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ABSTRACT

The Monte-Carlo method is often presented as a reference method for radiative transfer
simulation when dealing with participating, inhomogeneous media. The reason is that
numerical uncertainties are only of a statistical nature and are accurately evaluated by
measuring the standard deviation of the Monte Carlo weight. But classical Monte-Carlo
algorithms first sample optical thicknesses and then determine absorption or scattering
locations by inverting the formal integral definition of optical thickness as an increasing
function of path length. This function is only seldom analytically invertible and numerical
inversion procedures are required. Most commonly, a volumic grid is introduced and
optical properties within each cell are replaced by approximate homogeneous or linear
fields. Simulation results are then sensitive to the grid and can no longer be considered as
references. We propose a new algorithmic formulation based on the use of null-collisions
that eliminate the need for numerical inversion: no volumic grid is required. Benchmark
configurations are first considered in order to evaluate the effect of two free parameters:
the amount of null-collisions, and the criterion used to decide at which stage a Russian
Roulette is used to exit the path tracking process. Then the corresponding algorithm is
implemented using a development environment allowing to deal with complex geome-
tries (thanks to computer graphics techniques), leading to a Monte Carlo code that can be
easily used for validation of fast radiative transfer solvers embedded in combustion
simulators. “Easily” means here that the way the Monte Carlo algorithm deals with both
the geometry and the temperature/pressure/concentration fields is independent of the
choices made inside the combustion solver: there is no need for the design of a new path-
tracking procedure adapted to each new CFD grid. The Monte Carlo simulator is ready for
use as soon as combustion specialists provide a localization/interpolation tool defining
what they consider as the continuous input fields best suiting their numerical assump-
tions. The radiation validation tool introduces no grid in itself.
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1. Introduction

Industrial applications, such as combustion processes,

require radiative transfer modeling, often coupled with

e other energy transfer mechanisms. Numerical radiative
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computation cost. These tools also need validation, and
therefore reference numerical methods have to be used.
The Monte-Carlo method (MCM) is known to be one of
these reference methods. Like all other methods, MCM
evaluates numerically the solution of the radiative transfer
equation (RTE) and its “reference” status is only due to the
existence of a rigorous measure of its uncertainty: from its
statistical nature, MCM allows the systematic calculation
of a standard deviation associated to each numerical
result, and this standard deviation is translated into a
numerical uncertainty thanks to the central limit theorem.
However, designing Monte-Carlo algorithms to be used in
complex geometries has long been a quite challenging
task, mainly because of prohibitive computational costs.
Using MCM to produce references and validate the radia-
tive parts of heat-transfer or combustion solvers was
therefore hardly feasible outside academic configurations.
Recent developments, such as the work reported by Zhang
et al. [1,2], show that this is now practically feasible
whatever the complexity of industrial geometries. We
here propose to further develop such tools using a mesh-
less Monte-Carlo algorithm based on the null-collision
technique introduced in [3].

Monte-Carlo algorithms dealing with participating
media [4-10] are commonly formulated so that they
sample the optical thickness. One major feature of such
algorithms is that a correspondence must be established
between any value of the optical thickness, along any
optical path, and the physical position associated to this
optical thickness within the heterogeneous participating
medium. As optical thickness is an increasing function of
path-length, this inversion is always possible, without
approximation, using standard numerical inversion tech-
niques, but these techniques rapidly require prohibitive
computation powers. A possibility to speed-up the inver-
sion procedure is the use of a volumic grid [37] together
with simple enough approximate profiles for optical prop-
erties within each cell, allowing an analytic inversion of
position from optical thickness. However, introducing such
a volumic grid involves an unwanted consequence: simu-
lation results depend on the retained particular grid (as
with any deterministic approach), and MCM looses its
“reference” status.

Concerning volume discretization, let us clarify some
vocabulary to be used throughout the text. The question
that we address is the production of reference solutions of
the RTE for temperature, pressure and concentration fields
provided by combustion specialists wishing to validate
their radiation solvers. These input fields may have any
form. They may be analytic when academic benchmarks
are considered, they may be based on local measurements
at structured or unstructured grid points in experimental
contexts, or based on the structured or unstructured out-
puts of fluid-mechanics/chemistry codes in pure numerical
contexts. In all cases the input fields will be complete,
meaning that temperature, pressure and concentrations
are defined at all locations. In experimental and numerical
contexts, this requires that combustion specialists provide
not only the grid point data, but also a meaningful
interpolation model to complete the fields throughout the
volume (meaningful with regard to fluid mechanics and

chemistry). Reference RTE solutions will be produced with-
out discussing this interpolation model, and the corre-
sponding algorithm will be called a meshless algorithm if it
is fully independent of the input-field type, and if it
introduces no discretization procedure in itself.

Recent methodological developments [3,11,12] indicate
that it is possible to use so-called null-collision Monte-
Carlo algorithms in the field of radiative transfer simula-
tion. One major characteristic of null-collision algorithms
(NCA) is that they do not require any volumic grid.
They are no longer formulated using optical thicknesses.
Path-length (and thus position) is directly sampled
according to a probability density function of the form
pA(A) = exp(— f(') k(o) do), that is to say according to a Beer—
Lambert extinction law in which the true extinction
coefficient k is replaced by an overestimate k, chosen in
such a way that sampling p, is mathematically straightfor-
ward. In neutron and plasma physics, where the method
was first introduced, the k field was most commonly
chosen uniform (or uniform by parts) and 1 was sampled
asi=(1 /IAc)log (r), with r a uniformly sampled value in the
unit interval. Of course, sampling 4 using an overestimate
of the true extinction field introduces a bias, but this bias is
compensated by the use of a rejection test: when rejection
occurs the path is continued straightforward as if no
collision occurred.

