residue burning in the field is estimated to con-
tribute ∼ 10 % of the total mass burned globally (Andreae
and Merlet, 2001), and its relative contribution is even larger
in Asia (∼ 34 %), and especially in China (> 60 %) (Streets
et al., 2003), where > 600 million people live in the country-
side (NBSPRC, 2015). Agricultural residues burned in China
were estimated to be up to 160 million ton in 2012, account-
ing for ∼ 40 % of the global agricultural residues burned
(J. Li et al., 2016). As estimated by Tian et al. (2011), agricul-
tural residue burning contributed 70–80 % of non-methane
hydrocarbons (NMHCs) and particulate matter (PM) emit-
ted by biomass burning in China during 2000–2007. A better
understanding of the role agricultural residual burning plays
in air pollution in China and elsewhere requires better char-
acterization of primary emission and atmospheric aging of
emitted trace gases and particles for different types of agri-
cultural residues under different burning conditions.

In the past 2 decades, there have been increasing numbers
of characterizations of biomass burning emissions. Andreae
and Merlet (2001) summarized emission factors (EFs) for
both gaseous and particulate compounds from seven types
of biomass burning. Akagi et al. (2011) updated the emis-
sion data for 14 types of biomass burning, and newly iden-
tified species were included. Since biomass types and com-
bustion conditions may differ in different studies, reported
emission factors are highly variable, especially for agricul-
tural residue burning (Li et al., 2007, 2009, 2017; Cao et
al., 2008; Zhang et al., 2008; Yokelson et al., 2011; Bras-
sard et al., 2014; Sanchis et al., 2014; Wang et al., 2014; Ni
et al., 2015; Kim Oanh et al., 2015; Stockwell et al., 2016;
Bruns et al., 2017; Tkacik et al., 2017). Moreover, previ-
ous studies on agricultural residue burning were mostly car-
ried out near fire spots or in chambers with low dilution ra-
tios. Since biomass burning organic aerosols (BBOAs) are
typically semi-volatile (Grieshop et al., 2009b; May et al.,
2013), it is expected that measured BBOA emission factors

would be affected by dilution processes (Lipsky and Robin-
son, 2006), and BBOA emission factors under ambient di-
lution conditions are still unclear. Furthermore, knowledge
on NMOGs emitted from agricultural residue burning is very
limited. As reported by Stockwell et al. (2015), ∼ 21 % (in
weight) of NMOGs in biomass burning plumes have not been
identified yet. Therefore, comprehensive measurement and
characterization of gaseous and particulate species emitted
by agricultural residue burning under ambient dilution con-
ditions are urgently needed.

Great attention has been drawn to SOA formation and
transformation in biomass burning plumes recently, since a
significant increase in mass and apparent change in physico-
chemical characteristics of aerosols have been observed dur-
ing atmospheric aging of biomass burning plumes in both
field and laboratory studies (Grieshop et al., 2009a, b; Hen-
nigan et al., 2011; Heringa et al., 2011; Lambe et al., 2011;
Jolleys et al., 2012; Giordano et al., 2013; Martin et al., 2013;
Ortega et al., 2013; Ding et al., 2016a, b, 2017). For agricul-
tural residue burning, evolution processes have not been well
characterized yet. To our knowledge, up to now there has
only been a chamber study (Li et al., 2015) which has inves-
tigated the evolution of aerosol particles emitted by wheat
straw burning under dark conditions. Although field stud-
ies (Adler et al., 2011; X. X. Liu et al., 2016) witnessed
the evolution in mass concentrations, size distribution, oxi-
dation state and optical properties of aerosol particles emit-
ted by agricultural residue burning, these changes could be
also influenced by other emission sources and meteorologi-
cal conditions as well. Since NMOGs emitted by agricultural
residue burning are not fully quantified, it is still challenging
to predict the concentration and physicochemical properties
of SOA that resulted from biomass burning (Spracklen et al.,
2011; Jathar et al., 2014; Shrivastava et al., 2015; Hatch et
al., 2017). Bruns et al. (2016) suggested that the 22 major
NMOGs identified in residential wood combustion could ex-
plain the majority of observed SOA, but it remains unclear
whether identified NMOGs emitted by agricultural residue
burning could fully (or at least largely) explain the SOA
formed. In addition, aerosol mass spectrometry (AMS) has
been widely used to characterize sources and evolution of
ambient OA (Q. Zhang et al., 2011). Although agricultural
residue burning is an important type of biomass burning in
Asia and especially in China, the lack of AMS spectra for pri-
mary and aged OA from agricultural residue burning signifi-
cantly limits further application of AMS in BBOA research.

In this study, plumes from agricultural residue open burn-
ing were directly introduced into a large indoor chamber to
firstly characterize primary emissions and then investigate
their photochemical evolution under∼ 25 ◦C and∼ 50 % rel-
ative humidity. Corn, rice and wheat straws, which account
for more than 90 % of the crop residues burned in China
(FAO, 2017), were chosen. A suite of advanced online and
offline techniques were utilized to measure gaseous and par-
ticulate species, enabling comprehensive measurements of
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emission factors of gaseous and particulate compounds for
burning of each type of straw under ambient dilution con-
ditions. In addition, the corresponding formation and trans-
formation of SOA during photochemical aging were investi-
gated using a large indoor smog chamber. This work would
help improve our understanding of primary emission, SOA
formation and thus environmental impacts of agricultural
residue burning.

