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Sequential dimension reduction
for learning features of expensive black-box functions

Malek Ben Salem ∗ †, François Bachoc‡, Olivier Roustant∗, Fabrice Gamboa ‡, and Lionel
Tomaso †

Abstract. Learning a feature of an expensive black-box function (optimum, contour line,...) is a difficult
task when the dimension increases. A classical approach is two-stage. First, sensitivity analysis
is performed to reduce the dimension of the input variables. Second, the feature is estimated by
considering only the selected influential variables. This approach can be computationally expensive
and may lack flexibility since dimension reduction is done once and for all. In this paper, we
propose a so called Split-and-Doubt algorithm that performs sequentially both dimension reduction
and feature oriented sampling. The ‘split’ step identifies influential variables. This selection relies
on new theoretical results on Gaussian process regression. We prove that large correlation lengths
of covariance functions correspond to inactive variables. Then, in the ‘doubt’ step, a doubt function
is used to update the subset of influential variables. Numerical tests show the efficiency of the
Split-and-Doubt algorithm.

Key words. Variable selection, Surrogate modeling, Design of experiments, Bayesian optimization
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1. Introduction. In design problems, the goal may be the estimation of a feature of an
expensive black-box function (optimum, probability of failure, level set, ...). Several methods
have been proposed to achieve this goal. Nevertheless, they generally suffer from the curse of
dimensionality. Thus, their usage is limited to functions depending on a moderate number of
variables. Meanwhile, most of real life problems are complex and may involve a large number
of variables.

Let us focus first on high-dimensional optimization problems. In this context, we look for
a good approximation of a global minimum of an expensive-to-evaluate black-box function f :
Ω = [0, 1]D → R using a limited number of evaluations of f . That is, we aim at approximating
x⋆ ∈ Ω such that:

(1.1) x⋆ ∈ argmin
x∈Ω

f(x).

Bayesian optimization (BO) techniques have been successfully used in various problems
[19, 18, 17, 27, 31]. These methods give interesting results when the number of evaluations
of the function f is relatively low [15]. They are generally limited to problems of moderate
dimension, typically up to about 10 [32]. Here, we are particularly interested in the case
where the dimension D is large and the number of influential variables d, also called effective
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dimension, is much smaller: d << D. In this case, there are different approaches to tackle
the dimensionality problem.

A direct approach consists in first performing global sensitivity analysis. Then, the most
influential variables are selected and used in the parametric study. Chen et al. [11] stated that
“Variables selection and optimization have both been extensively studied separately from each
other”. Most of these methods are two-stage: First, the influential variables are selected and
then optimization is performed on these influential variables. These strategies are generally
computationally expensive. Furthermore, the set of selected variables does not take into
account the new data. However, this new information may modify the results of the sensitivity
analysis study. For an overview of global sensitivity analysis methods, one may refer to [16].

Some Bayesian optimization techniques are designed to handle the dimensionality problem.
For instance, the method called Random EMbedding Bayesian Optimization (REMBO) selects
randomly the subspace of influential variables [32, 9]. The main strengths of REMBO are that
the selected variables are linear combinations of the input variables and that it works for huge
values of D. However, the effective dimension d must be specified.

In this paper, we propose a versatile sequential dimension reduction method called Split-
and-Doubt. The design is sequentially generated in order to achieve jointly two goals. The
first goal is the estimation of the optimum (in the optimization case). The second one is
the learning of the influential variables. In the “split” step, the algorithm selects the set of
influential variables based on the values of the correlation lengths of Automatic Relevance
Determination (ARD) covariances. We show theoretical results that support the intuition
that large correlation lengths correspond to inactive variables. The “doubt” step questions
the “split” step and helps correcting the estimation of the correlation lengths.

The paper is organized as follows. Section 2 presents the background and the notations.
Section 3 introduces the Split-and-Doubt. The algorithm is based on theoretical results stated
in Section 4. Finally, Section 5 illustrates the performance of the algorithm on various test
functions. For readability, proofs are postponed to Section 6. Concluding remarks are given
in Section 7.

2. General notations and background.

2.1. Gaussian Process Regression (GPR). Kriging or Gaussian process regression (GPR)
models predict the outputs of a function f : Ω = [0, 1]D → R, based on a set of n observations
[30, 23]. It is a widely used surrogate modeling technique. Its popularity is mainly due to its
statistical nature and properties. Indeed, it is a Bayesian inference technique that provides an
estimate of the prediction error distribution. This uncertainty is an efficient tool to construct
strategies for various problems such as prediction refinement, optimization or inversion.

The GPR framework uses a centered real-valued Gaussian Process (GP) Y over Ω as
a prior distribution for f . The predictions are given by the conditional distribution of Y
given the observations y = (y1, . . . , yn)

⊤ where yi = f(x(i)) for 1 ≤ i ≤ n. We denote
by kθ : Ω × Ω → R the covariance function (or kernel) of Y : kθ(x, x

′) = Cov[Y (x), Y (x′)]

((x, x′) ∈ Ω2), by X =
(
x(1), . . . , x(n)

)⊤ ∈ Ωn the matrix of observation locations and
by Z =

(
X y

)
the matrix of observation locations and values where x(i) = (x

(i)
1 , . . . , x

(i)
D )

for 1 ≤ i ≤ n. θ is a parameter that will be discussed later. Without loss of generality, we
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consider the simple kriging framework. The a posteriori conditional mean mθ,Z and the a
posteriori conditional variance σ̂2

θ,Z are given by:

(2.1) mθ,Z(x) = kθ(x,X)⊤K−1
θ y

(2.2) σ̂2
θ,Z(x) = kθ(x, x)− kθ(x,X)⊤K−1

θ kθ(x,X).

Here, kθ(x,X) is the vector (kθ(x, x
(1)), . . . , kθ(x, x

(n)))⊤ and Kθ = kθ(X,X) is the in-
vertible matrix with entries

(
kθ(X,X)

)
ij
= kθ(x

(i), x(j)), for 1 ≤ i, j ≤ n.
Several methods are useful to select the covariance function. A common approach consists

in assuming that the covariance function belongs to a parametric family. In this paper, we
consider the Automatic Relevance Determination (ARD) kernels defined in (2.3). A review of
classical covariance functions is given in [1].