These algorithms can be interpreted (and rigorously
justified) using simple physical pictures. Let us note
kn = k—k. This additional extinction coefficient, k,, can be
interpreted as due to null-collisions, i.e. collisions that lead
to a pure forward scattering event. Obviously such addi-
tional collisions change nothing to the radiative transfer
problem. However, k,, can be chosen in such a way that the
new total extinction coefficient k =k + k, has a simple
shape (for instance uniform) and allows easy path-length
sampling procedures. But then, when a collision occurs, it
can either be a true collision, with probability P = k/k, or a
null collision, with probability 1-P, and this is how the
rejection method is justified: if a null-collision occurs, the
path is continued straightforward as if no collision
occurred.

The only reported practical difficulty is the choice of
the k field (or of k, as they are directly related). Indeed k
must be greater than k at all locations, but it must also be
as close to k as possible in order to avoid that too many
rejections occur, which would lead to computationally
expensive sequences of path-length sampling and forward
continuations until a true collision occurs. This compro-
mise can be hard to reach, even in the most standard
combustion configurations because of the flame hetero-
geneities as well as the non-linear dependence of gaseous
absorption with temperature, pressure and concentrations.
But most of this difficulty vanishes thanks to the theore-
tical developments of [3] that allow to handle rigorously
the occurrence of negative null-collisions: the authors
show indeed that the best choice is still that k be as close
an overestimate of k as possible, but such a close adjust-
ment can now be achieved without strictly excluding that
k <k in some parts of the field.

We present hereafter an implementation of a slightly
modified version of the null-collision algorithm (that of [3]).



It is designed for radiative transfer simulation in combus-
tion processes. The corresponding code has been developed
using the Mcm3D library, within the EDStar development
environment [13,10]. Its purpose is to compute the radiative
budget density at a number of selected locations within any
given geometric configuration, with a systematic control of
the numerical uncertainty (of course not of the uncertainty
due to the physical model itself, in particular to absorption
properties). Section 2 gives all the details of the proposed
null-collision algorithm for a both absorbing and scattering
semi-transparent medium, enclosed by opaque reflective
surfaces. Sections 3 and 4 present simulation examples. In
Section 3, an academic configuration is considered. The new
null-collision algorithm is first validated against the bench-
mark simulation results of [3]. Then we analyze its behavior,
both in terms of convergence and computation time, when
modifying two free parameters: the amount of null-colli-
sions, and the criterion used to decide at which stage a
Russian Roulette is used to exit the path tracking process. In
Section 4, the same algorithm is used for simulation of
radiation within the true geometry of a well referenced
laboratory combustion-chamber, as an example of the type
of validation procedures that are required when using the
PRISSMA code as part of the combustion simulation code
AVBP [14].

Let us point out a very essential choice made through-
out the present text. Null collision algorithms allow to
avoid the design of path-tracking procedures computing
intersections between rays and large meshes. They may
therefore be considered in two distinct practical contexts:

® when there is a need for speeding up Monte Carlo
solvers (only the intersections with the boundary are
computed);

® when there is a need for flexibility (designing Monte
Carlo solvers independently of the mesh structures,
using them in distinct contexts without additional
specific development).

We are here attempting to answer the second need only.
Our purpose is to provide a reference-simulation metho-
dology that combustion specialists may use whatever the
numerical choices made inside their CFD and chemistry
solvers. The first need is undeniably worth some close
attention, but this requires that comparisons are per-
formed against the best up-to-date path-tracking algo-
rithms (that the present authors do not know with enough
details) in order to evaluate clearly the respective benefits
and losses of computing many intersections, versus deal-
ing with repeated null-collision events.

2. Algorithm

The purpose of the proposed algorithm is to compute
Sr(X0) = [|gSr.(Xo) dv, the radiative budget density at any
location Xo within the emitting, absorbing and scattering
volume, considering the whole thermal infrared spectral
range. The involved optico-geometric and spectral integra-
tion will be considered successively. The optico-geometric
integration is presented in Section 2.1. For didactic reasons

this first presentation excludes the occurrence of negative
values of the null-collision coefficient (k is always greater
than k) and Section 2.2 generalizes the proposition to any
k. These two subsections are sufficient for the monochro-
matic parametric study of Section 3. Spectral integration is
presented in Section 2.3 and the complete resulting null-
collision algorithm is used in the combustion example of
Section 4.

