
HAL Id: hal-01688333
https://hal.science/hal-01688333v1

Submitted on 19 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ANALYSIS OF SOME SPLITTING SCHEMES FOR
THE STOCHASTIC ALLEN-CAHN EQUATION

Charles-Edouard Bréhier, Ludovic Goudenège

To cite this version:
Charles-Edouard Bréhier, Ludovic Goudenège. ANALYSIS OF SOME SPLITTING SCHEMES FOR
THE STOCHASTIC ALLEN-CAHN EQUATION. Discrete and Continuous Dynamical Systems -
Series B, 2019, �10.3934/dcdsb.2019077�. �hal-01688333�

https://hal.science/hal-01688333v1
https://hal.archives-ouvertes.fr


ANALYSIS OF SOME SPLITTING SCHEMES FOR THE STOCHASTIC

ALLEN-CAHN EQUATION

CHARLES-EDOUARD BRÉHIER AND LUDOVIC GOUDENÈGE

Abstract. We introduce and analyze an explicit time discretization scheme for the one-
dimensional stochastic Allen-Cahn, driven by space-time white noise. The scheme is based
on a splitting strategy, and uses the exact solution for the nonlinear term contribution.

We first prove boundedness of moments of the numerical solution. We then prove strong
convergence results: first, L2(Ω)-convergence of order almost 1/4, localized on an event of
arbitrarily large probability, then convergence in probability of order almost 1/4.

The theoretical analysis is supported by numerical experiments, concerning strong and
weak orders of convergence.

1. Introduction

In this article, we define and study new numerical schemes for the time discretization of
the following Stochastic Partial Differential Equation (SPDE),

∂u(t, ξ)

∂t
=

∂2u(t, ξ)

∂ξ2
+ u(t, ξ)− u(t, ξ)3 + Ẇ (t, ξ)

driven by Gaussian space-time white noise, with ξ ∈ (0, 1) a one-dimensional space variable
– and homogeneous Dirichlet boundary conditions.

The Allen-Cahn equation has been introduced [1] as a model for a two-phase system driven
by the Ginzburg-Landau energy

E(u) =
∫

|∇u|2 + 1

ε2
V (u),

where u is the ratio of the two species densities, and V = (u2−1)2 is a double well potential.
The first term in the energy models the diffusion of the interface between the two pure
phases, and the second one pushes the solution to two possible stable states ±1 (named
the pure phases, i.e. minima of V ). The behavior of the interface in the regime ε → 0 is
described in terms of mean curvature flow, see for instance [9, 10, 15, 16, 17].

The stochastic version of the Allen-Cahn equation models the effect of thermal perturba-
tions by a additional noise term, see for instance [18, 19, 43]. The behavior as ε → 0 has
been studied for instance in [19] in dimension 1 (with space-time white noise), and [20, 60]
in higher dimension (with more regular noise).

The stochastic Allen-Cahn equation is also a popular model for the study and simulation
of rare events in infinite dimensional stochastic system, see for instance [7, 46, 57, 58].

In this work, our aim is to study numerical schemes for the stochastic Allen-Cahn equa-
tion. In the theoretical analysis, we only focus on the temporal discretization. To perform
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numerical simulations, a spatial discretization is required: we use a standard finite difference
method.

Numerical schemes for SPDEs have been extensively studied in the last two decades,
see for instance the monographs [37, 49, 52]. Compared with the numerical discretization
of Stochastic Differential Equations (SDEs), both temporal and spatial discretization are
required. In addition, the temporal regularity of the solutions of SPDEs depends heavily on
the spatial regularity of the noise perturbation, and this affects orders of convergence. For
instance, consider equations with globally Lipschitz continuous coefficients. For SDEs, the
solutions are Hölder continuous with exponents α < 1/2, and the Euler-Maruyama scheme
has in general a strong order of convergence 1/2 and a weak ordre 1: see for instance the
monographs [44, 54]. For SPDEs, driven by space-time white noise, the solutions are only
Hölder continuous with exponents α < 1/4, and (explicit or implicit) Euler type schemes only
have strong order 1/4 and weak order 1/2. We recall that strong convergence usually refers
to convergence in mean-square sense: see for instance [13, 21, 22, 25, 26, 27, 28, 34, 35, 36,
45, 53, 56, 59]. Weak convergence refers to convergence in distribution: recent contributions
are [6, 11, 14, 38].

For discretization of equations such as the stochastic Allen-Cahn equation, the main dif-
ficulty is the polynomial coefficient, which is not globally Lipschitz continuous. Standard
schemes with explicit discretization of such coefficients cannot be applied. Defining efficient
numerical schemes for stochastic equations with non globally Lipschitz continuous coefficients
is delicate: see for instance the recent works [32], and the monograph [31], and references
therein. The general methodology has been recently applied to various examples of SPDEs:
see for instance [3, 33, 39, 40, 41]. We also mention [29] for the analysis of a tamed Euler
scheme for a class of SPDEs.

The case of the Allen-Cahn equation has been treated in the recent work [2], with a scheme
based on an exponential integrator and a tamed discretization of the nonlinear coefficient.
References [47, 48] present analysis of implicit schemes. Finally, a Wong-Zakai approximation
has been considered in [51].

In this work, we introduce new schemes, based on a splitting (also referred to as splitting-
up) strategy, see for instance [4, 5, 23, 24] in the SPDE case, and [42, 50] for the deterministic
Allen-Cahn equation. Indeed, the solution of the ordinary differential equation ż = z−z3 has
a known explicit expression. The splitting strategy then consists in solving separately the
contributions of the linear coefficient with the noise, and of the nonlinear coefficient. Several
schemes may be chosen to treat the first contribution: exponential and linear implicit Euler
integrators may be used.

We mostly focus on the following scheme (other schemes will be defined when performing
numerical simulations). Let us write the stochastic Allen-Cahn equation as an evolution
equation in the sense of Da Prato-Zabczyk, [12]:

dX(t) = AX(t)dt+Ψ0(X(t))dt+ dW (t),

with Ψ0(x) = x− x3. Then the numerical scheme, with time-step size ∆t > 0, is defined by
the recursion:

{

Yn = Φ∆t(Xn),

Xn+1 = S∆tXn + S∆t

(

W ((n+ 1)∆t)−W (n∆t)
)

,
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where S∆t = (I−∆tA)−1 corresponds to the choice of a linear implicit Euler integrator, and

Φ∆t(z) =
z

√

z2 + (1− z2)e−2∆t
.

Observe that the discrete-time process
(

Xn

)

n∈N
may be interpreted as the solution of a stan-

dard linear implicit Euler scheme for a modified SPDE, with nonlinear coefficient Ψ∆t(z) =
∆t−1(Φ∆t(z)−z), in the spirit of [30]. The coefficient Ψ∆t satisfies the same type of one-sided
Lipschitz condition as Ψ0, uniformly with respect to ∆t.