(2.3) kθ(x, y) = σ2
D∏
p=1

k
(d(xp, yp)

θp

)
, for x, y ∈ Ω.

Here, d(, ) is a distance on Ω×Ω and k : R→ R is a fixed stationary covariance function.
Without loss of generality, we suppose that the hyper-parameter σ is fixed while θ1, . . . , θD
have to be estimated. The ARD kernels include most popular kernels such as the exponential
kernel, the Matérn 5/2 kernel and the squared exponential kernel.

The hyper-parameters of these parametric families can be estimated by maximum Like-
lihood (ML) or cross validation (CV). Both methods have interesting asymptotic properties
[2, 4, 5]. Nevertheless, when the number of observations is relatively low, the estimation
can be misleading. These methods are also computationally demanding when the number of
observations is large.

On one hand, estimating the correlation lengths by the maximum likelihood estimator
gives the estimator θ̂⋆MLE ∈ argmax

θ
lZ(θ) where the likelihood lZ(θ) is given in (2.4).

(2.4) lZ(θ) =
1

(2π)n/2
1√

det
(
kθ(X,X)

) exp
(
−y⊤kθ(X,X)−1y

)
.

On the other hand, the idea behind Cross-validation (CV) is to estimate the prediction
errors by splitting the observations once or several times. One part is used as a test set while
the remaining parts are used to construct the model. The Leave-One-Out Cross-Validation
(LOO-CV) consists in dividing the n points into n subsets of one point each. Then, each
subset plays the role of test set while the remaining points are used together as the training
set. Using Dubrule’s formula [13], the LOO-CV estimator is given in (2.5).

(2.5) θ̂⋆CV ∈ argmin
θ

1

n
y⊤K−1

θ diag(K−1
θ )−1K−1

θ y.

For more insight on these estimators, one can refer to [3].
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2.2. Derivative based global sensitivity measures: DGSM.
. Sobol’ and Kucherenko [28, 29] proposed the so-called Derivative-based Global Sensitiv-

ity Measures (DGSM) to estimate the influence of an input variable on a function f : Ω =
[0, 1]D → R. For each variable xi, the index ϑi is the global energy of the corresponding
partial derivatives.

(2.6) ϑi(f) =

∫
Ω

(∂f(x)
∂xi

)2
dx, i = 1, . . . , D.

DGSM provides a quantification of the influence of a single input on f . Indeed, assuming
that f is of class C1, then xi is not influential iff ∂f

∂xi
(x) = 0, ∀ x ∈ Ω iff ϑi = 0. DGSM has

recently shown its efficiency for the identification of non-influential inputs [24]. We further
define the normalized DGSM ϑ̃i in (2.7). ϑ̃i measures the influence of xi with regard to the
total energy.

(2.7) ϑ̃i(f) =
ϑi(f)

D∑
p=1

ϑp(f)

, i = 1, . . . , D.

3. The Split-and-Doubt Design Algorithm (Split-and-Doubt).

3.1. Definitions.
Variable splitting. Let us consider the framework of a GPR using a stationary ARD kernel.

Intuitively, large correlation length values correspond to inactive variables in the function. We
prove this intuition in Proposition 4.1. The influential variables are selected in our algorithm
according to the estimated values of their corresponding correlation lengths. We show also
that the ML (and CV) estimator is able to assign asymptotically large correlation length
values to the inactive variables (Propositions 4.3 and 4.4).

Let θ̂⋆ = (θ̂⋆1, .., θ̂⋆D) be the ML estimation of the correlation lengths:

θ̂⋆ ∈ argmax
θ

lZ(θ).

The influential variables are then selected according to the estimated values of their cor-
responding correlation lengths. We split the indices into a set of influential variables IM and
a set of minor variables Im as follows:

• IM = {i; θ̂⋆i < T}
• Im = {i; θ̂⋆i ≥ T}

where T ∈ R is a suitable threshold. Let dM (resp. dm) be the size of IM (resp. Im).
We further call Ωm := [0, 1]dm the minor subspace, that is the space of minor variables and
ΩM := [0, 1]dM the major subspace, that is the subspace of major variables. We will use
the set notation: for a set I of {1, . . . , D}, xI will denote the vector extracted from x with
coordinates xi, i ∈ I. Hence, xIM (resp. xIm) denotes the sub-vector of x whose coordinates
are in the major (resp. minor) subspace. For simplicity, we will also write x = (xIM , xIm),
without specifying the re-ordering used to obtain x by gathering xIM and xIm .
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Doubt. The doubt of a correlation length θ measures the influence on mθ,Z of the variables
from the minor subspace Ωm. It is a decreasing function of the correlation lengths. We will
use it to question the variable splitting.

Definition 3.1 (Doubt). Let δ be the following function associated with a variable splitting
(Im, IM ). For all vector θ = (θ1, . . . , θD) ∈ RD:

δ(θ) =
∑
i∈Im

max(θ−1
i − T−1, 0).

Contrast. Given two different correlation lengths θ(1) and θ(2) and a location x, the contrast
measures the discrepancy between the predictions using θ(1) and θ(2) at x. It will be used to
build a sequential design in the minor subspace.

Definition 3.2 (Prediction contrast). For a point x and two correlation lengths θ(1) and θ(2),
the prediction contrast PC(x, θ(1), θ(2)) is

PC(x, θ(1), θ(2)) =
∣∣∣mθ(1),Z(x)−mθ(2),Z(x)

∣∣∣
.

3.2. The algorithm. The Split-and-Doubt algorithm performs a new variable selection at
each iteration. It samples a point in two steps: a goal-oriented sampling in the major subspace
and a sampling of the minor variables to question the variable selection done at the previous
step. The Split-and-Doubt algorithm for optimization using the expected improvement (EI)
criterion [18] is described below:

Algorithm 3.3. Split-and-Doubt-EGO (f)

• Algorithm parameters: ℓ, kernel k, threshold T .
• Start: Inputs: Z = (X, y).
• Loop

1. Estimate the correlation lengths: θ̂⋆ ∈ argmax
θ∈(R⋆

+)D
lZ(θ) Eq. (2.4).