2.1. Optico-geometric integration

In [3], a reverse path-tracking algorithm is proposed for
the evaluation of S;,(X¢) in which a very standard null-
collision approach is used: branching probabilities are
used to select either an absorption, a scattering event, or
a null-collision. In this algorithm, when absorption occurs,
the optical path is interrupted and the Monte Carlo weight
is computed using the emission properties at the collision
location. Very similarly, branching probabilities are used
when a boundary is encountered, and either reflection
occurs and the optical path is continued, or absorption
occurs and the optical path is interrupted, the Monte Carlo
weight being computed using the local surface emission
properties (see the third section of [3]). As far as surface
interaction is concerned, it is well established that various
Monte Carlo strategies can be preferred to the simple
absorption/reflection branching test, a test that is com-
monly named a Russian Roulette. Instead of using this
Russian Roulette, the fraction of absorbed photons can be
computed (according to the surface absorptivity), their
contribution to the addressed quantity can be evaluated
and stored (as a first contribution to the Monte Carlo
weight), and the remaining fraction can be reflected,
continuing the path-following procedure until an extinc-
tion criterion is reached (such a strategy can be found in
the literature under the names of energy-partitioning [15]"
or pathlength method [4]). When successive reflections
have led to an extinction stronger than this criterion,
either the algorithm is stopped (but then numerical errors
are introduced that need to be considered in addition to
the statistical uncertainty), or the Russian Roulette is
recovered in order to ensure that the algorithm ends
without any statistical bias. The algorithm presented here-
after is a strict application of such a strategy to the
algorithm of [3]; however, it is applied not only to the
absorption/reflection branching tests, but also to the
absorption/scattering/null-collision branching tests. Of
course, considering our objective to produce reference
simulation results for validation of other radiation solvers,
after the extinction criterion is reached, we retain the
choice of recovering the Russian Roulette, rather than
truncating the path-integrals, in order to ensure that no
statistical bias is introduced and that the displayed stan-
dard deviations can be faithfully interpreted as numerical

! Originally, this concept was introduced to compute the apparent
emittance of isothermal-walled cavities by taking into account, in a
deterministic way, the geometric fraction passing through an aperture at
each reflection. Nowadays, the term “energy-partitioning” commonly
refers to surface reflection and attenuation by participating media the
way we reported it [16].
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Fig. 1. Description of the proposed algorithm. It follows an energy-partitioning strategy until the extinction term ¢ is less than a fixed criterion ¢ in which

case it switches to the algorithm introduced in [3].

uncertainties. Hereafter, the extinction criterion is denoted
by ¢ and the remaining fraction after j collisions is denoted
by ¢; (at the beginning, when no collision has yet occurred,
£ =1, when the j+ 1-th collision takes place in the
medium &4 =§j(1—l<a(xj+1)/12(xj+1)) and when it occurs
on the boundary ¢, 1 = &(1-&(Xj;1)) and so on until & < ¢).

The resulting algorithm is fully described in Fig. 1. The
starting point is the sampling of a direction wg at probe
location Xq (step A2 of Fig. 1), the computation will loop on
the “energy partitioning” branch (B1-B16) until the criterion
¢ is reached. More precisely, in each loop, a free path length
is sampled (B1) according to the modified Beer probability
density function pA(/l)zfc(x—/lw)exp f; k(x—ow) do). The
collision location is then computed: either it occurs’in the
medium (B3) or on the boundary (B12). If it occurs in the
medium, the absorption contribution is added to the Monte-
Carlo weight (B4), then a standard Bernoulli trial is used to
determine if the path-following will continue according to a
scattering event or a null-collision (B5-B7): a number rj4 is
uniformly sampled in [0, 1] and is compared to the scattering
probability. In both cases, the new value of the factor &;, 4
and the corresponding new direction wj,; are computed
(B8-B11). If the collision occurs on the boundary, the
absorption contribution is taken into account for the
Monte-Carlo weight calculation (B13), the value of &, ; is

actualized (B14) and a reflection direction is sampled (B15).
Once this new direction (caused by scattering, null-collision
or reflection) is known the algorithm loops to step A3. These
loops will continue until the extinction criterion ¢ is reached
(&1 <¢), in which case the algorithm switches to the
“Russian Roulette” one (C1-C18) introduced in [3] where
the Monte-Carlo weight expression is slightly modified to
consider the extinction associated to the previous “energy-
partitioning” branch.

As all Monte-Carlo algorithms, this one has been designed
through a formal integral work. The major steps of such a
work are described below for an infinite medium. Walls are
ignored here to lighten the mathematical formalism, but
their introduction would not lead to major difficulties, it
would just add a new branching test to determine if the
collision occurs on boundary or in the media.

The addressed quantity is

S (Xo) = /4 ka(Xo)[I(Xo, w0)—B(Xo)] daro (1)

where I(Xg,wp) is the incoming specific intensity (at
location Xq is the direction wg), and B(Xg) is the equilibrium
or black-body specific intensity at the temperature of the
medium at Xq. The only difficulty lies in I(Xg,wo) that we



obtain using the following recursive integral expression:

+o0

1(Xj, wj) = dij exp (— /0 ' kg(Xj—Jjwj) + I(S(Xj—O'ja)j) daj)

x [ka(XjH)B(Xju) + ks(Xj 1) A Ps(@jlwji1, X )I(X1, @j.11) dw)‘u}
(2)
with Xj,1 =Xj—4w; and ps the single scattering phase

function. Eq. (2) is the formal solution of the stationary
radiative transfer equation

o - VIX, @) = —[ka(X) + ksX)(X, @) + Kka(X)B(X)
+/ ksxX)I(X, w")ps(w|w’, X) dw’ 3)
4