Our first contribution is the analysis of the splitting scheme introduced above. We first
prove moment bounds, uniform with respect to ∆t. Our main result, Theorem 4.1, is a
strong convergence result, with order of convergence almost 1/4, localized on an event of ar-
bitrarily large probability, in the spirit of [4]. We also state and prove several straightforward
consequences of Theorem 4.1, related with other types of convergence:

• convergence in mean-square sense, with no order of convergence,
• convergence in probability of order almost 1/4, in the spirit of [56],
• weak convergence, with order almost 1/4, rejecting exploding trajectories in the spirit

of [55].

We also provide numerical simulations to illustrate the rates of convergence of the scheme
introduced above, and compare with a few variants.

These numerical experiments lead us to conjecture that our results may be improved as
follows. First, we conjecture that the strong order is equal to 1/4, in the standard sense, i.e.

that it is possible to get rid of the localization in Theorem 4.1. But we expect the analysis
to be considerably more complex and similar to [2]. Second, we conjecture that the weak
order is equal to 1/2, when considering sufficiently smooth test functions. Again the analysis
requires more complex arguments. We plan to investigate these questions in future works.

This article is organized as follows. The setting is introduced in Section 2. The splitting
schemes are introduced in section 3. Results concerning the auxiliary flow map Φ∆t are given
in Section 3.3. A priori bounds on the moments of the numerical solutions are given in Sec-
tion 3.4. Our main results are stated in Section 4.1, and their proofs are given in Sections 4.2
and 4.3. Numerical experiments to investigate strong and weak orders of convergence are
reported in Section 5.

2. Setting

We work in the standard framework of stochastic evolution equations with values in infinite
dimensional separable Hilbert and Banach spaces. We refer for instance to [8, 12] for details.
Let H = L2(0, 1), and E = C([0, 1]). We use the following notation: for x1, x2 ∈ H , x ∈ E,

〈x1, x2〉 =
∫ 1

0

x1(ξ)x2(ξ)dξ , ‖x1‖H =
(

∫ 1

0

x1(ξ)
2dξ

)
1
2 , |x|E = max

ξ∈[0,1]
|x(ξ)|.

To simplify notation, we often write ‖x‖ = ‖x‖H and |x| = |x|E.

2.1. Assumptions.
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2.1.1. Linear operator. Let A denote the unbounded linear operator on H , with
{

D(A) = H2(0, 1) ∩H1
0 (0, 1)

Ax = ∂2
ξx, ∀ x ∈ D(A).

It is well-known that A generates a strongly continuous semi-group, both on H and on E.
We use the notation

(

etA
)

t≥0
. More precisely, it is an analytic semi-group.

Finally, let en =
√
2 sin(nπ·) and λn = n2π2, for n ∈ N. Note that Aen = −λnen, and that

(

en
)

n∈N
is a complete orthonormal system of H .

2.1.2. Wiener process. Let
(

Ω,F ,P
)

denote a probability space, and consider a family
(

βn

)

n∈N
of independent standard real-valued Wiener processes. Then set

W (t) =
∑

n∈N

βn(t)en.

This series does not converge in H . However, if H̃ is an Hilbert space, and L ∈ L2(H, H̃)

is a linear, Hilbert-Schmidt, operator, then LW (t) is a Wiener process on H̃ , centered and
with covariance operator LL⋆.

2.1.3. Stochastic convolution. The linear equation, with additive noise,

dX(t) = AX(t)dt+ dW (t), Z(0) = 0,

admits a unique (global) mild solution in H

X(t) =

∫ t

0

e(t−s)AdW (s) = WA(t),

called the stochastic convolution.
Moreover, this process is continuous with values in E. Moment estimates are satisfied: for

all T ∈ (0,∞) and all p ∈ N, there exists Cp(T ) ∈ (0,∞) such that

(1) E
[

sup
0≤t≤T

‖WA(t)‖2pH + sup
0≤t≤T

|WA(t)|2pE
]

≤ Cp(T ).

2.2. Allen-Cahn equation. The potential energy function V : R → R is defined by

V (z) =
z4

4
− z2

2
.

Then the function Ψ0 = −V ′ satisfies a one-sided Lipschitz condition: for all z1, z2 ∈ R,
(

Ψ0(z2)−Ψ0(z1)
)(

z2 − z1
)

≤ |z2 − z1|2.
However, Ψ0 is not globally Lipschitz continuous.

In this article, we consider the stochastic Allen-Cahn equation, with additive space-time
white noise, i.e. the Stochastic Partial Differential Equation

(2) dX(t) = AX(t)dt+Ψ0(X(t))dt+ dW (t), X(0) = x0,

with an initial condition x0 ∈ E.
We quote the following well-posedness result, see for instance [8, Chapter 6].
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Proposition 2.1. Let T ∈ (0,∞). There exists a unique global mild solution
(

X(t)
)

0≤t≤T

of (2), with values in E. Moreover, for every p ∈ N, there exists Cp(T ) ∈ (0,∞) such that

E
[

sup
0≤t≤T

|X(t)|2pE
]

≤ Cp(T )
(

1 + |x0|2pE
)

.

3. Numerical schemes

Since the coefficient Ψ0 is not globally Lipschitz continuous, it is well-known that explicit
discretization schemes are not appropriate – unless combined with a taming strategy, as
in [2, 29] for instance. Fully implicit schemes are expensive, and split-step schemes such as
defined in [47, 48], with an implicit discretization for the contributions depending on Ψ0,
may be defined.

In the case of Allen-Cahn equations, our strategy, detailed below, consists in replacing
these implicit steps with the exact solution of the flow associated with Ψ0, in the spirit
of [42, 50].

3.1. Splitting schemes. Introduce the auxiliary ordinary differential equation

ż = Ψ0(z), z(0) = z0 ∈ R.

The flow of this equation is known: the unique solution
(

z(t)
)

t≥0
is given by

(3) z(t) = Φt(z0) =
z

√

z20 + (1− z20)e
−2t

, t ≥ 0.

The splitting schemes we consider may be written in the following abstract form: let
∆t > 0 denote the time-step size, then

(4)

{

Yn = Φ∆t(Xn),

Xn+1 = Γ
(

Yn,∆t, (W (t))n∆t≤t≤(n+1)∆t

)

.

To complete the definition of the numerical schemes, it remains to provide the definition of
the mapping Γ, corresponding to the approximation of the stochastic convolution. In the
analysis below, three examples are considered:











Γexact
(

y,∆t, (W (t))n∆t≤t≤(n+1)∆t

)

= e∆tAy +
∫ (n+1)∆t

n∆t
e((n+1)∆t−t)AdW (t),

Γexpo
(

y,∆t, (W (t))n∆t≤t≤(n+1)∆t

)

= Sexpo
∆t y + Sexpo

∆t ∆Wn,

Γimp
(

y,∆t, (W (t))n∆t≤t≤(n+1)∆t

)

= S imp
∆t y + S imp

∆t ∆Wn

where ∆Wn = W
(

(n+ 1)∆t
)

−W
(

n∆t
)

are Wiener increments, and with linear operators

Sexpo
∆t = e∆tA , S imp

∆t =
(

I −∆tA
)−1

.