2. Split the variables: Define the major set IM = {i; θ̂⋆i < T} and the minor set
Im = {i; θ̂⋆i ≥ T}, dm = |Im|.

3. Design in the major subspace: Compute x⋆M according to the objective function in
the major subspace (by EI for instance): We compute a new GPR considering
only the major variables to compute the EI. Let ZM = (XIM , y)

x⋆M ∈ argmax
xM∈ΩM

EIZM
(xM ).

4. Doubt the variable splitting: Compute a challenger θ′ for correlation lengths.

θ′ ∈ argmax
θ∈(R⋆

+)D
δ(θ) subject to 2

∣∣∣ ln( lZ(θ)

lZ(θ̂⋆)

)∣∣∣ < χ2(ℓ, dm).
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5. Design in the minor subspace: Compute x⋆m by maximum contrast with the chal-
lenger θ′

x⋆m ∈ argmax
xm∈Ωm

PC
(
x = (x⋆M , xm), θ̂⋆, θ′

)
.

6. Update: Evaluate the new point output yn+1 = f(x(n+1)) with x
(n+1)
Im

= x⋆M and
x
(n+1)
Im

= x⋆m and add the new point to the design:

X⊤ ←
(
X⊤ x(n+1)

)
, y⊤ ← (y⊤, yn+1).

• End loop
• Outputs: Z = (X, y).

Here, the algorithm is applied for optimization (Step 3). We used the Expected Improve-
ment criterion (3.1).

(3.1) EIZ(x) = E
[
max(min

i
yi − Y (x), 0)|Z)

]
.

It is possible to use any other classical optimization criterion to sample x⋆M . We can use
other criteria for other purposes such as contour estimation [21, 22, 8], probability of failure
estimation [6] or surrogate model refinement [10].

The settings of the algorithm are mainly the kernel k, the limit ℓ and the threshold T . An
other hidden setting is the search space for the ML estimator. We use a Matérn 5/2 kernel
and we set ℓ = erf( 1√

2
) and an adaptive threshold T = 20 min

i∈[1,D]
(θ̂⋆i).

3.3. Remarks on the steps of the Split-and-Doubt algorithm.
Remark on the doubt. When the observations do not carry enough information, it is hard to

estimate accurately the correlation lengths. The use of such values can lead to unsatisfactory
results [14, 7]. In our algorithm, the estimated correlation lengths are used to select the major
variables. If this estimation is done once and for all, poor estimation can lead to considering
a major variable inactive. So, it is important to always question the estimation. Therefore,
we look for a “challenger kernel” at each iteration. Specifically, we are looking for correlation
lengths that maximize the doubt and that are accepted by a likelihood ratio test. Indeed, this
is why we limit the search space by a likelihood ratio deviation from the estimated correlation
lengths θ̂⋆: Θl = {θ; 2

∣∣∣ ln( lZ(θ)

lZ(θ̂⋆)

)∣∣∣ < l}. Notice that we used l = χ2(ℓ, dm). Following [14, 11],
the likelihood ratio test is compared to the χ2 distribution to decide whether the correlation
lengths are allowable or not.

Remark on the contrast. Sampling the coordinates in the non-influential variable subspace
{x⋆M} × Ωm = {(x⋆M , xm), xm ∈ Ωm} aims at revealing the contrast between the maximum
likelihood correlation lengths θ̂⋆ and a challenging correlation length parameter is θ′. The
main idea is to sample the point that helps either correcting the first estimation or reducing
the allowable doubt space Θ in order to strengthen the belief in the estimated kernel.

We could have used an alternative direct approach. It consists in maximizing the likelihood
ratio between two estimations of the correlation lengths in the future iterations.
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Definition 3.4 (likelihood contrast).For a point x and two correlation lengths θ(1) and θ(2),
the likelihood contrast LC is:

LC(x, θ(1), θ(2)) = E
[∣∣∣ ln(L(θ(1), Z ∪ (x, Ŷ (x)))

L(θ(2), Z ∪ (x, Ŷ (x)))

)∣∣∣]
where Ŷ (x) ∼ N

(
mθ2,Z(x), (σ̂θ2,Z(x))

2
)

.
However, this approach is computationally more expensive. Therefore, we prefer to use

the prediction contrast (Definition 3.2).

3.4. Example: Illustration of the contrast effect. We illustrate here how the Doubt/Contrast
strategy can help correcting the initial variable splitting. To do so, let us consider the follow-
ing particular case. Let f(x1, x2) = cos(2πx2). We assume that we have at hands four design
points x(1) = (0, 23), x(2) = (13 , 0), x(3) = (23 , 1) and x(4) = (1, 13) and their corresponding
responses y1 = y4 = f(x(1)) = f(x(4)) = −0.5 and y2 = y3 = f(x(2)) = f(x(3)) = 1. Here, the
search space for the correlation lengths is [0.5, 10]2. Let us assume that the first estimation
will give the inaccurate estimation θ̂⋆ = (0.5, 10). We display in Figure 1 the function, the
design points, the log-likelihood of the correlation lengths in the search space [0.5, 10]2 for the
Matérn 5/2 kernel and the predictions using k

θ̂⋆
.
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Figure 1: Left: f(x1, x2) = cos(2πx2), the color code indicates the values of f and solid black
circles indicate the design points. Middle: log-likelihood of the correlation lengths, solid black
circle: θ̂⋆. Right: The predictions given by the GPR using k

θ̂⋆
.