The introduction of null-collisions in this differential
equation consists in adding —k,(X)I(X,w) + [, kn(X)I(X, 0")
S(w—w’,X) dw’ to the right-hand side. The Dirac distribu-
tion § implies [, kn(X)I(X,0")d(@-w’,X) do’ = k,(X)I(X, w)
which ensures that the added quantity is null and there-
fore that the following modified radiative transfer equa-
tion has the exact same solution as Eq. (3):

w - VIX,w) = —[kq(X) + ks(X) + kn(X)](X, ) + kq(X)B(X)
+/ ksxX)I(X, 0" )ps(w|w’, X) dw’
4x

+ / kn(X)I(X, 0)é(w—w',X) do’ 4)
4n

The formal solution of this new radiative transfer equation
is now

+o0 A .
I(Xj, a)j) = [) dﬂj exp (—/O. k(Xj—Gja)j) de) [ka(Xj+1 )B(Xj+1)
+ks(Xj11) A Ps(@jlwji1, X DI(Xji1, 0j11) dwjiq

+kn(Xj11) A 8(@j—®ji1, Xj+1)(Xj 1, @j11) dwj+1} )
which can be rewritten

oo o 4 ka(X;
I(Xj,ﬂ)j) = /0 k(x_H]) exp (— /0 ' k(Xj—O‘j(Dj) dO‘j) d/lj [M B(Xj+1)

(X1

. ’is(xjﬂ) '

Ps(@j|j 11, X DI(Xj11, 0j11) doj 4
k(Xj1) J4r

+ kn(xj+1) '

= @j—wj1, Xj1)I(Xj.1, 0j11) dwj+1:| (6)
k(Xji1) J4ar

This is almost a formal translation of the algorithm
described in Fig. 1 for an infinite medium (except that in
the algorithm of Fig. 1, S;.(Xe) is directly computed
whereas we here focus on I(Xg,wg)). Indeed, it suffices to
introduce a scattering branching probability Ps to recover
the “energy-partitioning” branch:

+oo . kq
I(Xj,a)j) = ‘/0 k(x_|+'l) exp( / k(Xj—ajw]) dO'J> d/lj |:; ((x'l+1)B( j+1 1)

Xj+1)
+Py(x; J+1)M ps(wj‘wj+1axj+1)1(xj+1>wj+1) dwj 1
k(x_|+1)Ps(xj+1)) 4r
kn(xj+1)

+(1-Ps(Xj11))=

[(Xj,1, 11 = @)) dwjﬂ]

)

k(Xj1+1)(1-Ps(Xj11))

Algorithmically, Ps is interpreted as a test, since it can be
expressed as Ps = fol H(Ps—r) dr where H is the Heaviside
function. Concretely, r is numerically sampled, to deter-
mine the branch to follow (the scattering one if r < Ps or
the null-collision one otherwise). However, since this
“energy-partitioning” branch loops endlessly, we also need
to recover the recursive integral formulation of [3] (“Rus-
sian Roulette” branch of Fig. 1) by introducing comple-
mentary absorption/scattering/null-collision branching
probabilities (respectively P, Ps and Py:

+oo A n
I(Xj,a)j) = /0 k(Xj+1) exp <—/0 k(Xj-O’jwj) de) dﬂj

<a(xj+1)
k(Xj1)Pa(Xj41)
ks(Xj11)
kx X 1)Ps(Xj1) J4r
kn(Xj11)
k(Xj.11)(Pn(Xj11))

|: a(X ]+1) B(Xj+1)

+Ps(Xj 1) = Ps(w; |wj+1>Xj+1 N(Xji1,wj11) dojiq

+Pn(Xj1)= [(Xj11, ©j11 = w)) dwjﬂ} (8)
where P,, P; and P, are now algorithmically interpreted as
tests (as for Ps in Eq. (7)). The whole Monte-Carlo weight of
a realization of this algorithm (still without boundaries) is
then given by

J1max ka(xj)
Wi = Z
[k(xj)

ks(x;)
k(X))Ps(X))

B(Xj,a)_') H |: (J’sm)

kn(X;5) H
+ (yn m)—
ke(x;)(1-Ps(X;))

J1,max

+B(ijm,a)jmx) l__[ |: (Vsm) S( J)

k(x ,)Ps(X,)

kn(X5)
k(xj)(1-Ps(X;))
9

where the subscript jy ;4 is the index of the last collision
of the “energy-partitioning” branch and j,.x the index of
the last absorption, which ends the algorithm. H(ys,,)
equals 1 if the m-th collision is a scattering event, O
otherwise. In the same way, H(y,,,) equals 1 if the m-th
collision is a null-collision, 0 otherwise.