2 Materials and methods

2.1 Experimental setup

Photochemical aging was investigated in a smog chamber at
the Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences (GIG-CAS). The GIG-CAS smog chamber is a
∼ 30 m3 fluorinated ethylene propylene (FEP) reactor housed
in a temperature-controlled room. Details of the chamber
setup and associated facilities are provided elsewhere (Wang
et al., 2014; Liu et al., 2015; Deng et al., 2017). Briefly, 135
black lamps (1.2 m long, 60 W Philips, Royal Dutch Philips
Electronics Ltd, the Netherlands) are used as light sources,
giving a NO2 photolysis rate of approximately 0.25 min−1.
Two Teflon-coated fans are installed inside the reactor to
ensure introduced gaseous and particulate species mixed
well within 2 min. Prior to each experiment, the reactor was
flushed with the purified dry air at a rate of 100 L min−1 for
at least 48 h. The compressed indoor air is forced through an
air dryer (FXe1; Atlas Copco; Sweden) and a series of gas
scrubbers containing activated carbon, Purafil, Hopcalite and
allochroic silica gel, followed by a PTFE filter to provide
the source of the purified air. The purified dry air contains
< 1 ppb NOx , O3 and carbonyl compounds,< 5 ppb NMHCs
and no detectable particles with relative humidity < 5 %.

Corn, rice and wheat straws were collected from Henan,
Hunan and Guangdong provinces, respectively. Since mois-
ture content in straws would affect emission factors of atmo-
spheric pollutants (Sanchis et al., 2014; Ni et al., 2015), all
the agricultural residues used in this study were dried in a
stove at 80 ◦C for 24 h before being burned. After baking,
the water content in the crop residues was less than 1 %.
The water content of crop residues was measured by us-
ing the method recommended by Liao et al. (2004). Straws
were weighed before and after baking in a stove at 105◦ for
24 h, and the difference in weights was calculated to be the
weight of the water in the crop residues. Water content was
the quotient of the water weight and the whole weight of the
straws. In each experiment, ∼ 300 g straws were burned and
the burning typically lasted for 3–5 min. Straws were ignited
by a butane-fueled lighter and burned under open field burn-
ing conditions. The resulting smoke was collected by an in-
verted funnel and introduced into the chamber using an oil-
free pump (Gast Manufacturing, Inc, USA) at a flow rate of
∼ 15 L min−1 through a 5.5 m long copper tube (inner di-

ameter: 3/8 inch), and the residence time in the tube was
estimated to be < 2 s. Before each experiment, the transfer
tube was pre-flushed for 15 min with ambient air and 2 min
with smokes (not introduced into the chamber reactor). Dur-
ing the whole process, the tube was heated at 80 ◦C to re-
duce the losses of organic vapors. Based on the volumes of
the smoke introduced and the chamber reactor, the dilution
ratios were estimated to be 1300–4000, falling into the typ-
ical range (1000–10000) under ambient dilution conditions
(Robinson et al., 2007). After being characterized in the dark
for > 20 min, black lamps were turned on and the diluted
smokes were photochemically aged for 5 h. At the end, the
black lamps were switched off and the aged aerosols were
characterized in the next 1 h to determine the particle wall
loss. The particle size evolved through the course of photo-
oxidation, and the differences in particle wall-loss rates dur-
ing photoreaction and after the lamps were off brought about
by the size evolving are estimated to be within±9 % (Fig. S1
in the Supplement).

In total 20 experiments were conducted (9 for rice straw, 6
for corn straw and 5 for wheat straw), among which 14 exper-
iments were conducted only in the dark to measure primary
emissions and 6 experiments were carried out both in the
dark and under irradiation to investigate photochemical evo-
lution of open straw burning emissions. Tables 1 and 2 sum-
marize important experimental conditions and key results for
all the experiments.

2.2 Instrumentation

Commercial instruments were used for online monitoring of
NOx (EC9841T, Ecotech, Australia), NH3 (Model 911-0016,
Los Gatos Research, USA) and SO2 (Model 43i, Thermo
Scientific, USA). CH4 and CO were analyzed offline using
gas chromatography (Agilent 6980GC, USA) coupled with a
flame ionization detector and a packed column (5A molecu-
lar sieve 60/80 mesh, 3 m× 1/8 inch) (Zhang et al., 2012),
and CO2 was analyzed using a HP 4890D gas chromato-
graph (Yi et al., 2007). The detection limits were all less than
30 ppbv for CH4, CO and CO2. The relative standard devia-
tions (RSDs) of CO and CO2 measurements were both less
than 3 % based on seven duplicate injection of 1.0 ppmv stan-
dards (Spectra Gases Inc, USA). Volatile organic compounds
(VOCs) were continuously measured using a proton-transfer-
reaction time-of-flight mass spectrometer (PTR-TOF-MS;
Model 2000, Ionicon Analytik GmbH, Austria). Calibration
of the PTR-TOF-MS was performed every few weeks using
a certified custom-made standard mixture of VOCs (Ionicon
Analytik Gmbh, Austria) that were dynamically diluted to
six levels (2, 5, 10, 20, 50 and 100 ppbv). Methanol, acetoni-
trile, acetaldehyde, acrolein, acetone, isoprene, crotonalde-
hyde, 2-butanone, benzene, toluene, o-xylene, chloroben-
zene and α-pinene were included in the calibration mixture.
Their sensitivities, indicated by the ratio of the normalized
counts per second to the concentration levels of the VOCs
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in ppbv, were used to convert the raw PTR-TOF-MS signal
to concentration (Z. Huang et al., 2016). Quantification of
the compounds that were not included in the mixture was
performed by using calculated mass-dependent sensitivities
based on the measured sensitivities (Stockwell et al., 2015).
Mass-dependent sensitivities were linearly fitted for oxygen-
containing compounds and the remaining compounds sepa-
rately. The decay of toluene measured by PTR-TOF-MS was
used to derive the OH radical concentrations for every 2 min
during each experiment, and the OH exposure was calcu-
lated as the product of the OH concentration and the time
interval. Continuous monitoring of 20 SOA precursors (in-
cluding 9 NMHCs and 11 oxygen-containing VOCs) from
PTR-TOF-MS provided us with data to do the SOA predic-
tion discussed in the Sects. 2.3.5 and 3.3.2. Air samples were
also collected from the chamber reactor using 2 L electro-
polished stainless-steel canisters before and after smoke in-
jection. In total 67 C2–C12 NMHCs were measured (Table S1
in the Supplement) using an Agilent 5973N gas chromatog-
raphy mass-selective detector/flame ionization detector (GC-
MSD/FID; Agilent Technologies, USA) coupled to a Precon-
centrator (Model 7100, Entech Instruments Inc., USA), and
analytical procedures have been detailed elsewhere (Wang
and Wu, 2008; Zhang et al., 2010, 2012). Results from GC-
MSD/FID were used to quantify the emission factors of 67
NMHCs discussed in the Sect. 3.1.