We set T = 10. So, IM = {1} and Im = {2}. Notice that the challenger correlation lengths
is θ′ = (0.5, 0.5). It gives the maximum doubt δ(θ′) = 1

0.5 −
1
10 = 1.9. In this example, we are

sampling the fifth point x(5). The value sampled by the EI in the major space is x⋆M = 0.64.
We display in Figure 2 the prediction contrast PC((x⋆M , x2), θ̂

⋆, θ′) in function of x2.
To show the interests of the contrast strategy, we consider two cases: a) we add the point

sampled by maximum contrast (x⋆M , x⋆m) and b) we add the point with the minimum contrast
(x⋆M , 1). Then, we evaluate these points. For both cases, we display the updated likelihood in
Figure 3.
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Figure 2: The prediction contrast in function of x2.
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Figure 3: Left: The log likelihood of the correlation lengths if we add
(
(x⋆M , x⋆m), f(x⋆M , x⋆m)

)
.

Right: The log likelihood of the correlation lengths if we add
(
(x⋆M , 1), f(x⋆M , 1)

)
.

On one hand, the log-likelihood has larger value for small values of θ2 when we add the
point (x⋆M , x⋆m). Thus, the same inaccurate variables splitting is prevented thanks to the
contrast strategy. On the other hand, if we choose xm = 1 (small contrast value), we may
still use the same variable splitting. Even if this 2-dimensional toy example is pathological, in
high dimension it is hard to estimate accurately the correlation lengths when the number of
design points is relatively small. In these cases, the Doubt/Contrast strategy can be helpful.

4. Links between correlation lengths and variable importance. In this section, we con-
sider a deterministic function f : RD → R to be modeled as a GP path. We consider the
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centered stationary GP with a covariance function kθ defined by

kθ(h) =

D∏
i=1

k(hi/θi).

Here k : R→ R is a fixed covariance function satisfying k(0) = 1 and θ ∈ (0,∞)D is the vector
of correlation lengths. As an example, k may be the function k(h) = e−h2 .

Intuitively, a small correlation length θi for the GP should correspond to an input variable
xi that has an important impact on the function value f(x). Conversely, if the function f
does not depend on xi, then the length θi should ideally be infinite. This intuition is precisely
the motivation for the Split-and-Doubt algorithm suggested in Section 3.

In this section, we show several theoretical results that confirm this intuition. First, we
show that if the correlation length θi goes to zero (respectively infinity) then the derivative-
based global sensitivity measure, obtained from the GP predictor for the input xi, tends to
its maximum value 1 (resp. its minimum value 0). Then, we show that an infinite correlation
length θi can provide an infinite likelihood or a zero LOO mean square error, for the GP
model, when the function f does not depend on xi.

We use the additional following notations throughout the section. For D, p, q ∈ N⋆, for
a covariance function g on RD, for two p × D and q × D matrices X and Z, we denote by
g(X,Z) the p× q matrix defined by [g(X,Z)]i,j = g(Xi, Zj) where Ml is the line l of a matrix
M . When d = 1, p = 1 or q = 1, we identify the corresponding matrices with vectors. We
further assume:

Assumption 1 (Invertibility assumption).for any p, d ∈ N, for any θ ∈ (0,∞)D, for any p×d
matrix X with two-by-two distinct lines, the matrix kθ(X,X) is invertible.

This assumption holds for instance when the spectral density of a stationary kernel is
absolutely continuous. Further, for any vector u, u−i is obtained from u by removing the ith

component of u.

4.1. Correlation lengths and derivative-based global sensitivity measures. Consider a
function f to be observed at the locations x(1), ..., x(n) ∈ Ω, with n ∈ N and for a bounded
domain Ω ⊂ RD. Let X be the n×D matrix with lines given by x(1), ..., x(n), y be the vector
of responses y = (f(x(1)), ..., f(x(n)))⊤ and Z the (n+ 1)×D matrix Z =

(
X y

)
.

Recall that the prediction of f at any line vector x ∈ Ω, from the GP model, is given by
mθ,Z(x) = rθ(x)

⊤K−1
θ y, with rθ(x) = k(x,X), Kθ = kθ(X,X). Then, we use the notation

ϑi(θ) for the DGSM index of the variable xi on the predictor function mθ,Z(x):

ϑi(θ) = ϑi(mθ,Z) =

∫
Ω

(
∂mθ,Z(x)

∂xi

)2

dx.

We also use the following notation for the normalized DGSM index of the variable xi:

ϑ̃i(θ) = ϑ̃i(mθ,Z) =
ϑi(θ)

D∑
r=1

ϑr(θ)

.
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The normalized DGSM index ϑ̃i(θ) satisfies 0 ≤ ϑ̃i(θ) ≤ 1. The larger this indice is, the more
important the variable xi is for mθ,Z(x). In the two next propositions, we show that, under
mild conditions, we have ϑ̃i(θ) → 1 as θi → 0 and ϑ̃i(θ) → 0 as θi → ∞. Hence, we give
a theoretical support to the intuition that small correlation lengths correspond to important
input variables.

Proposition 4.1. Assume that the components of y are not all equal. Assume that k is
continuously differentiable on R. Let i ∈ {1, ..., D} be fixed. For j = 1, ..., n let v(j) = x

(j)
−i .

Assume that v(1), ..., v(n) are two by two distinct. Then, for fixed θ−i ∈ (0,∞)D−1

ϑ̃i(θ) −→
θi→∞

0.

Proposition 4.2. Assume that the components of y are not all equal. Consider the same
notation as in Proposition 4.1. Assume that k is continuously differentiable on R, that k(t)→ 0
as |t| → ∞ and that Ω is an open set. Assume also that x(1), ..., x(n) are two-by-two distinct.
Let i ∈ {1, ..., D} be fixed. Then for fixed θ−i ∈ (0,∞)D−1

ϑ̃i(θ) −→
θi→0

1.

In Propositions 4.1 and 4.2, the regularity conditions on k are mild, and the conditions
on x(1), ..., x(n) hold in many cases, for instance when x(1), ..., x(n) are selected randomly and
independently or from a latin hypercube procedure (see e.g. [26]).

4.2. Estimated correlation lengths and inactive variables. We first recall the likelihood
function:

lZ(θ) =
1

(2π)n/2
1√

det
(
kθ(X,X)

) exp
(
−y⊤kθ(X,X)−1y

)
.