The estimation I of I(Xg,we) using N independent
realizations is then

Hynm)z

. 1N ;
I= N,§1 Wi (10)
and the corresponding standard deviation is then
evaluated:

N )
Y wi-I] an

2.2. Extension to negative null-collision coefficients

Up to now, for didactic reasons, we described an
algorithm only dealing with positive values of the null-
collision coefficient. However, it is possible to extend its
scope to negative ones through slight modifications.
According to the proposal made in [3], negative null-
collision coefficients can be admitted by introducing new
arbitrary probabilities of absorption/scattering/null-



collision occurrences. Concretely, it results in modifying
some steps of the preceding algorithm:

® In step B6 of Fig. 1, we choose to define the new
probability Ps as Ps = ks(Xj1)/(ks(Xj 1) + [kn(Xj:1)]-

® Similarly, in step C6, the new probabilities are chosen as
Pa = ka(xj+1)/(ka(xj+1) + ks(xj-H) + |kn(xj+1)|),
Ps = ks(Xj11)/(Ka(Xj1) + ks(Xj 1) + [Kn(Xj1)D) and
Py = [kn(Xjs 1)1/ (ka(Xj1) + ks(Xje1) + [kn(Xj1)D.

® This leads to a modification of the &, expressions.
They become &, 1 = &ika(Xj11)/k(Xj1)Pq for the absorp-
tion branch (C7), &1 = &iks(Xj,1)/k(Xj41)Ps for the scat-
tering one (C9) and &, = &kn(Xj1)/k(Xj1)Pn for the
null-collision branch (C11).

These new arbitrary probabilities allow to get rid of the
constraint that the k field is a strict upper bound of k. They
lead strictly to the algorithm of Section 2.1 when k > kq +
ks and to a legible extension when k < kg + ks.

2.3. Spectral integration

Starting from the above described algorithm, spectral
integration of the monochromatic radiative budget can be
simply performed by adding a procedure in which fre-
quency is sampled according to any probability density
function p,(v) on the considered spectral interval Z. This is
justified by writing

S (% (XO)
p,()

Si(k0) = [ i) do = [ p,0) do (12)

which tells us that all what is required is sampling v
according to p,, and dividing by p,(v) the Monte Carlo
weight of Eq. (9). But practically, the procedure is slightly
more difficult because only very few attempts have been
made to perform Monte Carlo integrations starting from
the high-resolution absorption line-spectra of combustion
gases over the whole infrared [32,33]. In most cases,
“reference” Monte Carlo simulations are still performed
using k-distribution approaches, together with the
correlated-k assumption (or the fictitious-gas correlated-
k assumption) for representation of spectral heterogene-
ities. This is the approach that we retain here, which
imposes that instead of sampling frequency, the algorithm
starts by sampling a narrow-band index i according to a
narrow-band probability set (P;1,P;2...P;n) where N is the
number of narrow frequency-bands Z;, of width Ay;,
required to cover the whole spectral range

7 =11UZ,...Iy. Then a discrete-k index j is sampled
according to a probability set (Pg;1,Pk;z..-Pxim), where
M is the number of discrete-k values, within each narrow
band, chosen in accordance with a Gaussian-quadrature of
weights (uq,u5...uy). The optico-geometric algorithm of
Section 2.1 is unchanged, replacing only the local value
of the monochromatic absorption-coefficient k, by the
local value of the j-th discrete-k, k,;;, within the i-th
narrow-band, and using the local scattering properties

corresponding to the i-th narrow band.” This is the direct
algorithmic translation of Eq. (12) being approximated as

N M
Sio)= 3 3 Si. v (13)
i=1j=
where S,(i,j) is the monochromatic budget obtained by
using the Planck function value of the i-th band and the j-
th value of the discrete absorption coefficients, i.e. kq;;.
Introducing the two probability sets (P;i,P;2...Pjn) and
(Pki1,Pxi2-.-Prim) we get

N M i )
SiXe)= X Pii ¥ PK,ij{i('lI;J)‘L'lJ_ Al/i} (14)
i=1 j=1 LiTK,ij

This indicates that the Monte Carlo weight of Eq. (9)
must be replaced by the same weight multiplied by y;Av;
and divided by PK,,'JP],,'.

The probability sets may be chosen arbitrarily: for
instance identical probabilities for (Pr1,P2...Pin), i.e.
P;;=1/N, and Py ;j=u;. But they can also be chosen on
the basis of analytic estimations of the radiative budget at
the probe location. The choice will only have consequences
in terms of statistical uncertainties and this question is
only worth a detailed attention when it is observed that
producing accurate solutions requires unpractical compu-
tation times. In such cases, it may be useful to consider the
work reported in [18], concerning the practice of the zero-
variance concept, their studied solar receiver being close
to combustion devices both as far as spectral integration
and geometry-complexity requirements are concerned. As
far as we are concerned, in Section 4, we will use a very
simple model assuming that S;(Xo) = 4nk,,B(Xe), which
corresponds to the optically thin limit with 0 K surfaces.
The only role of this model is to helps us choose the
probability sets as

P],i Al/ikaﬁ,'_ (15)
o lAuqka,q
and
pikaiin;
Pyij= ]ka—"J ! (16)

where kq; = ¥M | pikq; is the average value of the absorp-
tion coefficient within the i-th narrowband. Modifying this
choice would only impact the convergence rate but not the

final simulation result. o
For a better representation of heterogeneities, it is often

very efficient (at least for most combustion applications)
to treat separately the various absorbing molecular
species. Instead of using a single k-distribution for the
mixture, as in the above presentation, a separate
k-distribution is introduced for each gas and these dis-
tributions are assumed independent [34]. Practically, this
implies simply that a Pg probability set is introduced for
each gas and is used to sample an index j independently