Particle number/volume concentrations and size distribu-
tion were measured with a scanning mobility particle sizer
(SMPS; Classifier model 3080, CPC model 3775, TSI In-
corporated, USA). The SMPS was operated with a sheath
flow of 3.0 L min−1 and a sampling flow of 0.3 L min−1, al-
lowing for a size scanning range of 14 to 760 nm within
255 s. A high-resolution time-of-flight aerosol mass spec-
trometer (HR-TOF-AMS; Aerodyne Research Incorporated,
USA) was used to measure chemical compositions of non-
refractory aerosols (DeCarlo et al., 2006). The HR-ToF-AMS
was operated by alternating every other minute between the
high sensitivity V mode and the high-resolution W mode.
Toolkit Squirrel 1.57I was used to obtain real-time concen-
tration variations of sulfate, nitrate, ammonium, chloride and
organics, and toolkit Pika 1.16I was used to determine the de-
tailed compositions of OA (Aiken et al., 2007, 2008; Cana-
garatna et al., 2015). The AMS signal at m/z 44 was cor-
rected for the contribution from gaseous CO2. The ionization
efficiency of the AMS was calibrated routinely by measuring
300 nm monodisperse ammonium nitrate aerosols. Consider-
ing the underestimation of particulate matter by the AMS,
aerosol mass measured by AMS was corrected with the data
from the SMPS and the aethalometer. Conductive silicon
tubes were used for aerosol sampling to reduce electrostatic
losses of particles.

BC was measured with a seven-channel aethalometer
(Model AE-31, Magee Scientific, USA). Cheng et al. (2016)
measured the mass absorption efficiency (MAE) of BC from
biomass burning at wavelengths of 532 and 1047 nm, respec-

tively, and the absorption Ängström exponents (AAEs) were
estimated to be in the range of 0.9–1.1. Based on the re-
lationship between MAE and wavelength, a MAE value of
4.7 m2 g−1 was calculated for 880 nm by assuming the AAE
to be 1.0. The MAE value was then applied to convert absorp-
tion data in 880 nm to BC mass concentrations. Aethalometer
attenuation measurements were corrected for particle loading
effects and the scattering of filter fibers using the method de-
veloped by Kirchstetter and Novakov (2007) and Schmid et
al. (2006).

2.3 Data analysis

2.3.1 Particle effective density

Assuming that particles are spherical and non-porous, the ef-
fective density (ρeff) can be estimated by Eq. (1) (DeCarlo et
al., 2004; Schmid et al., 2007):

ρeff = ρ0 ·
dva

dm
, (1)

where ρ0 is the standard density (1.0 g cm−3), and dva and dm
are the AMS-measured vacuum aerodynamic diameter and
SMPS-measured mobility diameter. The input diameters to
this equation were determined by comparing distributions of
vacuum aerodynamic and electric mobility diameters, using
the AMS and SMPS, respectively. Derived ρeff was used to
convert volume concentrations of aerosol particles measured
by the SMPS to mass concentrations.

2.3.2 Emission factors and modified combustion
efficiency

The carbon mass balance approach (Ward et al., 1992; An-
dreae and Merlet, 2001) was used to calculate fuel-based
emission factors (EFs) for each compound (g kg−1 dry fuel).
The emission factor for the ith species, EFi , is calculated by
Eq. (2):

EFi =
mi ·EFC

1[CO2] +1[CO] +1[PMC] +1[HC]
, (2)

where mi is the concentration (g m−3) of the ith species;
1[CO2], 1[CO], and 1[HC] are the background-corrected
carbon mass concentration (g C m−3) of the CO2, CO,
and speciated hydrocarbons, respectively; 1[PMC] is
the background-corrected carbon in the particle phase
(g C m−3); and EFC is the emission factor of carbon into the
air determined by elemental and gravitational analyses, given
by Eq. (3):

EFC =
mfuel ·ωfuel−mash ·ωash

mfuel
, (3)

where ωfuel and ωash are mass fractions of carbon in the dry
fuel and its ash, and mfuel and mash are the mass of dry fuel
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Table 1. Primary emission factors measured for agricultural residue burning. All the units are g kg−1, except that the unit for particle number
(PN) is 1015 particle kg−1. MCE: modified combustion efficiency; NMHCs: non-methane hydrocarbons; POA: primary organic aerosol;
POC primary organic carbon; BC: black carbon.

Rice Corn Wheat

Species This study (n= 9) Others This study (n= 6) Others This study (n= 5) Others

MCE 0.926± 0.049 0.953± 0.019 0.949± 0.035
CO2 1262± 81 1477± 28 1423± 60
CO 63.5± 41.4 46.1± 19.2 48.6± 33.0
NOx 1.47± 0.61 3.51± 0.38a 5.00± 3.94 4.3± 1.8b 3.08± 0.93 3.3± 1.7b;

2.27± 0.04a

NH3 0.45± 0.15 0.95± 0.65a; 0.63± 0.30 0.68± 0.52b 0.22± 0.19 0.37± 0.14b;
4.10± 1.24c 0.21± 0.14a

SO2 0.07± 0.07 0.18± 0.31d; 0.99± 1.53 0.04± 0.04d 0.72± 0.34 0.04± 0.04d;
0.37± 0.27e; 0.73± 0.15a

1.27± 0.35a

NMHCs 5.04± 2.04 1.25f 2.47± 2.11 1.59± 0.43g 3.08± 2.43 1.69± 0.58g;
0.90f

PM 3.73± 3.28 8.5± 6.7h; 5.44± 3.43 12.2± 5.4h; 6.36± 2.98 11.4± 4.9h;
8.3± 2.2e; 11.7± 1.0b; 7.6± 4.1b;