In the next proposition, we show that, if the function f does not depend on the variable
xi, then the likelihood lZ(θ) goes to infinity when θi goes to infinity. This is a theoretical
confirmation that maximum likelihood can detect inactive input variables and assign them
large correlation lengths.

Proposition 4.3. Assume that k is continuous. Assume that for any θ ∈ (0,∞)D, the
reproducing kernel Hilbert space (RKHS) of the covariance function kθ contains all infinitely
differentiable functions with compact supports on RD.

Let i ∈ {1, ..., D} be fixed. For j = 1, ..., n let v(j) = x
(j)
−i . Assume that

i) x(1), ..., x(n) are two-by-two distinct;
ii) yr = ys if v(r) = v(s);

iii) there exist a, b ∈ {1, ..., n} with a ̸= b such that v(a) = v(b).
Then, for fixed θ−i ∈ (0,∞)D−1

lZ(θ) −→
θi→∞

∞.

In Proposition 4.3, Conditions i), ii) and iii) are quite minimal. Condition i) ensures that
the likelihood is well-defined, as the covariance matrix is invertible for all θ ∈ (0,∞)D (due
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to the invertibility assumption 1). Condition ii) holds when f(x) does not depend on xi.
Condition iii) is necessary to have l(θ) going to infinity, since if v(1), ..., v(n) are two by two
distinct, the determinant of kθ(X,X) remains bounded from below as θi → ∞ (see also the
proof of Proposition 4.1). Notice that Conditions ii) and iii) together imply that there is a
pair of input points x(a), x(b) for which only the value of the i-th component changes and the
value of f does not change, which means that the data set presents an indication that the
input variable xi is inactive.

We refer to, e.g., [33] for a reference to the RKHS notions that are used in this section.
There are many examples of stationary covariance functions k satisfying the RKHS condition
in Proposition 4.3. In particular, let k̂θ be the Fourier transform of kθ defined by k̂θ(w) =∫
RD kθ(x)e

−iw⊤xdx with i2 = −1. Then, if there exists τ < ∞ such that k̂θ(w)||w||τ → ∞ as
||w|| → ∞, then the RKHS condition of Proposition 4.3 holds. This follows from Theorem
10.12 in [33] and from the fact that an infinitely differentiable function with compact support
ϕ has a Fourier transform ϕ̂ satisfying ϕ̂(w)||w||γ → 0 as ||w|| → ∞ for any γ < ∞. Hence,
Lemma 4.3 holds in particular when k is the exponential covariance function with k(t) = e−|t|.
Lemma 4.3 also holds when k is the Matérn covariance function with

k (t) =
1

Γ (ν) 2ν−1

(
2
√
ν|t|
)ν

Kν

(
2
√
ν|t|
)
,

where 0 < ν <∞ is the smoothness parameter (see e.g. [30]). It should however be noted that
the squared exponential covariance function k (defined by k(t) = exp(−t2) with t ∈ R) does
not satisfy the condition of Lemma 4.3. [Notice that [34] study specifically the asymptotic
behavior of the maximum likelihood estimation of a variance parameter for this covariance
function, when the number of observations of a smooth function goes to infinity.]

In the next proposition, we study the LOO mean square prediction error

CVZ(θ) =
n∑

j=1

(yj − ŷθ,j)
2,

with ŷθ,j = kθ(x
(j), X−j)kθ(X−j , X−j)

−1y−j , where X−j and y−j are obtained, respectively,
by removing the line j of X and the component j of y. We show that, as for the likelihood,
inactive variables can be detected by this LOO criterion, since we can have CVZ(θ) → 0 as
θi →∞ if the function f does not depend on xi.

Proposition 4.4. Let k satisfy the same conditions as in Proposition 4.3. Let i ∈ {1, ..., D}
be fixed.

For j = 1, ..., n let v(j) = x
(j)
−i . Assume that

i) x(1), ..., x(n) are two-by-two distinct;
ii) yr = ys if v(r) = v(s);

iii) for all r ∈ {1, ..., n} there exists s ∈ {1, ..., n}, r ̸= s, such that v(r) = v(s).
Then, for any fixed θ−i ∈ (0,∞)D−1, we have

CVZ(θ) −→
θi→∞

0.
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In Proposition 4.4, Conditions i) and ii) are interpreted similarly as in Proposition 4.3.
Condition iii), however, provides more restrictions than for the likelihood in Proposition 4.3.
This condition states that for any observation point in the data set, there exists another
observation point for which only the inactive input i is changed. This condition is arguably
necessary to have CVZ(θ)→ 0.

5. Numerical examples.

5.1. Test sets. We illustrate the Split-and-Doubt algorithm on five benchmark optimiza-
tion problems. The first four are classical synthetic functions: the two-dimensional Branin
function, the general Ackley function in six dimensions, the six-dimensional Hartmann func-
tion and the general Rosenbrock function in five dimensions. The fifth one is the Borehole
function [20]. It models the water-flow in a borehole. For each function, we added inactive in-
put variables in order to embed them in a higher dimension D(i). The settings are summarized
in Table 1.

Table 1: Optimization test functions.

f (i) d(i) D(i) Number of de-
sign points n

(i)
0

Number of itera-
tions N

(i)
max

Hartmann 6-
dim

6 15 30 30

Rosenbrock 5 20 40 60
Ackley 6 20 45 40
Borehole 6 25 30 25
Branin 2 25 30 50

We launched the optimization process for these functions with three different optimization
algorithms:

• EGO [18]: Implementation of the R package DiceOptim [25] using the default param-
eters.
• Split-and-Doubt algorithm with Matérn 5/2 covariance function.
• Split-without-Doubt algorithm: It uses the same variable splitting as Split-and-Doubt

and generates the minor variables by uniform random sampling.
For each function f (i), we launched each optimization process for N (i)

max iterations starting
with Nseed = 20 different initial designs of experiments of size n

(i)
0 generated by a maximin

space-filling sampling.

5.2. Results. The results are represented by boxplots in Appendix A. We also display the
mean best value evolution in Figure 4.