2 Scattering properties are assumed independent of frequency within
each band: this is part of the narrow-band assumption, allowing the re-
ordering of absorption-coefficients and the formal definition of k-
distributions in their original sense. Note that multiple-dimension re-
ordering, such as that of [17], could allow to relieve this constraint.



for each gas. The absorption coefficient is then the sum of
the kq;; of each gas, and the Monte Carlo weight is
multiplied by the product of all Pk;;. In the case of two
gases, say H,0 and CO; as in Section 4, this can be pictured
by Eq. (14) becoming

N M M
Sr(Xo) = Z Pl,i Z szi?HZO Z Plioi;coz {
f 1 K

i=1 20 =1 02 =

Sr(i. "0, j o pco
T g 2 J 2 Al/i

_pH>0 CO,
PI,IPKJ«J-HZoplu‘jco2

a7)

3. Convergence levels and computation times

The algorithm presented in the previous section is now
implemented for the evaluation of monochromatic radia-
tive budgets in the benchmark configuration of [3]. This
implementation is validated against the results of [3] that
were themselves validated against the results of a stan-
dard Monte Carlo solver. Our new code is then used to
analyze how the convergence levels and the computation
times depend on k and ¢.

In [3], the considered system is a cube, of side 2L, with
0 K diffuse-reflecting faces, of uniform emissivity e, that are
perpendicular to the x-, y- and z-axes of a Cartesian
coordinate system originating at the center of the cube
(see Fig. 2). The enclosed medium is heterogeneous
both in temperature and optical properties. The k,, ks and

B fields are kq(X,y,z) = kqma((L=X)/2L)(1—1/(y? + 22)/2L?),
ks(X,y,2) = ks max(L—X)/2L)(1=/ (y? + 22) /2L%) and

B(X,Y,2) = Bmax((L—X)/2L)(1—/(y? + 22)/2L?), figuring an
axisymmetric flame along the x-axis (maximum tempera-
ture and maximum extinction along the axis, and a linear
decay as a function of the distance to the axis, down to zero

at the corners). The Henyey-Greenstein single-scattering
phase function is used with a uniform value of the asym-

metry parameter g throughout the field. k is uniform and

the parametric study deals with p= fc/(ka,max + Ks.max),
kamaxL, ks maxL, & and e. Here, we reduce the parametric size
by sticking to isotropic scattering (g=0) because, as indi-
cated in [3], changing g leads to different radiative-source
values but to identical conclusions as far as numerical
features are concerned. However, we add a new parameter:
¢, that is to say the extinction level after which a Russian
Roulette is used. Independently of the validation objective,
our algorithm will be systematically compared to that of [3]
in order to highlight the effect of continuing the path-
following process and adding the contributions, by opposi-
tion with systematically using a Russian Roulette at colli-
sions and reflection events.

Tables 1 and 2 display simulation results for x =[0, 0, 0]
(the center of the cube) and x =[-L,0,0] (the location of
the maximum values of B, k, and k;). The simulation
results of [3] are reported under the label ¢ =1. Indeed,
for ¢ =1 our new algorithm recovers exactly the algorithm
of [3]. The first observation that can be made on these
tables is that, considering the standard deviations, our
simulation results are compatible with those of [3], which
validates our algorithmic implementation.

The last column in each table displays the ratio of the
time required to reach a 1% relative accuracy with our
algorithm to the time required to reach a 1% relative
accuracy with the algorithm of [3]. A first conclusion
is that our algorithm is faster for small values of the
absorption optical-thickness and is slower otherwise.
However, when we are slower it is only of a factor 3 and
for very thick media. Considering that the occurrence
of small absorption optical-thicknesses is quite common
in combustion applications, the new algorithm can be

B T T LT

Fig. 2. Considered system: a cube of side 2L, whose center is the Cartesian coordinate system origin (figure taken from [3]).



Table 1

Estimation, absolute and relative standard deviations, computation time (s) for 10° independent realizations and computation time (s) for a 1% statistical
uncertainty as a function of ¢, kqgmaxL and ks maxL. The last column compares the ¢ =0.1 and ¢ =1 computation time to get a 1% standard deviation. This
computation was done with an “Intel i5 - 2.4 GHz” CPU without any parallelization, for p=1, e=1 and x¢ =0, 0,0]. The computation times for a 1%

standard deviation are obtained by multiplying t by (5,./0.01)%.