13.2± 1.44i; 5.36± 0.55i 5.30± 0.30i

4.2c

PN 2.94± 0.91 0.018± 0.001j 7.29± 4.17 0.017± 0.001j 5.87± 2.89 0.010± 0.001j

POA 2.99± 1.00 3.99± 2.68 5.96± 0.19
POC 2.05± 0.72 3.3± 2.8h; 2.52± 1.66 6.3± 3.6h; 4.11± 0.29 5.1± 3.0h;

6.02± 0.60i 3.9± 1.7b; 2.7± 1.0b;
2.06± 0.34i 2.42± 0.13i

BC 0.22± 0.11 0.21± 0.13h 0.24± 0.09 0.28± 0.09h; 0.27± 0.07 0.24± 0.12h;
0.35± 0.10b 0.49± 0.12b

a Stockwell et al. (2015); b Li et al. (2007), PM corresponds to PM2.5; c Christian et al. (2010); d Cao et al. (2008); e Kim Oanh et al. (2015), PM corresponds to PM2.5;
f Wang et al. (2014), 56 NMHCs species summarized; g Li et al. (2009), 52 NMHCs species summarized; h Ni et al. (2015), PM corresponds to PM2.5; i Li et al. (2017),
PM corresponds to PM1; j Zhang et al. (2008).

and its ash. The modified combustion efficiency (MCE) is de-
fined by Eq. (4) (Heringa et al., 2011; Hennigan et al., 2011;
Ni et al., 2015):

MCE=
1[CO2]

1[CO2] +1[CO]
. (4)

2.3.3 Ozone formation potential

The ozone formation potential (OFP) of the speciated
NMHCs was calculated from the emission factor and
maximum incremental reactivity (MIR) of each individual
NMHC, using Eq. (5):

OFP=
n∑
i=1
(EFi ·MIRi), (5)

where OFP is the ozone formation potential of NMHCs emit-
ted per unit of biomass (unit: g kg−1), and MIRi is the MIR
of the ith NMHC (unit: g O3 g NHMC−1) (Carter, 2008).

2.3.4 Wall-loss corrections

Due to the loss of particles and vapors to chamber walls,
measured data in chamber studies need to be corrected for
wall loss. For this purpose, in our study 1 h dark decay of
aged aerosols was undertaken after photochemical aging was
terminated. The loss of particles on the chamber wall is a
first-order process (McMurry and Grosjean, 1985). The wall-
loss rates of AMS-measured organics, sulfate, nitrate, chlo-
ride and ammonium were determined using the dark decay
data and were applied to wall-loss correction for the entire
experiment. By assuming that the condensed materials on the
wall remain completely in equilibrium with the gas phase, we
used the ω = 1 case to correct the OA mass, where ω is a pro-
portionality factor of organic vapor partitioning to chamber
walls and suspended particles (Weitkamp et al., 2007; Henry
et al., 2012). For SMPS measurements, the number concen-
tration in each size channel (110 channels in total) was cor-
rected for wall loss separately, since wall-loss rates of aerosol
particles are size-dependent (Takekawa et al., 2003).

www.atmos-chem-phys.net/17/14821/2017/ Atmos. Chem. Phys., 17, 14821–14839, 2017
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Figure 1. (a–c) Non-methane hydrocarbon (NMHC) compositions and (d–f) their relative contribution to ozone formation potential (OFP)
for open burning of rice, corn and wheat straw.

2.3.5 OA production prediction

In this study, 20 NMOGs which have been used to estimate
SOA yields by previous work (Ng et al., 2007; Chan et al.,
2009, 2010; Hildebrandt et al., 2009; Gómez Alvarez et al.,
2009; Shakya and Griffin, 2010; Chhabra et al., 2011; Nakao
et al., 2011; Borras and Tortajada-Genaro, 2012; Yee et al.,
2013; Lim et al., 2013) were quantified using PTR-TOF-MS,
and the applied SOA yields are summarized in Table S2. The
mass concentration of SOA ([SOA]predicted, µg m−3) formed
from these 20 precursors can be estimated using Eq. (6):

[SOA]predicted =
∑
i

(1[Xi] ·Yi), (6)

where 1[Xi] (µg m−3) is the reacted amount of the ith gas-
phase precursor and Yi is the corresponding SOA yield.

Assuming that primary OA (POA) levels stayed con-
stant during aging processes, the mass concentration of SOA
formed could be estimated as the difference in OA mass con-
centrations before and after photochemical aging. It should
be noted that POA would decrease during aging processes
(Tiitta et al., 2016), probably leading to the underestimation
of the formed SOA. In papers where those SOA yields were
borrowed from, no organic vapor wall loss was accounted for
when calculating the mass concentration of the formed SOA,
so the same wall-loss correction method was used when com-
paring the predicted SOA and the formed SOA.

3 Results and discussion

3.1 Emissions of gaseous pollutants

Table 1 compares emission factors of gaseous and particulate
species measured in our and previous studies. In our study,
the emission factors of NOx were 1.47± 0.61, 5.00± 3.94,
and 3.08± 0.93 g kg−1 for rice, corn, and wheat straw, and
NO accounted for 84± 11 % of NOx primary emission for
all experiments. Emission factors of NH3 were measured
to be 0.45± 0.15, 0.63± 0.30 and 0.22± 0.19 g kg−1 for
rice, corn and wheat straw. Our measured emission factors
of reactive nitrogen species were comparable to those re-
ported by previous studies (Li et al., 2007; Tian et al., 2011).
Emission factors of SO2 were 0.07± 0.07, 0.99± 1.53 and
0.72± 0.34 g kg−1 for rice, corn and wheat straw. Our mea-
sured emission factors of SO2 were lower than those reported
by Cao et al. (2008) and Kim Oanh et al. (2015) for rice
straw, but higher than those reported by Cao et al. (2008)
for corn and wheat straw. Due to low sulfur contents in crop
straws, the SO2 emission factors for open burning of crop
residues were much lower than those for domestic coal com-
bustion, which were determined to be 2.43–5.36 g kg−1 for
raw bituminous coal (Du et al., 2016).
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Figure 2. Emission factors (EFs) of NMHCs for straw burning of rice, corn and wheat. Only species with emission factors> 0.01 g kg−1 are
shown. The order of NMHC species is the same as Table S1, in which a comprehensive dataset of emission factors measured in this work is
included.