We can see that Split-and-Doubt gives better results than EGO for Rosenbrock, Ackley and
Borehole function. EGO does not always converge for the first one and used more iterations
for the second. These cases illustrate the efficiency of the dimension reduction for limited
budget optimization. For Branin function the convergence is relatively fast for all the three
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as a function of the number of iterations.
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algorithms. This is due to the fact that the effective dimension is 2 and that the first design
of experiments covers well these dimensions.

On one hand, sampling the minor variables at random or using the Doubt/Contrast strat-
egy gives close results when the influential variables are easily determined. On the other hand,
the efficiency of the Doubt/Contrast approach is visible on Hartmann and Ackley functions,
by comparing the results of Split-and-Doubt and Split-without-Doubt. Notice that we start
in general with a relatively small amount of design points. Thus, the initial estimation of
the correlation lengths can be inaccurate. In these cases, the Doubt/Contrast approach is
valuable to improve the estimation.

Finally, as we can see in Figure 5, Split-and-Doubt is faster than EGO in terms of com-
puting time. The fact that we perform two optimization procedures in smaller spaces makes
the algorithm faster than optimizing the EI in dimension D.

0
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2
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2
5

C
o
m
p
u
ti
n
g
T
im

e
(m

n
)

Hart6 15D Rosenbrock 20D Branin 25D Ackley 20D

Figure 5: Mean computing time: Left: EGO, Middle: Split-and-Doubt, Right: Split-Without
Doubt in minutes.

6. Proofs. For the proofs of Propositions 4.1 and 4.2, we let k′(t) = ∂k(t)/∂t.
Proof. [Proof of Proposition 4.1 ]
Without loss of generality, we consider i = 1 in the proof. Let θ−1 ∈ (0,∞)D−1 be fixed.

We have

∂

∂xj
mθ,Z(x) =

(
∂rθ(x)

∂xj

)T

K−1
θ y.

When θ1 →∞, Kθ converges to the n×n matrix Lθ−1 with (Lθ−1)pq =
∏D

r=2 k([x
(p)
r −x(q)r ]/θr),

by continuity of k. This matrix is invertible by assumption on k and v(1), ..., v(n). Hence
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||K−1
θ y|| is bounded as θ1 →∞. We have for j = 1, ..., n(

∂rθ(x)

∂x1

)
j

=
1

θ1
k′([x1 − x

(j)
1 ]/θ1)

D∏
p=2

k([xp − x(j)p ]/θp).

Observe that k is continuously differentiable and that Ω is bounded. Hence by uniform
continuity as θ1 →∞

sup
x∈Ω

∣∣∣∣∣∣∣∣∂rθ(x)∂x1

∣∣∣∣∣∣∣∣→ 0.

Hence, ϑ1(θ)→ 0 as θ1 →∞. Let now for x = (u, v) with u ∈ R, lθ−1(x) be the n×1 vector
defined by [lθ−1(x)]j =

∏d−1
r=1 k([vr − v

(j)
r ]/θr+1) (we recall that for j = 1, ..., n, v(j) = x

(j)
−1).

Let ĝθ−1(x) = lθ−1(v)L
−1
θ−1

y. Then for m = 2, ..., D, by the triangle and Cauchy-Schwarz
inequalities∣∣∣∣∂mθ,Z(x)

∂xm
−

∂ĝθ−1(x)

∂xm

∣∣∣∣
≤
∣∣∣∣∣∣∣∣∂rθ(x)∂xm

−
∂lθ−1(x)

∂xm

∣∣∣∣∣∣∣∣ . ∣∣∣∣K−1
θ y

∣∣∣∣+ ∣∣∣∣∣∣∣∣∂lθ−1(x)

∂xm

∣∣∣∣∣∣∣∣ . ∣∣∣∣∣∣K−1
θ y − L−1

θ−1
y
∣∣∣∣∣∣ .(6.1)

In (6.1), the vector in the first norm has component r ∈ {1, ..., n} equal to

(k((u− ur)/θ1))− 1)
1

θm
k′([vm−1 − v

(r)
m−1]/θm)

∏
p=2,...,D
p ̸=m

k([vp−1 − v
(r)
p−1]/θp)

which goes to 0 as θ1 → ∞, uniformly over x ∈ Ω, by uniform continuity. The second norm
in (6.1) is bounded as discussed above. The third norm in (6.1) does not depend on θ1 and
is thus bounded uniformly over x ∈ Ω as θ1 → ∞. The fourth norm in (6.1) goes to 0 as
θ1 →∞ as discussed above.

Hence, uniformly over x ∈ Ω,∣∣∣∣∂mθ,Z(x)

∂xm
−

∂ĝθ−1(x)

∂xm

∣∣∣∣ −→θ1→∞
0.

Furthermore, the function ĝθ−1 is continuously differentiable and non-constant on Ω because
ĝθ−1(x

(r)) = yr for r = 1, ..., n and because the components of y are not all equal. This implies
that

lim inf
θ1→∞

D∑
m=2

ϑm(θ) > 0,

which concludes the proof.
Proof. [Proof of Proposition 4.2 ] As before, we consider i = 1 in the proof. We have

for m = 2, ..., D and r = 1, ..., n(
∂rθ(x)

∂xm

)
r

= k([x1 − x
(r)
1 ]/θ1)

1

θm
k′([xm − x(r)m ]/θm)

∏
j=2,...,D
j ̸=m

k([xj − x
(r)
j ]/θj).
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Hence, ||∂rθ(x)/∂xm|| is bounded as θ1 → 0+ uniformly in x ∈ Ω from the assumptions on k.
For j = 1, . . . , n, let uj be the first component of x(j) and let v(j) = x

(j)
−1. As θ1 → 0+, the

matrix Kθ converges to the n× n matrix Nθ−1 =
[
1up=uq(Lθ−1)pq

]
p,q=1,...,n

with the notation
of the proof of Proposition 4.1. The matrix Nθ−1 is invertible because its submatrices are
invertible. This is so because for any p = 1, ..., n the subset {v(q); q = 1, ..., n, uq = up} is
composed of two-by-two distinct elements since x(1), ..., x(n) are two-by-two distinct.