Numerical experiments, see Section 5; will also be performed for other schemes, based on
different splitting strategies.

When using the splitting scheme with Γ = Γexact, both sub-steps are solved exactly. On
the contrary, when using the other examples, there is an error due to the discretization of
the stochastic convolution.

We use the notation Xexact
n , Xexpo

n and X imp
n , when choosing Γ = Γexact, Γexpo and Γ = Γimp

respectively. To simplify, we do not mention the dependence with respect to ∆t.
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3.2. Auxiliary SPDE. Define auxiliary functions Ψt, for t > 0, as follows: for all z ∈ R,

(5) Ψt(z) =
Φt(z)− z

t
.

An important tool in the analysis is the auxiliary equation

(6) dX(∆t)(t) = AX(∆t)(t)dt+Ψ∆t

(

X(∆t)(t)
)

dt+ dW (t) , X(∆t)(0) = x0,

with nonlinear coefficient Ψ0 in (2) replaced with Ψ∆t.
Observe that the numerical schemes defined by (4), based on the splitting method, can be

interpreted as standard numerical schemes for the auxiliary equation (6):










Xexact
n+1 = e∆tAXexact

n +∆te∆tAΨ∆t(X
exact
n ) +

∫ (n+1)∆t

n∆t
e((n+1)∆t−t)AdW (t),

Xexpo
n+1 = Sexpo

∆t Xexpo
n +∆tSexpo

∆t Ψ∆t(X
expo
n ) + Sexpo

∆t ∆Wn,

X imp
n+1 = S imp

∆t X
imp
n +∆tS imp

∆t Ψ∆t(X
imp
n ) + S imp

∆t ∆Wn.

The schemes Xexact and Xexpo correspond to versions of the exponential Euler scheme, ap-
plied to the auxiliary equation (6). The scheme X imp is the standard linear implicit Euler
scheme, applied to the auxiliary equation (6).

The three schemes are well-defined, for any value of ∆t > 0. Indeed, the mapping Ψ∆t is
globally Lipschitz continuous.

Remark 3.1. One may also introduce the following scheme:

Xacc
n+1 = e∆tAXacc

n + (−A)−1
(

I − e∆tA
)

Ψ∆t(X
acc
n ) +

∫ (n+1)∆t

n∆t

e((n+1)∆t−t)AdW (t).

This scheme corresponds to the application of the accelerated exponential Euler scheme to

the auxiliary equation. However, this scheme is not based on a splitting method.

3.3. Results concerning the auxiliary coefficients Φ∆t and Ψ∆t. In this section, we
state several results concerning the real valued mappings Φ∆t and Ψ∆t defined by (3) and (5),
with t = ∆t. Proofs are postponed to the Appendix A.

Note that the estimates below are uniform for ∆t ∈ [0,∆t0], for any arbitrary ∆t0 > 0 –
and without loss of generality assume ∆t0 < 1. Moreover, the estimates are consistent when
∆t = 0, with Φ0(z) = z and Ψ0(z) = z − z3.

The first result yields global Lipschitz continuity of Φ∆t.

Lemma 3.2. For every ∆t0 ∈ (0, 1), for all ∆t ∈ [0,∆t0], the mapping Φ∆t is globally

Lipschitz continuous, and the Lipschitz constant is bounded from above uniformly for ∆t ∈
[0,∆t0]. More precisely, for all z1, z2 ∈ R,

∣

∣Φ∆t(z2)− Φ∆t(z1)
∣

∣ ≤ e∆t|z2 − z1|.
The second result yields a one-sided Lipschitz condition for Ψ∆t.

Lemma 3.3. For every ∆t0 ∈ (0, 1), for all ∆t ∈ [0,∆t0], the mapping Ψ∆t satisfies a

one-sided Lipschitz condition, uniformly for ∆t ∈ [0,∆t0]. More precisely, for all z1, z2 ∈ R,
(

Ψ∆t(z2)−Ψ∆t(z1)
)(

z2 − z1
)

≤ e∆t(z2 − z1)
2.

In addition to the one-sided Lipschitz condition from Lemma 3.3 above, Ψ∆t is locally
Lipschitz continuous.
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Lemma 3.4. For every ∆t0 ∈ (0, 1), there exists C(∆t0) ∈ (0,∞), such that for all ∆t ∈
[0,∆t0] and all z1, z2 ∈ R,

∣

∣Ψ∆t(z2)−Ψ∆t(z1)
∣

∣ ≤ C(∆t0)|z2 − z1|
(

1 + |z1|3 + |z2|3
)

.

In addition, for all z ∈ R,

|Ψ∆t(z)| ≤ C(∆t0)(1 + |z|4).
Finally, the following result makes precise the speed of convergence of Ψ∆t to Ψ0, when

∆t → 0.

Lemma 3.5. For every ∆t0 ∈ (0, 1), there exists C(∆t0) ∈ (0,∞) such that, for all ∆t ∈
[0,∆t0] and z ∈ R,

|Ψ∆t(z)−Ψ0(z)| ≤ C(∆t0)∆t(1 + |z|5).
3.4. Moment bounds.

3.4.1. Moment bounds for solutions of the auxiliary SPDE (6). Using the one-sided Lipschitz
condition for Ψ∆t, from Lemma 3.3, the same arguments used to get Proposition 2.1 yield
the following moment bounds for the solution X(∆t) of the auxiliary equation, uniformly in
∆t ∈ (0,∆t0], for arbitrary ∆t0 ∈ (0, 1).

Proposition 3.6. Let T ∈ (0,∞). There exists a unique global mild solution
(

X(∆t)(t)
)

0≤t≤T

of (6), with values in E. Moreover, for every p ∈ N, and every ∆t0 ∈ (0, 1), there exists

Cp(T,∆t0) ∈ (0,∞) such that

sup
∆t∈(0,∆t0]

E
[

sup
0≤t≤T

|X(∆t0)(t)|2pE
]

≤ Cp(T,∆t0)
(

1 + |x0|2pE
)

.

Observe that, when ∆t > 0, the mapping Ψ∆t is globally Lipschitz continuous, the exis-
tence of moments is thus a standard result. The one-sided Lipschitz condition ensures that
the estimate is uniform for ∆t ∈ (0,∆t0].

3.4.2. Moment bounds for solutions of the numerical schemes (4). Let ∆t0 ∈ (0, 1), and
∆t ∈ (0,∆t0] denote a time-step size. Let

(

Xn

)

n∈N0
be defined by the numerical scheme (4),

with the mapping Γ ∈
{

Γexact,Γexpo,Γimp
}

. For T ∈ (0,∞), let NT,∆t = ⌊ T
∆t
⌋.

Proposition 3.7. Let T ∈ (0,∞) and ∆t0 ∈ (0, 1). For any p ∈ N, there exists Cp(t,∆t0) ∈
(0,∞) such that for all ∆t ∈ (0,∆t0] and all x0 ∈ E,

E
[

sup
0≤n≤NT,∆t

|Xn|2pE
]

≤ Cp(T,∆t0)(1 + |x0|2pE ).