Emission factors of the total speciated NMHCs analyzed
by the GC-MSD/FID system were 5.04± 2.04, 2.47± 2.11
and 3.08± 2.43 g kg−1 for rice, corn and wheat straw, re-
spectively (Table 1). Our results were higher than those re-
ported by previous studies (Li et al., 2009; Wang et al., 2014),
partly due to the fact that more NMHCs were analyzed in
our study (67 species in total). As shown in Fig. 1a–c, olefins
and acetylene accounted for 56–58 % of the total speciated
NMHCs, followed by alkanes (22–28 %) and aromatic hy-
drocarbons (16–21 %). Table S1 and Fig. 2 show the emis-
sion factors of each NMHC for open burning of different
straws. Emission factors of unsaturated hydrocarbons ranged
from 1.37 (corn) to 2.91 g kg−1 (rice), with the majority be-
ing ethene, acetylene and propene. Emission factors of alka-
nes ranged from 0.69 (corn) to 1.09 g kg−1 (rice), with ethane
and propane being the two most abundant compounds. The
emission factors of aromatic hydrocarbons were in the range
of 0.42 (corn) to 1.04 (rice), and benzene and toluene are
dominant species. It is worth noting that major compounds
in the three groups (alkanes, alkenes and aromatic hydrocar-
bons) were all negatively correlated with the modified com-
bustion efficiency (Fig. S2), suggesting that more efficient
combustion would reduce their emissions.

Based on their emission factors, we calculated the ozone
formation potential for each NMHC. The summed ozone
formation potentials were 22.5± 10.1, 13.7± 12.4 and
16.3± 13.5 g kg−1 for open burning of rice, corn and wheat
straw, respectively. As shown in Fig. 1d–e, the relative contri-

butions of olefins to the total ozone formation potential could
reach > 80 %. Ethene was the largest ozone precursor (35–
42 %), followed by propene (16–28 %), and these two com-
pounds contributed 58–64 % of the total ozone formation po-
tential. Although the emission factors of aromatic hydrocar-
bons were lower than those of alkanes, their ozone formation
potential was dominant over those of alkanes, with toluene
being the largest contributor among all the aromatic hydro-
carbons. The contribution of alkanes to the total ozone for-
mation potential was minor (2–3 %). It is noted that oxygen-
containing organic vapors in agricultural residue burning
plumes could also have large ozone formation potentials. For
example, the OFPs of formaldehyde and acetaldehyde for all
experiments were 0.57–2.46 times those of the 67 speciated
NMHCs.

3.2 Emission of particulate matter

The emission factors of particulate matter were 3.73± 3.28,
5.44± 3.43 and 6.36± 2.98 g kg−1 for rice, corn and wheat
straw, lower than those reported in the previous studies (Ta-
ble 1). As suggested by Robinson et al. (2007), the POA
emission factors would decrease with increasing dilution ra-
tios, due to evaporation of semi-volatile organic compounds.
In this study, the dilution ratios ranged from 1300 to 4000,
which were within the typical range of ambient dilution ra-
tios (1000–10 000) (Robinson et al., 2007). Therefore, it can
be expected that emission factors of primary organic car-
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bon (POC) measured in our study (2.05–4.11 gC kg−1) were
lower than those measured by previous work with dilution ra-
tios of 5–20 (Li et al., 2007; Ni et al., 2015). Moreover, it has
been shown that the modified combustion efficiency could af-
fect emission factors (Heringa et al., 2011; Stockwell et al.,
2015). Figure S3 shows negative correlations of the modi-
fied combustion efficiency with emission factors of PM and
POC (p< 0.05 for both cases), indicating that enhancement
of combustion efficiency could reduce the emissions of PM
and POC. In our study, all straws were pre-baked to reduce
the moisture content to < 1 %, and this treatment could in-
crease the modified combustion efficiency and thus reduce
emission factors of particulate matters (Ni et al., 2015). In
addition, the amount of straw burned each time in our ex-
periments was much less than that in the fields, which is ex-
pected to avoid oxygen deficit during burning to some extent
and thus increase the modified combustion efficiency as well.

While POA emission factors showed large variability for
different types of straw, BC emission factors were rela-
tively constant (0.22–0.27 gC kg−1). Since BC is a mixture of
non-volatile compounds in particulate matters, as expected,
its emission factors measured in our work were compara-
ble to those reported under lower dilution conditions (Li
et al., 2007; Ni et al., 2015). The 1[POA] /1[CO] ratios
ranged from 0.022 to 0.133 in our study, larger than those
(0.001–0.067) measured in chamber studies for hard- and
soft-wood fires (Grieshop et al., 2009b) and vegetation com-
monly burned in North American wildfires (Heringa et al.,
2011), but lower than those (0.051–0.329) obtained in field
campaigns (Jolleys et al., 2012).

For particle numbers, the emission factors were
(2.94± 0.91)× 1015, (7.29± 4.17)× 1015, and
(5.87± 2.89)× 1015 particle kg−1 for rice, corn, and
wheat straw, respectively (Table 1). Our results were com-
parable to that (1× 1015 particle kg−1) for crop residue
burning (Andreae and Merlet, 2001) and those (3.2× 1015–
10.9× 1015 particle kg−1) for wood burning (Hosseini et al.,
2013), but 2 magnitudes larger than those for crop residue
burning in a sealed stove (Zhang et al., 2008).