Hence, ||K−1
θ y|| is bounded as θ1 → 0+ and so

∑D
m=2 ϑm(θ) is bounded as θ1 → 0+.

Let now j ∈ {1, ..., n} for which yj ̸= 0. Let δ > 0, not depending on θ1, be small enough
so that

∏D
r=1[x

(j)
r − δ, x

(j)
r + δ] ∈ Ω. Then we have

(6.2) sup
s∈[−δ,δ]D;|s1|=

√
θ1

∣∣∣mθ,Z(x
(j) + s)

∣∣∣ −→
θ1→0+

0.

Indeed, we have

(
rθ(x

(j) + s)
)
p
= k

(
up − uj − s1

θ1

) D∏
r=2

k

(
x
(p)
r − x

(j)
r − sr

θr

)
.

The product above is bounded uniformly over s ∈ [−δ, δ]D by uniform continuity of k. Also,
whether up − uj = 0 or up − uj ̸= 0, we have

sup
|s1|=

√
θ1

k

(
up − uj − s1

θ1

)
−→

θ1→0+
0.

Finally, ||K−1
θ y|| is bounded as θ1 → 0+ as discussed above. Hence (6.2) is proved. Also, let

E = {uj} ×
∏D

r=2[x
(j)
r − δ, x

(j)
r + δ]. Then as θ1 → 0+, uniformly over x ∈ E, for p = 1, ..., n,

we have

(rθ(x))p −→
θ1→0+

1{up=uj}

D∏
r=2

k

(
xr − (xp)r

θr

)
.

Also K−1
θ y −→

θ1→0+
Nθ−1y as discussed above. Hence, as θ1 → 0+, mθ,Z(x) converges uniformly

over x ∈ E to a function value ĝθ−1(x), with ĝθ−1(x) continuous with respect to x ∈ E. Since
mθ,Z(x

(j)) = yj , we can choose the δ > 0 (still independently of θ1) so that it also satisfies

(6.3) lim inf
θ1→0+

inf
x∈E
|mθ,Z(x)| ≥

|yj |
2

.
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We have∫
Ω

(
∂mθ,Z(x)

∂x1

)2

dx ≥
∫
∏D

r=1[x
(j)
r −δ,x

(j)
r +δ]

(
∂mθ,Z(x)

∂x1

)2

dx

=

∫
∏D

r=2[x
(j)
r −δ,x

(j)
r +δ]

dx−1

∫ x
(j)
1 +δ

x
(j)
1 −δ

dx1

(
∂mθ,Z(x)

∂x1

)2

≥
∫
∏D

r=2[x
(j)
r −δ,x

(j)
r +δ]

dx−1

∫ x
(j)
1

x
(j)
1 −

√
θ1

dx1

(
∂mθ,Z(x)

∂x1

)2

(Jensen:) ≥
∫
∏D

r=2[x
(j)
r −δ,x

(j)
r +δ]

dx−1

√
θ1

(
1√
θ1

∫ x
(j)
1

x
(j)
1 −

√
θ1

dx1
∂mθ,Z(x)

∂x1

)2

≥ (2δ)D−1 1√
θ1

(
inf
x∈E
|mθ,Z(x)| − sup

s∈[−δ,δ]D;|s1|=
√
θ1

∣∣∣mθ,Z(x
(j) + s)

∣∣∣)2

−→
θ1→0+

∞,

from (6.2) and (6.3). This concludes the proof.
Proof. [Proof of Proposition 4.3] Without loss of generality, we consider i = 1 in the

proof. Let us consider the 2 × 2 submatrix of kθ(X,X) obtained by extracting the lines and
columns a, b, with a, b as in Condition iii) of the lemma. Then as θ1 → ∞ this submatrix
converges to the singular matrix ((1, 1)⊤, (1, 1)⊤). Hence, we have, as θ1 →∞, |kθ(X,X)| → 0
(since kθ(X,X) has components bounded in absolute value by 1). Hence, it is sufficient to
show that y⊤kθ(X,X)−1y is bounded in order to conclude the proof.

Let Xθ1 be obtained from X by dividing its first column by θ1 and by leaving the other
columns unchanged. Let x(θ1,j) be the transpose of the line j of Xθ1 , for j = 1, ..., n. Let
θ̄ = (1, θ−1). Then, ytkθ(X,X)−1y = ytkθ̄(Xθ1 , Xθ1)

−1y.
We now use tools from the theory of RKHSs and refer to, e.g., [33] for the definitions

and properties of RKHSs used in the rest of the proof. Let H be the RKHS of kθ̄. Let
α(θ1) = kθ̄(Xθ1 , Xθ1)

−1y. Then, fθ1 : RD → R defined by fθ1(x) =
∑n

j=1 α
(θ1)
j kθ̄(x− x(θ1,j)) is

the function of H with minimal RKHS norm ||.||H satisfying fθ̄1(x
(θ1,j)) = yj for j = 1, ..., n.

As θ1 → ∞, the points x(θ1,1), ..., x(θ1,n) converge to the points w(1), ..., w(n) with w(i) =
(0, [v(i)]⊤)⊤. We observe that, by assumption, yr = ys for w(r) = w(s). Hence, there exists
ϵ > 0 small enough and p column vectors c(1), ..., c(p) in RD with the following properties: (i)
each Euclidean ball with center c(m), m = 1, ..., p, and radius 2ϵ does not contain two w(r), w(s)

with yr ̸= ys, r, s ∈ {1, ..., n}; (ii) each wj , j = 1, ..., n, is contained in a ball with center c(m)

with m ∈ {1, ..., p} and radius ϵ; (iii) the p balls with centers c(1), ..., c(p) and radii 2ϵ are
two-by-two non-intersecting. We can also assume that each ball with center c(m), m = 1, ..., p
and radius ϵ contains at least one w(j(m)) with j(m) ∈ {1, ..., n} and we write zm = yj(m).