The proof uses the following result, in the situation with Ψ0 replaced with 0 in (2).

Lemma 3.8. Let
(

ωn

)

n=0,...,NT,∆t
be defined by ω0 = 0, and

ωn+1 = Γ
(

ωn,∆t, (W (t))n∆t≤t≤(n+1)∆t

)

Let T ∈ (0,∞) and ∆t0 ∈ (0, 1). For any p ∈ N, there exists Cp(T,∆t0) ∈ (0,∞) such that

for all ∆t ∈ (0,∆t0],

E
[

sup
0≤n≤NT,∆t

|ωn|2pE
]

≤ Cp(T,∆t0).

Before sketching the proof of Lemma 3.8, we provide a detailed proof of Proposition 3.7.
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Proof of Proposition 3.7. Let rn = Xn − ωn, for n ∈ {0, . . . , NT,∆t}.
Then r0 = x0, and (with S∆t = Sexact

∆t = e∆tA when Γ = Γexact)

rn+1 = Xn+1 − ωn+1 = S∆t

(

Φ∆t(Xn)− ωn

)

= S∆t

(

Φ∆t(rn + ωn)− Φ∆t(ωn)
)

+ S∆t

(

Φ∆t(ωn)− ωn

)

.

In addition, the linear operator S∆t ∈
{

Sexact
∆t , Sexpo

∆t , S imp
∆t

}

satisfies |S∆tx|E ≤ |x|E , for all

x ∈ E and all ∆t > 0, as a consequence of the maximum principle for the Laplace operator.
On the one-hand, using Lipschitz continuity of Φ∆t, see Lemma 3.2, then

∣

∣S∆t

(

Φ∆t(rn + ωn)− Φ∆t(ωn)
)
∣

∣

E
≤ e∆t|rn|E.

On the other hand, thanks to Lemma 3.4, and the identity Φ∆t(z)− z = ∆tΨ∆t(z),
∣

∣S∆t

(

Φ∆t(ωn)− ωn

)
∣

∣

E
≤ C(∆t0)∆t(1 + |ωn|4E).

The last two estimates prove that

|rn+1|E ≤ e∆t|rn|E + C(∆t0)∆t(1 + |ωn|4E),
and by discrete Gronwall’s Lemma, for all n ∈ {0, . . . , NT,∆t},

|rn|E ≤ C(T,∆t0)
(

1 + |x0|E + sup
0≤m≤NT,∆t

|ωm|4E
)

.

Applying the estimate of Lemma 3.8 then concludes the proof of Lemma 3.7. �

It remains to give a sketch of proof of Lemma 3.8.

Sketch of proof of Lemma 3.8. When Γ = Γexact, then ωn = WA(n∆t), and thus the result
is a straightforward consequence of (1).

When Γ = Γexpo, define

ω̃(t) = e(t−n∆t)Aωn +

∫ t

n∆t

e∆tAdW (s) , n∆t ≤ t ≤ (n+ 1)∆t.

When Γ = Γimp, define

ω̃(t) = ωn + (t− n∆t)AS imp
∆t ωn +

∫ t

n∆t

S imp
∆t dW (s) , n∆t ≤ t ≤ (n+ 1)∆t.

Note that ω̃ is a continuous process, with values in E, and satisfies ω̃(n∆t) = ωn. For all
t ≥ 0 and ξ ∈ [0, 1], let ω̃(t, ξ) = ω̃(t)(ξ).

We claim that, for all T ∈ (0,∞), p ∈ N, ∆t0 ∈ (0, 1), and α ∈ (0, 1
4
), there exists

Cα,p(T,∆t0) such that for all ∆t ∈ (0,∆t0],

E
∣

∣ω̃(t, ξ2)− ω̃(t, ξ1)
∣

∣

2p ≤ Cα,p(T,∆t0)|ξ2 − ξ1|4αp , ∀ t ∈ [0, T ], ξ1, ξ2 ∈ [0, 1],

E
∣

∣ω̃(t2, ξ)− ω̃(t1, ξ)
∣

∣

2p ≤ Cα,p(T,∆t0)|t2 − t1|2αp , ∀ t1, t2 ∈ [0, T ], ξ ∈ [0, 1].

The proof of this statement uses only standard arguments (see [12]), it is left to the reader.
Note that ω̃(0) = 0, and ω̃(t, 0) = ω̃(1) = 0 for all t ≥ 0. Then the application of the
Kolmogorov regularity criterion concludes the proof. �
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4. Convergence analysis of the splitting schemes

Our main result, Theorem 4.1, and several consequences, are stated in Section 4.1. Sec-
tion 4.2 is devoted to a detailed proof of Theorem 4.1, and the other results are then proved
in Section 4.3.

4.1. Statements. Our main result is the following.

Theorem 4.1. Let T ∈ (0,∞), ∆t0 ∈ (0, 1), and α ∈ (0, 1
4
). There exists Cα(T,∆t0) ∈

(0,∞), such that, for every ∆t ∈ (0,∆t0], M ∈ N and x0 ∈ E, with ‖(−A)αx0‖H < ∞, then

E
[

1
Ω

(∆t)
M

(T )
sup

0≤n≤NT,∆t

‖Xn −X(n∆t)‖2H
]

≤ Kα(M,T,∆t0)∆t2α(1 + |x0|8E + ‖(−A)αx0‖2H)

with Kα(M,T,∆t0) ≤ Cα(T,∆t0)(1 +M6) exp(Cα(T,∆t0)M
6), and

Ω
(∆t)
M (T ) =

{

sup
0≤k∆t≤T

|Xk|E + sup
0≤t≤T

|X(∆t)(t)|E ≤ M

}

.

Moreover, there exists C(T,∆t0) such that for every x0 ∈ E, ∆t ∈ (0,∆t0] and every M ∈ N

P
(

Ω
(∆t)
M (T )c

)

≤ C(T,∆t0)(1 + |x0|E)
M

.

Remark 4.2. The condition ‖(−A)αx0‖H < ∞ may be relaxed using standard arguments.

If one assumes ‖(−A)βx0‖H < ∞ with β ∈ [0, α], a factor of the type tα−β
n needs to be

introduced. To simplify notation, we only consider the case β = α and leave the details of

the general case to the interested readers.

Let us state three straightforward consequences of Theorem 4.1, presenting other standard
ways to describe the error of the numerical scheme. Proofs are postponed to Section 4.3.

Corollary 4.3. The numerical scheme is mean-square convergent. Precisely, for every T ∈
(0,∞), and any initial condition x0 ∈ E, with ‖(−A)αx0‖H < ∞, then

E
[

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖2H
]

→
∆t→0

0.

Corollary 4.4. The numerical scheme converges in probability with order α, for all α < 1
4
.

More precisely, for every α ∈ (0, 1
4
), K ∈ (0,∞), and any initial condition x0 ∈ E, with

‖(−A)αx0‖H < ∞, then

P

(

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖H ≥ K∆tα
)

→
∆t→0

0.