3.3 Evolution of particles

3.3.1 Growth of particle size

Figure 3 shows the evolution of particle size distribution af-
ter photochemical aging of 0, 0.5, 2.5 and 5 h. Aerosol par-
ticles emitted from open straw burning peaked at 50–90 nm
under ambient dilution conditions. The geometric mean di-
ameters for primarily emitted particles in this study were
smaller than those (100–150 nm) reported for crop residual
burning under low dilution conditions (H. Zhang et al., 2011;
Li et al., 2015), probably due to evaporation of organic va-
pors under the high dilution conditions (Lipsky et al., 2006)
and coagulation of fine particles under the low dilution con-
ditions (Hossain et al., 2012).

Figure 3. Particle size distributions in different burnings.
(a) Burn 2: rice straw; (b) Burn 3: corn straw; (c) Burn 5: wheat
straw.

After switching on black lamps, apparent growth of parti-
cle size was observed. In all the aging experiments, growth
rates of particle diameters in the first 0.5 h were 10 times
larger than those afterwards, and after 5 h aging the geomet-
ric mean diameters peaked at 60–120 nm. For instance, in
the photochemical aging experiment for wheat straw burn-
ing (Fig. 3c), the growth rate of particles was 18 nm h−1 in
the first 0.5 h and decreased to∼ 1 nm h−1 during the follow-
ing 4.5 h. The size distribution of aged aerosol particles in
our study is similar to those of ambient particles under the
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Figure 4. (a) The evolution of particulate matter components
(Burn 2). (b) OA mass growth as a function of OH exposure
(Burn 5).

severe biomass burning impact during haze events (Betha et
al., 2014; Niu et al., 2016).

3.3.2 Particle mass enhancement

Figure 4 shows the chemical evolution of aerosol particles
during the 5 h photochemical aging of wheat straw burn-
ing. During the whole process, OA kept increasing and was
dominant over inorganic species. After 3 h of photochemical
aging, the levels of all the inorganic species were constant,
and nitrate was the second most abundant component, with a
mass fraction of 7 %, followed by chloride (2 %), ammonium
(1 %) and sulfate (< 1 %). Figure 4b depicts [OA] evolution
as a function of OH exposure. OA increased slowly in the
first ∼ 0.2 h, and then increased rapidly with OH exposure.

The OA enhancement ratio, defined as the mass ra-
tio of aged OA at the end of each aging experiment
to POA, was calculated. In the six aging experiments,
the OH exposure and OA enhancement ratios ranged
from (1.87–4.97)× 1010 molecule cm−3 s to 2.4–7.6, re-
spectively. Assuming an average OH concentration of
1.5× 106 molecule cm−3 in the ambient air (Hayes et al.,
2013), this means that rapid SOA formation would occur

in 3.5–9.2 h during the daytime after straw burning. The
OA enhancement ratios determined in our study were higher
than those (0.7–2.9) for the combustion of vegetation com-
monly burned in North American wildfires (Hennigan et al.,
2011), and comparable to those (0.7–6.9) for wood burning
(Grieshop et al., 2009b; Heringa et al., 2011).

Recently, Bruns et al. (2016) found that 22 NMOGs emit-
ted from residential wood burning could explain the major-
ity of the formed SOA. In our study, 20 of the 22 NMOGs
were detected and quantified with the PTR-TOF-MS. Con-
centration differences of each compound before and after
photo-oxidation were calculated to estimate the SOA formed
from these precursors. Since SOA formation highly depends
on oxidation conditions, SOA yields for a certain precur-
sor vary with VOC /NOx ratios. In our work, we chose a
set of SOA yields for these NMOGs based on the observed
VOC /NOx ratio in the chamber experiments. More specif-
ically, if the observed VOC /NOx ratio for a certain pre-
cursor in the chamber was within the VOC /NOx range re-
ported in the literature, the mean value of the highest and
lowest yields within the VOC /NOx range in the literature
was used to estimate the SOA formed from the precursor in
the chamber; if the observed VOC /NOx ratio for a certain
precursor was higher than the maximum VOC /NOx ratio
reported in the literature, we chose the yield reported at the
maximum VOC /NOx ratio; if the observed VOC /NOx ra-
tio was lower than the minimum VOC /NOx ratio reported
in the literature, we chose the yield reported at the minimum
VOC /NOx ratio.

Figure 5a shows the time series of POA, SOApredicted and
unexplained SOA in a typical aging experiment. The con-
tribution of SOApredicted by the 20 NMOGs was minor, and
large fractions of observed SOA could not be explained. In
all the experiments, only 5.0–27.3 % of the observed SOA
mass could be explained by the 20 NMOGs (Fig. 5b). Even
if the highest SOA yield for each precursor reported in the lit-
erature were used, 60–90 % of the observed SOA mass could
still not be explained. It has been suggested that aqueous-
phase oxidation of alkenes could produce substantial SOA
(Ervens et al., 2011). Considering large emissions of olefins
from straw burning (Fig. 1a–c), we also estimated the SOA
formed from the three most abundant alkenes (ethene, acety-
lene, and propene) with their newly developed SOA yields
(Ge et al., 2016, 2017; Jia and Xu, 2016), and their total
contribution to the observed SOA was found to be negligi-
ble (< 0.5 %). It is noted that although over 80 VOCs species
were quantified by the GC-MSD/FID and the PTR-TOF-MS
in this study, only 20 species among them were taken into
the SOA prediction because of the lack of published data
for SOA yields. The unaccounted VOC species might be a
reason for the discrepancy. On the other hand, as indicated
by Deng et al. (2017), SOA yields obtained from chamber
studies in purified air matrix might be lower than that in
a real ambient air matrix. Consequently, using SOA yields
from studies in a purified air matrix might also underpredict
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Figure 5. (a) Time series plots of concentrations of POA, sec-
ondary organic aerosol that can be explained by the reacted pre-
cursors (SOApredicted), the difference between the formed SOA and
the predicted SOA (unexplained SOA) in Burn 6. (b) Contribution
of 20 NMOGs to the formed SOA at the end of photoreactions.
Error bars correspond to the range of contributions when the low-
est/highest SOA yields in references were used for all precursors.