Then, from Lemma 6.2, there exists an infinitely differentiable function g with compact
support on Rd so that for m = 1, ..., p, g(x) = zm for ||x − c(m)|| ≤ 2ϵ. Hence, for θ1 large
enough, the function g satisfies g(x(θ1,j)) = yj for j = 1, ..., n.

Hence, ||fθ1 ||H ≤ ||g||H for θ1 large enough, where ||g||H does not depend on θ1. Finally,
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a simple manipulation of ||.||H (see again [33] for the definitions), provides

||fθ1 ||H =

n∑
r,s=1

α(θ1)
r α(θ1)

s kθ̄(x
(θ1)
r − x(θ1)s )

= y⊤kθ(X,X)−1kθ(X,X)kθ(X,X)−1y

= y⊤kθ(X,X)−1y.

This concludes the proof.
Proof. [Proof of Proposition 4.4] Without loss of generality, we consider i = 1 in the

proof. Also, up to renumbering the lines of X and components of y, it is sufficient to show
that, for fixed θ−1 ∈ (0,∞)D, as θ1 → ∞, ŷθ,n → yn. We use the same notation θ̄, H and
x(θ1,j) as in the proof of Proposition 4.3. Then, we have ŷθ,n = fθ1(x

(θ1,n)), where fθ1 ∈ H is
the function with minimal norm ||.||H satisfying fθ1(x

(θ1,j)) = yj for j = 1, ..., n− 1.
Furthermore, from the proof of Proposition 4.3, there exists a function g ∈ H, not de-

pending on θ1 satisfying, for θ1 large enough, g(x(θ1,j)) = yj for j = 1, .., n. This shows that
||fθ1 ||H is bounded as θ1 →∞. Let m ∈ {1, ..., n− 1} be so that v(m) = v(n) (the existence is
assumed in Condition iii)). Let also, for x ∈ RD, kθ̄,x ∈ H be the function kθ̄(x− .). Then we
have (see again [33]), with (., .)H the inner product in H

|ŷn − yn| =
∣∣∣fθ1(x(θ1,n))− fθ1(x

(θ1,m))
∣∣∣

=
∣∣∣(fθ1 |kθ̄,x(θ1,n))H − (fθ1 |kθ̄,x(θ1,m))H

∣∣∣
≤ ||fθ1 ||H||kθ̄,x(θ1,n) − kθ̄,x(θ1,m) ||H

= ||fθ1 ||H
√

kθ̄(x
(θ1,n) − x(θ1,n)) + kθ̄(x

(θ1,m) − x(θ1,m))− 2kθ̄(x
(θ1,n) − x(θ1,m)).

In the above display, the square root goes to zero as θ1 →∞ because x(θ1,n) − x(θ1,m) goes to
zero and kθ̄ is continuous. This concludes the proof.

Lemma 6.1. For any 0 < ϵ1 < ϵ2 < ∞, there exists an infinitely differentiable function
g : R→ R satisfying g(u) = 1 for |u| ≤ ϵ1 and g(u) = 0 for |u| ≥ ϵ2.

Proof. Let h : R → R be defined by h(t) = exp(−1/(1 − t2))1{t ∈ [−1, 1]}. Then h is
infinitely differentiable. Hence, g can be chosen of the form

g(t) =

{
A
∫ t
−∞ h

(
B
[
u+ ϵ1+ϵ2

2

])
du if t ≤ 0

A
∫∞
t h

(
B
[
u− ϵ1+ϵ2

2

])
du if t ≥ 0

,

with 2/(ϵ2 − ϵ1) < B < ∞ and A = B/(
∫∞
−∞ h(u)du). It can be checked that g is infinitely

differentiable and satisfies the conditions of the lemma.
Lemma 6.2. Let d, p ∈ N. Let x(1), ..., x(p) be two-by-two distinct points in RD and ϵ > 0 be

so that the p closed Euclidean balls with centers x(i) and radii ϵ are disjoint. Let y1, ..., yp ∈ R
be arbitrary. Then there exists an infinitely differentiable function r : RD → R, with compact
support, satisfying for i = 1, ..., p, g(u) = yi when ||u− x(i)|| ≤ ϵ.

Proof. Let l = mini ̸=j ||x(i)−x(j)|| and observe that ϵ < 2l. Let g satisfies Lemma 6.1 with
ϵ1 = ϵ2 and ϵ2 = l2/4. Then the function r defined by r(u) =

∑p
i=1 yig(||u − x(i)||2) satisfies

the conditions of the lemma.
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7. Conclusion. Performing Bayesian optimization in high dimension is a difficult task.
In many real-life problems, some variables are not influential. Therefore, we propose the so
called Split-and-Doubt algorithm that performs sequentially both dimension reduction and
feature oriented sampling. The “split” step (model reduction) is based on a property of
stationary ARD kernel of Gaussian process regression. We proved that large correlation
lengths correspond to inactive variables. We also showed that classical estimators such ML
and CV may assign large correlation lengths to inactive variables.

The “doubt” step questions the “split” step and helps correcting the estimation of the
correlation lengths. It is possible to use this strategy for different feature learning purposes
such as refinement, optimization and inversion. The optimization Split-and-Doubt algorithm
has been evaluated on classical benchmark functions embedded in larger dimensional spaces by
adding useless input variables. The results show that Split-and-Doubt is faster than classical
EGO in the whole design space and outperforms it for most of the discussed tests.

The main limitation of Split-and-Doubt is that we perform correlation length estimation
in the whole design space. This computation is expensive. To overcome this problem, one can
use fast maximum likelihood approximation techniques [12]. Future research may investigate
such methods and extend Split-and-Doubt to constrained optimization.
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Appendix A. In this section, we use boxplots to display the evolution of the best value of
the optimization test bench. For each iteration, we display: Left: EGO in light blue, Middle:
Split-and-Doubt in dark blue, Right: Split-without-Doubt in light green.
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Figure 6: Borehole: Box plots convergence.



20 BEN SALEM, BACHOC, ROUSTANT, GAMBOA and TOMASO

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 7: Rosenbrock: Box plots convergence.
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Figure 8: Ackley: Box plots convergence.
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