Optical thickness ¢=0.1 ¢=1 Ratio
ka;maxL ks;maxL A 4 Trel t 1% A 4 Trel t 1% t1%(¢ =0.1)
4”kﬂ(x0)fﬁgux 4Jrka(X0)ff,?ax 4ﬂ](a(x0)ffgax 4ﬂka(x0)ffy?ax t1%(¢=1)
0.1 0.1 —0.483586  0.000044 9.072e-05 2.31 0.00019 -0.483668 0.000086 1.771e-04 240 0.00075 0.253
0.1 1 —0.481950 0.000024 4.965e-05 7.77 0.00019 -0.482038 0.000090 1.857e-04 7.74 0.00267 0.072
0.1 3 —-0.477917  0.000023 4.788e—05 23.72 0.00054 -0.477733  0.000099 2.082e-04 22.94 0.00995 0.055
0.1 10 —0.463036  0.000035 7.583e-05 122.94 0.00707 -0.463086 0.000126 2.729e-04 116.60 0.08685 0.081
1 0.1 —-0.366263 0.000142 3.884e-04 3.38 0.00510 -0.366303 0.000209 5.696e—-04 2.85 0.00924 0.552
1 1 —-0.356208 0.000123 3.447e-04 1010 0.01200 -0.356422  0.000213 5.978e-04 7.07 0.02525 0.475
1 3 —-0.335460  0.000117 3.497e-04 27.58 0.03373 -0.335805 0.000220 6.550e-04 18.62 0.07988 0.422
1 10 -0.277008  0.000127 4.588e—-04 127.77 0.26892 -0.276743  0.000228 8.238e-04 73.24 0.49708 0.541
3 0.1 -0.219155  0.000153 7.000e-04 5.51 0.02701 -0.219186  0.000221 1.007e-03 3.39 0.03438 0.785
3 1 —0.209308 0.000144 6.866e-04 12.76 0.06017 -0.209426 0.000218 1.040e-03 6.16 0.06663 0.903
3 3 —-0.190219  0.000132 6.965e-04 29.96 0.14535 -0.190411 0.000210 1.105e-03 12.84 0.15674 0.927
3 10 -0.143645  0.000112 7.806e-04 105.20 0.64103 -0.143690 0.000183 1.275e-03 39.69 0.64528 0.993
10 0.1 -0.071424  0.000081 1.130e-03 8.66 0.11055 -0.071358  0.000119 1.664e-03 3.37 0.09331 1.185
10 1 —-0.068768  0.000077 1.116e-03 1311 0.16317 -0.068664 0.000115 1.670e-03 4.46 012454 1.310
10 3 —-0.063507 0.000070 1.099e-03 2245 0.27110 -0.063321 0.000106 1.682e-03 6.88 0.19467 1.393
10 10 —0.050786  0.000054 1.061e-03 52.92 0.59544 -0.050710  0.000085 1.676e-03 15.53 0.43595 1.366
Table 2

Estimation, absolute and relative standard deviations, computation time (s) for 10° independent realizations and computation time (s) for a 1% statistical
uncertainty as a function of ¢, kqmaxL and ksmaxL. The last column compares the {=0.1 and ¢ =1 computation time to get a 1% standard deviation. This
computation was done with an “Intel i5 - 2.4 GHz” CPU without any parallelization, for p=1, e=1 and Xo = [-L, 0,0]. The computation times for a 1%

standard deviation are obtained by multiplying t by (5,¢/0.01)%.

Optical thickness ¢=0.1 =1 Ratio
kg;]nuxL ks;muxl- A ; Orel t tl % A ; Orel t tl % t1 ‘Vn(C = 0. 1 )
Arkg(Xo)f°T,  Amka(Xo)f iy drka(Xo)f T Anka(X0)f i t%(C=1)
0.1 0.1 -0.977195  0.000081 8.310e-05 2.24 0.00016 -0.977282  0.000127 1.303e-04 2.21 0.00038 0.413
0.1 1 -0.976700  0.000041 4212e-05 619 0.00011 -0.976632  0.000130 1.328e-04 6.04 0.00107 0.103
0.1 3 -0.975783  0.000035 3.586e-05 15.17 0.00020 -0.976059  0.000132 1.351e-04 14.52 0.00265 0.074
0.1 10 -0.974777  0.000042 4354e-05 46.19 0.00088 -0.974918  0.000137 1.404e-04 43.02 0.00849 0.103
1 0.1 -0.821998  0.000285 3.466e-04 3.31 0.00398 -0.821889  0.000325 3.948e-04 2.24 0.00350 1.138
1 1 -0.821967  0.000237 2.879e-04 8.34 0.00692 -0.821963  0.000326 3.970e-04 4.88 0.00771 0.897
1 3 -0.823956  0.000215 2.606e-04 17.71 0.01202 -0.823910 0.000329 3.993e-04 10.52 0.01678 0.717
1 10 -0.839442  0.000220 2.620e-04 46.75 0.03208 -0.839106 0.000328 3.903e-04 25.32 0.03859 0.831
3 0.1 -0.657423  0.000388 5.896e-04 423 0.01471 -0.657905 0.000408 6.196e-04 2.15 0.00826 1.782
3 1 -0.664806  0.000365 5.497e-04 9.43 0.02851 -0.664684 0.000410 6.167e-04  3.57 0.01357 2.101
3 3 -0.679347  0.000345 5.082e-04 16.61 0.04289 -0.679790  0.000412 6.062e-04 6.48 0.02382 1.801
3 10 -0.723130  0.000327 4.524e-04 3446 0.07053 -0.723957 0.000410 5.668e—04 13.95 0.04482 1.574
10 0.1 -0.544147  0.00040 8.452e-04 3.72 0.02660 -0.543517  0.000462 5.018e-04 191 0.01384 1.922
10 1 -0.551601 0.000452 8.189e-04 7.88 0.05288 -0.551251 0.000463 8.405e-04 242 0.01711 3.089
10 3 -0.568200 0.000438 7.706e-04 10.89 0.06467 -0.567614  0.000465 8.193e-04 345 0.02317 2.791
10 10 -0.611147 0.000411 6.723e-04 19.32 0.08731 -0.609870  0.000465 7.632e-04 6.50 0.03787 2.305