SOA yields in the complex biomass burning plume matrix.
Moreover, oxidation of particulate organic matter (POM),
like semi-volatile organic compounds (SVOCs) and interme-
diate volatility organic compounds (IVOCs), would also con-
tribute substantially to SOA formation (Presto et al., 2009;
Zhao et al., 2014), yet this is not accounted for in our pre-
diction. Above all, there are still unknown precursors and/or
physicochemical processes contributing the majority of SOA
formed from open straw burning.

3.3.3 OA mass spectrum evolution

In the high-resolution W mode of AMS, ions generated from
particles could be identified by their exact mass–charge ratio
(m/z) and then grouped into the CHON, CHO, CHN and CH
families. Figure 6 presents the evolution of OA mass spec-

Figure 6. (a) Mass spectrum of POA; (b) mass spectrum of aged
OA; (c) difference in mass spectra between aged OA and POA. The
data were all taken from Burn 5.

tra. For POA (Fig. 6a), the CH-family was the major compo-
nent, with a mass fraction of 68 %, followed by CHO (23 %),
CHN (6 %), and CHON (2 %). The ions at m/z 43, 41 and
55 were the dominant peaks in the POA mass spectrum. The
major ions at m/z 27, 39, 41, 55, 57, 67 and 69 belonged to
the CH-family and could be the fragments of hydrocarbons
(Weimer et al., 2008). The peaks at m/z 28, 29, 43, 44 and
55 contained considerable CHO ions, and the corresponding
ions (CO+, CHO+, C2H3O+, CO+2 and C3H3O+) could be
the fragments of aldehydes, ketones and carboxylic acid (Ng
et al., 2011a). The peak at m/z 91 was mainly attributed to
C7H+7 , possibly originating from aromatic compounds.

The mass spectra of aged OA were quite different from
those of POA (Fig. 6b–c). The mass fraction of the CH-
family decreased to 46 % and was comparable to that of
the CHO-family, while the contribution of N-containing OA
(CHN and CHON) increased to ∼ 11 %. The ions at m/z 44
and 43, mainly coming from the CHO-family, became the
dominant peaks for the aged OA. The fractions of two ma-
jor masses at m/z 44 (f44) and m/z 43 (f43) in OA can be
used to generate an f44 vs. f43 triangular space, in which
oxygenated organic aerosol (OOA) moves towards the apex
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Figure 7. (a) Comparison of f44 vs. f43 determined in our work
with those for the ambient BBOA data sets (Ng et al., 2011b) and
the ambient OOA range (Ng et al., 2010). The typical f44 ranges
of ambient SV-OOA and LV-OOA are indicated with the vertical
arrows. (b) Comparison of f44 vs. f60 for straw burning OA with
those for other types of biomass burning OA (Alfarra et al., 2007;
Hennigan et al., 2011; Cubison et al., 2011; Brito et al., 2014; May
et al., 2015).

during the aging process (Ng et al., 2010). In addition, f44
in the ambient air was suggested to be 0.07± 0.04 for semi-
volatile OOA (SV-OOA) and 0.17± 0.04 for low-volatility
OOA (LV-OOA), respectively (Ng et al., 2010). Figure 7a
plots f44 and f43 of the POA and the aged OA in all six ex-
periments. Most of the data are within the f44 vs. f43 trian-
gular space and close to the left margin. Photochemical aging
led to an increase in f44 for all the experiments, suggesting
transformation of OA from SV-OOA to LV-OOA. For com-
parison, the f43 did not change significantly in all the exper-
iments. The main ions at m/z 43 were C2H3O+ and C3H+7 .
It can be observed in Fig. 6c that the increased contribution
of C2H3O+ and the decreased contribution of C3H+7 were
comparable during photoreaction.

The ion at m/z 60, mainly consisting of C2H4O+2 , is re-
garded as a BBOA marker, and the mass fraction of this ion

in OA, f60, is widely used to probe the evolution of BBOA
(Brito et al., 2014; May et al., 2015). Figure 7b plots the evo-
lution of f44 and f60 in all the experiments conducted in this
study, in order to compare them with measurements in aging
biomass burning plumes (Cubison et al., 2011) and those in
the POA from different types of biomass burning (Alfarra
et al., 2007; Brito et al., 2014; May et al., 2015). Photo-
oxidation caused an increase in f44 and a decrease in f60, and
this is consistent with the general evolution of OA in ambi-
ent biomass burning plumes (Cubison et al., 2011). However,
our measured f60, 0.003–0.006 in the POA from open straw
burning and 0.002–0004 in aged OA, were all lower than
those from other field campaigns and quite near the back-
ground f60 level of 0.003 for ambient OA (Cubison et al.,
2011; Fig. 7b). Low values of f60 (0.005–0.02) were also re-
ported by Hennigan et al. (2011) in a chamber study for fuels
commonly burned in wildfires. In their study, biomass burn-
ing took place in a 3000 m3 combustion chamber, and the
smokes were then injected into another chamber for aging
experiments with a dilution ratio of ∼ 25. Previous studies
have demonstrated that levoglucosan is a semi-volatile com-
pound with a saturation concentration of∼ 8 µg m−3 at 293 K
(Grieshop et al., 2009b; Huffman et al., 2009; Hennigan et
al., 2011). As a result, the high dilution conditions used in our
study would cause levoglucosan to evaporate, and this may
at least partly explain the low f60 observed in the POA from
straw burning. From previous studies, the levoglucosan /OC
ratios of straw burning ranging from 4.92 to 16.8 % (4 types
of vegetation summarized; Dhammapala et al., 2007; Kim
Oanh et al., 2011; Hall et al., 2012) were not significantly
(two-sample t-test, p> 0.05) lower than those of prescribed
fuel burning, wildfire and wood burning ranging from 1.46
to 13.5 % (20 types of vegetation summarized; Hosseini et
al., 2013; Shahid et al., 2015). So the difference in fuel type
cannot explain the lower f60 observed in our study.