Corollary 4.5. Let T ∈ (0,∞), ∆t0 ∈ (0, 1), and α ∈ (0, 1
4
). For every ǫ ∈ (0, 1), there

exists M = Mα(ǫ, T,∆t0) ∈ (0,∞) and C = Cα(ǫ, T,∆t0) ∈ (0,∞) such that for any

bounded Lipschitz continuous function ϕ : H → R, with ‖ϕ‖∞ + Lip(ϕ) ≤ 1, and for every

∆t ∈ (0,∆t0] and x0 ∈ E, with ‖(−A)αx0‖H < ∞, then
∣

∣E
[

ϕ(X(T ))
]

− E
[

ϕ(XNT,∆t
)1

Ω
(∆t)
M

(T )c

]
∣

∣ ≤ ǫ+ C∆tα.

This weak convergence result is not expected to be optimal. First, it is based on the
concept of rejecting exploding trajectories: with a more technical analysis, it may be possi-
ble to remove the ǫ error term. Second, as will be confirmed by the numerical experiments
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below, the order of convergence α may be replaced with 2α, using the standard weak con-
vergence analysis, for functions ϕ of class C2, bounded and with bounded derivatives. These
improvements will be investigated in future works.

4.2. Proof of Theorem 4.1.

4.2.1. Two auxiliary lemmas. We first state two auxiliary results.

Lemma 4.6. Let T ∈ (0,∞) and ∆t0 ∈ (0, 1). For every α < 1
4
, there exists Cα(T,∆t0) ∈

(0,∞) such that for all ∆t ∈ (0,∆t0]

E
[

sup
0≤n≤NT,∆t

‖ωn −WA(n∆t)‖2H
]

≤ Cα(T,∆t0)∆t2α.

Proof of Lemma 4.6. If Γ = Γexact, then ωn = WA(n∆t), and there is nothing to prove.
When Γ = Γexpo or Γimp, then

ωn =

n−1
∑

k=0

∫ (k+1)∆t

k∆t

Sn−k
∆t dW (t).

and it is known that, for all p ∈ N, there exists Cp,α(T,∆t0) such that for all ∆t ∈ (0,∆t0],

sup
0≤n≤NT,∆t

E‖ωn −WA(n∆t)‖pH ≤ Cp,α(T,∆t0)∆tαp.

See for instance [56] for details.
It remains to control the expectation of the supremum. Let α ∈ (0, 1

4
), and, set α̃ = α+ 1

p
,

with p ∈ N, p ≥ 2, chosen sufficiently large to have α̃ < 1
4
. Then

E
[

sup
0≤n≤NT,∆t

‖ωn −WA(n∆t)‖pH
]

≤ E
[

∑

0≤n≤NT,∆t

‖ωn −WA(n∆t)‖pH
]

≤ NT,∆tCp,α̃(T,∆t0)∆tα̃p

≤ TCp,α̃(T,∆t0)∆tα̃p−1,

with α̃p− 1 = pα. Then, since p ≥ 2

(

E
[

sup
0≤n≤NT,∆t

‖ωn −WA(n∆t)‖2H
)

1
2 ≤

(

E
[

sup
0≤n≤NT,∆t

‖ωn −WA(n∆t)‖pH
)

1
p ≤ Cα(T,∆t0)∆tα.

This concludes the proof. �

Lemma 4.7. Let T ∈ (0,∞) and ∆t0 ∈ (0, 1). For every p ∈ N and α < 1
4
, there exists

Cp,α(T ) ∈ (0,∞), such that for any initial condition x0 with ‖(−A)‖αx0‖H < ∞, and all

∆t ∈ (0,∆t0], then for all t, s ∈ [0, T ],

E
[

‖X(∆t)(t)−X(∆t)(s)‖2pH
]

≤ Cp,α(T )(1 + ‖(−A)‖αx0‖2pH )∆t2pα.

Proof of Lemma 4.7. We give a sketch of proof, and give details only for p = 1.
10



Then, let 0 ≤ s < t ≤ T . Then

E‖X(∆t)(t)−X(∆t)(s)‖2H ≤ C(T )‖etAx0 − esAx0‖2H
+ C(T )E‖WA(t)−WA(s)‖2H

+ C(T )

∫ t

s

E‖Ψ∆t(X
(∆t)(r)‖2dr

+ C(T )

∫ s

0

(t− s)2α

(s− r)2α
E‖Ψ∆t(X

(∆t)(r))‖2Hdr.

First, ‖etAx0 − esAx0‖H ≤ |t− s|α‖(−A)αx0‖H .
The inequality E‖WA(t)−WA(s)‖2H ≤ Cα(T ) ≤ |t− s|2α is a standard result.
Finally, it remains to apply Lemma 3.4, and the moment bound from Proposition 3.6 to

conclude. �

4.2.2. Error between solutions of exact and auxiliary equations. The following result states
convergence of the X(∆t) to X when ∆t goes to 0. The order of convergence is 1, and there
is no need for localization.

Proposition 4.8. Let T ∈ (0,∞) and ∆t0 ∈ (0, 1). There exists C(T,∆t0) ∈ (0,∞) such

that for all x0 ∈ E and ∆t ∈ (0,∆t0],

E

[

sup
0≤t≤T

‖X(∆t)(t)−X(0)(t)‖2H
]

≤ C(T,∆t0)
(

1 + |x0|10E
)

∆t2.

Proof of Proposition 4.8. Let R(∆t)(t) = X(∆t)(t)−X(0)(t). Then

dR(∆t)(t) = AR(∆t)(t)dt +
(

Ψ∆t(X
(∆t)(t))−Ψ0(X

(0)(t))
)

dt,

with R(∆t)(0) = 0. As a consequence,

1

2

d‖R(∆t)(t)‖2
dt

= 〈AR(∆t)(t), R(∆t)(t)〉+ 〈Ψ∆t(X
(∆t)(t))−Ψ0(X

(0)(t)), R(∆t)(t)〉

≤ 〈Ψ∆t(X
(∆t)(t))−Ψ∆t(X

(0)(t)), R(∆t)(t)〉
+ ‖Ψ∆t(X

(0)(t))−Ψ0(X
(0)(t))‖‖R(∆t)(t)‖

Using the one-sided Lipschitz condition from Lemma 3.3, and Lemma 3.5, then

1

2

d‖R(∆t)(t)‖2
dt

≤
(

e∆t0 +
1

2

)

‖R(∆t)(t)‖2 + 1

2
‖Ψ∆t(X

(0)(t))−Ψ0(X
(0)(t))‖2

≤ C‖R(∆t)(t)‖2 + C∆t2
(

1 + |X(0)(t)|10E
)

.

Using Gronwall’s lemma, and Proposition 2.1 then concludes the proof. �

4.2.3. Proof of Theorem 4.1. We are now in position to prove the main result of this article,
Theorem 4.1. Thanks to Proposition 4.8, it is sufficient to look at the error Xn−X(∆t)(n∆t).