3.3.4 Elemental ratio and oxidation state of OA

In this study, the O /C and H /C ratios in the POA from dif-
ferent straws burning were in the ranges of 0.20–0.38 and
1.58–1.74, respectively. After 5 h aging, O /C increased and
H/C decreased (Table 2). Kroll et al. (2011) proposed a met-
ric, the average carbon oxidation state (OSc), to describe
the degree of oxidation of atmospheric organic species. OSc
could be calculated from the elemental composition of OA
measured by AMS, given by Eq. (7):

OSc = 2×O/C−H/C. (7)

In this study, the OSc values for the fresh POA from open
straw burning ranged from −1.25 to −0.89, consistent with
those suggested for BBOA (−1 to −0.7) (Kroll et al., 2011).
During photochemical aging, the OSc values increased lin-
early (p< 0.001) with OH exposure (Fig. 8), and the slopes
were quite near each other even for different types of straws,
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Table 2. Overview of important experimental conditions and key results in the photochemical oxidation experiments. The unit for OH
exposure is 1010 molecule cm−3 s. NA: data were not available because no data were recorded in the W-mode.

NO. Straw type Temp (◦C) RH (%) OH POA Aged OA OA

exposure O /C H /C OSc O /C H /C OSc ER

Burn 1 Rice 25.0± 0.4 48.9± 1.4 3.80 NA NA NA NA NA NA 2.7
Burn 2 Rice 25.1± 0.4 55.0± 2.3 4.97 0.25 1.74 −1.25 0.50 1.65 −0.65 7.6
Burn 3 Corn 25.5± 0.4 53.0± 2.9 4.16 0.38 1.66 −0.89 0.60 1.66 −0.46 3.6
Burn 4 Corn 26.1± 0.4 48.4± 2.2 4.16 0.30 1.58 −0.97 0.65 1.57 −0.26 4.6
Burn 5 Wheat 25.3± 0.5 52.8± 2.2 3.20 0.20 1.66 −1.25 0.50 1.56 −0.55 2.4
Burn 6 Wheat 25.2± 0.4 55.1± 2.7 1.87 0.26 1.71 −1.20 0.53 1.66 −0.61 6.6

Figure 8. The growth of the OA carbon oxidation state with OH
exposure for burning corn (Burns 3 and 4) and wheat (Burns 5 and
6) straws. Data for burning rice straws were not included since in
Burn 1 AMS was then not run in W-mode.

implying AMS measured OSc might be a good indicator of
OH exposure and thereby of photochemical aging.

Figure 9 shows the Van Krevelen diagram of OA. In this
study, the slopes of linear correlations between H /C and
O /C range from −0.49 to −0.24 for the five experiments.
Slopes of −1, 0.5 and 0 in the Van Krevelen diagrams in-
dicate addition of carboxylic acids without fragmentation,
addition of carboxylic acids with fragmentation, and addi-
tion of alcohols/peroxides, respectively (Heald et al., 2010;
Ng et al., 2011a). Therefore, the slopes determined in our
study suggest that open straw burning OA aging resulted in
net changes in chemical composition equivalent to addition
of carboxylic acid groups with C–C bond breakage and addi-
tion of alcohol/peroxide functional groups.

4 Conclusion

In this study, primary emissions of open burning of rice,
corn and wheat straw and their photochemistry were inves-
tigated using a large indoor chamber. Emission factors of
NOx , NH3, SO2, 67 NMHCs, PM and particle number were

Figure 9. Van Krevelen diagram for the OA. Each slope corre-
sponds to the addition of a specific functional group to an aliphatic
carbon.

measured under dilution ratios ranging from 1300 to 4000.
Emission factors of PM (3.73–6.36 g kg−1) and POC (2.05–
4.11 gC kg−1) were lower than those reported in previous
studies conducted at lower dilution ratios, probably due to
the evaporation of semi-volatile organic compounds. Emis-
sion factors of POC, PM and major NMHC compounds were
all negatively correlated with the modified combustion ef-
ficiency, suggesting that incomplete burning of agricultural
residues could lead to larger primary emission.

Both agricultural residue burning and domestic coal com-
bustion have been recognized as contributing substantially to
the deteriorating regional air quality, especially in rural ar-
eas of China (Pan et al., 2015; J. Liu et al., 2016; Zhu et al.,
2016). The emission factors of the speciated NMHCs, PM,
NOx , CO and SO2 from combustion of raw bituminous coal,
which is currently prevalent for cooking and heating in ru-
ral areas, have been reported to be 0.56–5.40, 25.49± 2.30,
0.97± 0.03, 208± 5 and 2.43–5.36 g kg−1, respectively (Du
et al., 2016; Li et al., 2016; Liu et al., 2017). Annually
burned crop residues and domestic coals were estimated to be
160 Tg (Q. Li et al., 2016) and 99.6 Tg (NBSPRC, 2014) in
China. Therefore, with the emission factors of the speciated
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NMHCs (2.47–5.04 g kg−1), PM (3.73–6.36 g kg−1), NOx
(1.47–5.00 g kg−1), CO (46.1–63.5 g kg−1) and SO2 (0.07–
0.99 g kg−1)measured for agricultural residue burning in this
study, agricultural residue burning might emit more NMHCs
and NOx but less primary PM, CO and SO2 than domestic
coal burning on a national scale.

Photochemical aging of primary emissions was investi-
gated with OH exposure equal to 3.2–9.2 h under typical am-
bient conditions, and at the end of experiments the OA mass
concentrations increased by a factor of 2.4–7.6, suggesting
that SOA could be rapidly produced within several hours.
Our estimation suggests that phenols are the most important
identified SOA precursors, and more than 70 % of the formed
OA still cannot be explained by the oxidation of known pre-
cursors. Measurements using HR-TOF-AMS reveal that af-
ter photochemical aging, signals for oxygen- and nitrogen-
containing compounds were largely increased, with OSc in-
creased in a highly significant linear way with OH exposure.
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