Define rn = Xn − ωn. Note that

Xn+1 − S∆tXn −∆tS∆tΨ∆t(Xn) = ωn+1 − S∆tωn,

thus

rn+1 = S∆trn +∆tS∆tΨ∆t(Xn).
11



This identity yields (since r0 = X0 = x0)

Xn − ωn = rn = Sn
∆tx0 +∆t

n−1
∑

k=0

Sn−k
∆t Ψ∆t(Xk).

We are now in position to make precise the decomposition of the error:

Xn −X(∆t)(n∆t) =
(

Sn
∆t − en∆t

)

x0 + ωn −WA(n∆t)

+

n−1
∑

k=0

∫ (k+1)∆t

k∆t

[

Sn−k
∆t Ψ∆t(Xk)− e(n∆t−t)AΨ∆t(X

(∆t)(t))
]

dt.

First, there exists Cα ∈ (0,∞), such that for all n ∈ N,

‖
(

Sn
∆t − en∆t

)

x0‖H ≤ Cα∆tα‖(−A)αx0‖H .

In addition, the error term ωn −WA(n∆t) is controlled thanks to Lemma 4.6.
It remains to deal with

n−1
∑

k=0

∫ (k+1)∆t

k∆t

[

Sn−k
∆t Ψ∆t(Xk)− e(n∆t−t)AΨ∆t(X

(∆t)(t))
]

dt

= ∆t
n−1
∑

k=0

Sn−k
∆t

[

Ψ∆t(Xk)−Ψ∆t(X
(∆t)(k∆t))

]

+
n−1
∑

k=0

∫ (k+1)∆t

k∆t

Sn−k
∆t

[

Ψ∆t(X
(∆t)(k∆t)−Ψ∆t(X

(∆t)(t))
]

dt

+
n−1
∑

k=0

∫ (k+1)∆t

k∆t

[

Sn−k
∆t − e(n∆t−t)A

]

Ψ∆t(X
(∆t)(t))dt

Since Ψ∆t is not globally Lipschitz continuous uniformly in ∆t ∈ (0,∆t0), a localization
argument is introduced.

For M ∈ N, and n ∈ {0, . . . , NT,∆t}, let

Ω
(∆t)
n,M =

{

sup
0≤k≤n

|Xk|E + sup
0≤t≤n∆t

|X(∆t)(t)|E ≤ M

}

.

Note that for all k ∈ {0, . . . , n− 1}, 0 ≤ 1
Ω

(∆t)
n,M

≤ 1
Ω

(∆t)
k,M

≤ 1.
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Let ǫn = 1
Ω

(∆t)
n,M

‖Xn −X(∆t)(n∆t)‖2H . Then

E
[

sup
0≤m≤n

ǫm
]

≤ C sup
0≤m≤n

‖
(

Sm
∆t − em∆t

)

x0‖2H + CE
[

sup
0≤m≤n

‖ωm −WA(m∆t)‖2H
]

+ CT∆t
n−1
∑

k=0

E
[

1
Ω

(∆t)
k,M

‖Ψ∆t(Xk)−Ψ∆t(X
(∆t)(k∆t))‖2

]

+ CT
n−1
∑

k=0

∫ (k+1)∆t

k∆t

E‖Ψ∆t(X
(∆t)(k∆t)−Ψ∆t(X

(∆t)(t))‖2dt

+ CT
n−1
∑

k=0

∫ (k+1)∆t

k∆t

E
∥

∥

[

Sn−k
∆t − e(n∆t−t)A

]

Ψ∆t(X
(∆t)(t))

∥

∥

2

H
dt

≤ Cα(T )(1 + ‖(−A)αx0‖2H)∆t2α

+ C(1 +M6)T∆t

n−1
∑

k=0

E[ sup
0≤m≤k

ǫm]

+ Cα(T )(1 +M6)∆t2α

+ Cα(T )(1 + |x0|8E)∆t2α.

We have first used the estimate above and Lemma 4.6. Moreover, if x1, x2 ∈ E satisfy
|x1|E ≤ M, |x2|E ≤ M , then

‖Ψ∆t(x2)−Ψ∆t(x1)‖H ≤ C(∆t0)(1 +M3)‖x2 − x1‖H .
Thus

E
[

1
Ω

(∆t)
k,M

‖Ψ∆t(Xk)−Ψ∆t(X
(∆t)(k∆t))‖2

]

≤ C(1 +M6)E
[

1
Ω

(∆t)
k,M

‖Xk −X(∆t)(k∆t)‖2
]

≤ C(1 +M6)E[ sup
0≤m≤k

ǫm].

Finally, we have used Lemma 4.7, and the standard estimates to control ‖Sn−k
∆t −e(n∆t−t)A‖L(H).

Applying the discrete Gronwall’s Lemma,

E
[

sup
0≤m≤n

ǫm
]

≤ Cα(T,M)∆t2α(1 + |x0|8E + ‖(−A)αx0‖2H),

with Kα(T,M) ≤ Cα(T )(1 +M6) exp(Cα(T )M
6T ).

To conclude, note that Ω
(∆t)
NT,∆t,M

= Ω
(∆t)
M (T ), and that

E
[

1
Ω

(∆t)
NT,∆t,M

sup
0≤n≤NT,∆t

‖Xn −X(∆t)(n∆t)‖2H ] ≤ E[ sup
0≤n≤NT,∆t

ǫn].

In addition,

1− P
(

Ω
(∆t)
NT,∆t,M

)

≤
E
[

sup
0≤k≤NT,∆t

|Xk|E + sup
0≤t≤T

|X(∆t)(t)|E
]

M
≤ C(T,∆t0)(1 + |x0|E)

M
,

thanks to Propositions 3.6 and 3.7.
These estimates, combined with Proposition 4.8, conclude the proof of Theorem 4.1.
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4.3. Proof of the Corollaries.

Proof of Corollary 4.3. Let M be an arbitrary integer. Then, for all ∆t ∈ (0,∆t0],

E
[

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖2H ] = E
[

1
Ω

(∆t)
M

(T )
sup

0≤n≤NT,∆t

‖Xn −X(n∆t)‖2H ]

+ E
[

1
Ω

(∆t)
M

(T )c
sup

0≤n≤NT,∆t

‖Xn −X(∆t)(n∆t)‖2H ]

≤ Cα(M,T,∆t0, x)∆t2α

+ P
(

Ω
(∆t)
M (T )c

)
1
2
(

E
[

sup
0≤n≤NT,∆t

‖Xn‖4H + ‖X(n∆t)‖4H ]
)

1
2

≤ Cα(M,T,∆t0, x)∆t2α +
Cα(T,∆t0, x)√

M
,

thanks to Theorem 4.1, Cauchy-Schwarz inequality, and Propositions 2.1 and 3.7. Thus,
letting first ∆t → 0, then M → ∞, yields

lim sup
∆t→0

E
[

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖2H ] ≤
Cα(T,∆t0, x)√

M
→

M→∞
0,

which concludes the proof of Corollary 4.3. �

Proof of Corollary 4.4. Let K ∈ (0,∞) be an arbitrary positive real number, and M ∈ N be
an arbitrary integer. Let α̃ ∈ (α, 1

4
). Then

P

(

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖H ≥ K∆tα
)

≤ P

(

Ω
(∆t)
M (T )c

)

+ P

(

{

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖H ≥ K∆tα

}

∩ Ω
(∆t)
M (T )

)

≤ Cα(T,∆t0, x)

M
+

1

K2∆t2α
E
[

1
(Ω

(∆t)
M

(T )
sup

0≤n≤NT,∆t

‖Xn −X(n∆t)‖2H
]

≤ Cα(T,∆t0, x)

M
+

1

K2
Kα̃(M,T,∆t0)∆t2(α̃−α),

thanks to Theorem 4.1. Thus, letting first ∆t → 0, then M → ∞, yields

lim sup
∆t→0

P

(

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖H ≥ K∆tα
)

≤ Cα(T,∆t0, x)

M
→

M→∞
0,

which concludes the proof of Corollary 4.4. �

Proof of Corollary 4.5. Let ǫ ∈ (0, 1), and M ∈ N be such that, for all ∆t ∈ (0,∆t0],

P
(

Ω
(∆t)
M (T )c

)

≤ C(T,∆t0)(1 + |x0|E)
M

≤ ǫ.

14



Then
∣

∣E
[

ϕ(X(T ))
]

− E
[

ϕ(XNT,∆t
)1

Ω
(∆t)
M

(T )

]
∣

∣ ≤
∣

∣E
[(

ϕ(X(T ))− ϕ(XNT,∆t
)
)

1
Ω

(∆t)
M

(T )

]
∣

∣

+ E
[

ϕ(X(T ))1
Ω

(∆t)
M

(T )c

]

≤ E
[
∥

∥X(T )−XNT,∆t

∥

∥

H
1
Ω

(∆t)
M

(T )

]

+ ǫ

≤ Cα(T,∆t0, x)∆tα + ǫ,

thanks to the assumption that ϕ is bounded and Lipschitz continuous, with ‖ϕ‖∞+Lip(ϕ) ≤
1, and to Theorem 4.1. This concludes the proof of Corollary 4.5. �

5. Numerical experiments

This section is devoted to numerical simulations, in order to investigate the properties of
the numerical scheme (4), with the choice Γ = Γimp of the linear implicit Euler scheme:

(7)

{

Yn = Φ∆t(Xn),

Xn+1 = S∆tYn + S∆t

(

W ((n+ 1)∆t)−W (n∆t)
)

,

with S∆t = (I − ∆tA)−1. All simulations are performed with this choice of integrator.
Indeed, we expect that there is no gain in the orders of convergence when using the version
Γ = Γexp, with S∆t = e∆tA. In addition, computing such exponential operators may be
expensive in more complex situations, for instance where eigenvalues and eigenfunctions of
A are not explicitly known, or in higher dimensional domains. It is thus natural to restrict
our simulations to the linear implicit Euler scheme.

Spatial discretization is performed using a standard finite differences scheme, with a fixed
mesh size. The dependence of the error with respect to this spatial discretization parameter
is not studied in this article: we only focus on the temporal discretization error.

Variants of the scheme (7) are introduced below, in Section 5.1. They are based on other
splitting strategies. The numerical simulations allow us to compare the orders of convergence
of these methods.

First, in Section 5.2, strong orders of convergence of the schemes are compared. We observe
that in practice the result of Theorem 4.1 holds true without requiring the introduction of the

set Ω
(∆t)
M (T ), and that all the methods are expected to have the same order of convergence,

equal to 1/4. We conjecture that the strong order of convergence of the scheme (7) is equal
to 1/4.

Second, in Section 5.3, weak orders of convergence of the schemes are compared. Note
that the rejection of exploding trajectories, as suggested by Corollary 4.5, is not performed:
we may take ǫ = 0. Moreover, the test function is of class C2, bounded and with bounded
derivatives. In addition, one of the alternative splitting schemes defined below has a lower
weak error. Based on these numerical simulations, we conjecture that the weak order of
convergence is then equal to 1/2 for the scheme (7). This question will be studied in future
works.

We also plan to study generalizations in higher dimension.

5.1. Variants of the numerical scheme (7). We define three numerical schemes, for each
value of the time-step size ∆t > 0. We recall that S∆t = (I −∆tA)−1, and use the notation
∆Wn = W ((n+ 1)∆t)−W (n∆t) for Wiener increments.
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Method 1, given by the scheme (8), corresponds with the scheme studied above, (4), with
the linear implicit Euler integrator. The definition of Method 3, given by the scheme (9), is
motivated by [48]. The numerical experiments below show that the error is reduced when
using this scheme, but the order of convergence seems to be the same. Finally, the definition
of Method 3 is motivated by [7]. We have checked that the three variants give consistent
results. In addition, the observations are stable with respect to the choice of the mesh size.

Method 1.

(8)

{

Y 1
n = Φ∆t(X

1
n),

X1
n+1 = S∆tX

1
n + S∆t∆Wn,

Method 2.

(9)











Y 2,1
n = S∆t

2
X2

n

Y 2,2
n = Φ∆t(Y

2,1
n )

X2
n+1 = S∆t

2

(

Y 2,2
n +∆Wn

)

.

Method 3.

(10)











Y 3,1
n = S∆t

2

(

X3
n +

1
2
∆Wn

)

Y 3,2
n = Φ∆t(Y

3,1
n )

X3
n+1 = S∆t

2

(

Y 3,2
n + 1

2
∆Wn

)

.

Remark 5.1. Using different splitting strategies yields other numerical schemes. For in-

stance, we may have considered the scheme defined by










Y 1
n = Φ∆t

2
(Xn)

Y 2
n = S∆t

(

Y 1
n +∆Wn)

Xn+1 = Φ∆t
2
(Y 2

n ).

Numerical experiments for this scheme are not reported, since they do not differ from Method 1.

5.2. Strong convergence. In order to study the strong order of convergence, one needs to
compare trajectories computed using the same Wiener path, which constraints the construc-
tion of the associated Wiener increments. It is customary to compare the numerical solution
computed with time-step size ∆t, with a reference solution computed using a much smaller
time-step size. Instead, we estimate the mean-square error

E‖X(∆t)
N −X

(∆t
2
)

2N ‖2

where X
(∆t)
N is the numerical scheme, with time-step size ∆t, and N∆t = T . The solutions

are computed using the same Wiener path for one value of ∆t, and using independent
Wiener paths when changing ∆t. One needs to check that this error is bounded from above
by Cα(T )∆t2α: by a telescoping sum argument, since by Corollary 4.4 the scheme is mean-
square convergent, this property is equivalent to a standard error estimate

E‖X(∆t)
N −X(T )‖2 ≤ C ′

α(T )∆t2α.
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Figure 1. Mean square error order for T = 1, ∆x = 2.5 10−4 and 105 inde-
pendent realizations.

In addition, note that the order of convergence of the error E‖X(∆t)
N − X

(∆t
2
)

2N ‖2 is exactly
what matters in the analysis of Multilevel Monte Carlo algorithms, which are used in the
context of weak convergence – see Section 5.3 below.

The simulations are performed with T = 1, a mesh size ∆x = 2.5 10−4, and computing
Monte-Carlo averages over 105 independent realizations. The numerical results, in logarith-
mic scale, are reported in Figure 1. We observe that the mean-square error converges with
order 2α = 1/2, for the three methods.

5.3. Weak convergence. Weak orders of convergence deal to the behavior of the error

E

[

ϕ
(

X
(∆t)
N

)]

− E
[

ϕ(X(T ))
]

where ϕ : H → R is a test function, with appropriate regularity properties. Precisely, in the
numerical experiments below, the test function is given by

ϕ(x) = exp
(

−5‖x‖2H
)

which is of class C2, bounded and with bounded derivatives. Our aim is to check that the
weak order of convergence is equal to 2α = 1/2, where α = 1/4 is the strong order.

Experiments to identify weak rates of convergence are plagued by statistical error, and thus

we need to use a variance reduction strategy. Instead of directly comparing E
[

ϕ(X
(∆t)
N )

]

with
17
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Figure 2. Weak error order for T = 1, ∆x = 2.5 10−4 and 105 independent realizations.

a reference value, estimated by an independent Monte Carlo experiment with much smaller
time step, we use a form of Multilevel Monte Carlo method. Precisely, we estimate (by a
standard Monte Carlo average) the error

E

[

ϕ
(

X
(∆t)
N

)]

− E

[

ϕ
(

X
(∆t

2
)

2N

)]

using the same Wiener paths (as explained in Section 5.2), but different time-step sizes,
respectively ∆t and ∆t

2
. Between two successive levels, the time-step size ∆t is decreased,

and computations at different levels use independent Wiener paths. Contrary to the standard
Multilevel Monte Carlo strategy, the number of realizations per level is not optimized (it is
the same at each level): still the computational cost is significantly reduced (thanks to the
strong convergence property checked in Section 5.2), and the observation of the weak orders
of convergence is improved a lot.

The comparison of E
[

ϕ
(

X
(∆t)
N

)]

with a reference value E

[

ϕ

(

X
( ∆t

2K
)

N

)]

estimated with

a smaller time step ∆t
2K

is performed using a straightforward telescoping sum procedure.
The simulations are performed with T = 1, ∆x = 2.5 10−4, and with 105 independent

Monte Carlo realizations at each level. The numerical results, in logarithmic scale, are
reported in Figure 2. We observe that the weak error converges with order 2α = 1/2 for
three methods, and that Method 3 seems more efficient.
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Appendix A. Proof of auxiliary results

Let ∆t0 ∈ (0, 1), and ∆t ∈ (0, 1). Note that the properties are straightforward when
∆t = 0: then Φ0(z) = z and Ψ0(z) = z − z3.

Recall (see (3) and (5)) that, for all ∆t ≥ 0 and z ∈ R,

Φ∆t(z) =
z

√

z2 + (1− z2)e−2∆t
=

z
√

e−2∆t + (1− e−2∆t)z2
, Ψ∆t(z) =

Φ∆t(z)− z

∆t
.

Proof of Lemma 3.2. The mapping Φ∆t is of class C1, and for all z ∈ R,

d

dz
Φ∆t(z) =

e−2∆t

(

e−2∆t + (1− e−2∆t)z2
)3/2

∈ [0, e∆t].

The conclusion is straightforward. �

Proof of Lemma 3.3. We claim that, for all z ∈ R,

dΨ∆t(z)

dz
≤ e∆t.
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To get this estimate, first compute

dΨ∆t(z)

dz
=

d

dz

( z

∆t

( 1
√

e−2∆t + (1− e−2∆t)z2
− 1

)

)

=
1

∆t

( e−2∆t

[

e−2∆t + (1− e−2∆t)z2
]3/2

− 1
)

=
1

∆t

(

fz(∆t)− fz(0)
)

,

where, for all t ≥ 0 and z ∈ R,

fz(t) =
e−2t

[

z2 + (1− z2)e−2t
]3/2

.

Then, for fixed z ∈ R, and all t ≥ 0, compute

f ′
z(t) = fz(t)

(

−2 +
3(1− z2)e−2t

z2 + (1− z2)e−2t

)

= fz(t)−
3z2fz(t)

z2 + (1− z2)e−2t

≤ fz(t).

Thanks to Gronwall’s Lemma, and fz(0) = 1, one gets for all t ≥ 0, and fixed z ∈ R,

f ′
z(t) ≤ fz(t) ≤ et.

Then, for all z ∈ R,
dΨ∆t(z)

dz
=

fz(∆t)− fz(0)

∆t
≤ e∆t

which concludes the proof of the claim. Concluding the proof of Lemma 3.3 is then straight-
forward. �

Proof of Lemma 3.4. Following the computations from the proof of Lemma 3.3 above, for
all z ∈ R,

∣

∣

∣

∣

dΨ∆t(z)

dz

∣

∣

∣

∣

=
1

∆t

∣

∣fz(∆t)− fz(0)
∣

∣ ≤ 3e3∆t(1 + |z|2).

Indeed, for fixed z ∈ R, and t ≥ 0, using that fz(t) ∈ [0, et],

∣

∣f ′
z(t)

∣

∣ ≤ fz(t) +
3|z|2fz(t)

e−2t + (1− e−2t)|z|2 ≤ et + 3|z|2e3t.

This concludes the proof of the first estimate. The second estimate is straightforward, since
Ψ∆t(0) = 0. �

Proof of Lemma 3.5. Let z ∈ R be fixed. Note that

Ψ∆t(z)−Ψ0(z) =
z

∆t

(

gz(∆t)− gz(0)−∆tg′z(0)
)

with gz(t) =
1√

z2+(1−z2)e−2t
, and g′z(0) = 1− z2.
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The derivatives of gz satisfy, for all t ≥ 0,

g′z(t) = gz(t)
(

1− z2

z2 + (1− z2)e−2t

)

g′′z (t) = gz(t)
[(

1− z2

z2 + (1− z2)e−2t

)2

− z2(1− z2)e−2t

(z2 + (1− z2)e−2t)2

]

.

Note that z2+(1− z2)e−2t = e−2t+(1− e−2t)z2 ≥ e−2t ≥ e−2∆t0 , when 0 ≤ t ≤ ∆t ≤ ∆t0.
Then it is straightforward to check that for all t ∈ [0,∆t]

|gz(t)| ≤ e∆t0 , |g′z(t)| ≤ e∆t0(1 + e2∆t0 |z|2) , |g′′z (t)| ≤ 2e∆t0
(

1 + e2∆t0 |z|2
)2
.

Thus |g′′z (t)| ≤ C(∆t0)(1+ |z|4), and applying Taylor’s formula then concludes the proof. �
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