retained systematically for validation purposes. For other
simulation objectives where the computation times are of
primary importance, for instance when Monte Carlo sol-
vers are coupled to fluid-mechanics and chemistry, it may
be useful to switch from one algorithm to the other, by
simply changing ¢ in the code, as a function of an a priory
evaluation of the optical-thickness. Simulations performed
with reflective surfaces confirm this first practical conclu-
sion, only with a higher sensitivity to the value of ¢. In the
above tables we used either { =1 or ¢ = 0.1, but changing ¢
to 1072 or even 107> changes very little the computation

times. This can be expected, as encountering the black
surfaces always reduces the path-extinction to zero and
the extinction criterion is reached whatever the value of ¢.
Figs. 3 and 4 display such ¢-dependencies for perfectly
reflective (¢ =0) and perfectly absorptive surfaces (e=1)
respectively, indicating that a knowledgeable choice is
¢=0.1 (as we used in the tables).

Finally, we have already mentioned that the algorithm
deals theoretically with unexpected occurrences of k, <0
at some locations. However, this is at the price of correct-
ing the Monte Carlo weight in a way that increases the
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variance, increasing therefore the required number of
realizations to reach a given accuracy. This is explored in
Figs. 5 and 6 that display the number of realizations
required to reach a 1% relative accuracy, as a function of
p, that is to say as a function of the amount of negative
null-collisions. Simulation results are given for ¢ =1 and
¢=0.1 in order to evaluate whether the new algorithm
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Fig. 6. Time to reach a 1% standard deviation as a function of p, kg maxL,
KksmaxL at Xo =[-L,0,0] for e=1 and ¢=0.1.

encounters more or less convergence difficulties when kis
locally lower than the total extinction coefficient. We
concentrate on the location Xg =[-L, 0, 0] as it was identi-
fied as the most pathological condition: the starting point
of all rays is right inside the region where k <k (the
negative null-collision region). Obviously the main trends

of our algorithm are identical to those of [3] only observing
that

® we encounter more convergence difficulties when the
negative null-collision region is optically thin in
absorption and optically thick in scattering;

® when the medium is optically thin both in absorption
and scattering, increasing the number of null-collisions
decreases the 1%-accuracy computation-time, because
the repeated computations of the absorption contribu-
tions lead to a quasi-deterministic integration along the
path, which reduces significantly the variance (more
than it increases the computation-time), just as
expected in standard energy partitioning approaches.

4. Production of reference solutions for PRISSMA
validation

The objective of the Monte Carlo algorithm proposed in
Section 2 is essentially to produce reference solutions
against which faster radiative transfer solvers can be
validated. We here take the example of validating the
PRISSMA solver that is implemented for representation of
infrared radiative sources in AVBP (a parallel CFD code for
reactive unsteady flow simulations on hybrid grids®). We
retain a configuration that was studied by Knikker et al.
[19-21]. The dimensions of the chamber are the following
(see Fig. 7 for axis conventions): 50 mm along the Y-axis,
80 mm along the Z-axis and 300 mm along the X-axis. A
triangular flame hook is located on lateral sides, at a height
of 25 mm. A air/propane mixture is injected from the left-
hand side, and a V-shaped flame develops in the rectan-
gular tube along the X-axis. Wall temperature is fixed to

3 http://www.cerfacs.fr/4-26334-The-AVBP-code.php
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Fig. 7. Representation of the dihedral combustion chamber.
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Fig. 8. Visualization of the temperature field (K), CO, concentration field
(molar fraction), H,O concentration field (molar fraction) and CO con-
centration field (molar fraction) within the dihedral combustion
chamber.

300 K everywhere, except for outlet walls that have been
set at 1900 K, the temperature of exhaust gases. As far as
radiative properties are concerned, all boundaries are
modeled as grey interfaces. The ceramic wall emissivity
is set at e =0.91. That of quartz windows is e =0.87. The
flame holder emissivity is e=0.40, corresponding to a
stainless steel lightly oxidized at 1000 K. The inlet, the
outlet and the atmosphere are assumed to behave as black
surfaces.

AVBP was run using a time averaged LES [22,23],
leading to the fields of temperature and species concen-
trations displayed in Fig. 8. The radiative transfer solver
embedded in AVBP, and therefore involved in the produc-
tion of these fields, is PRISSMA [14]. It has been specifically
designed for combustion applications. Based on a Discrete
Ordinate Method [24], it is designed to reach a satisfactory
compromise between accuracy and computational costs.
The radiative budget is determined in the whole volume
using a specific grid, coarser than the LES one. The
associated strategy for the coupling with AVBP is detailed
in [14]. The angular quadrature chosen here is an S4. The
full spectrum model (FSK) is used for spectral integration
using 15 quadrature points [23].

In order to meet the requirements of AVBP in terms of
computation requirements, the spatial and angular discretiza-
tions as well as the FSK spectral integration procedure were
tuned at the extreme limits of their validity ranges, and it is
therefore required that PRISSMA is validated against a refer-
ence radiative transfer solver each time a new combustion
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Fig. 9. Visualization of the radiative budget (W/m?) within the dihedral
combustion chamber.

configuration is considered. This task is here achieved using
the Monte Carlo algorithm of Section 2, implemented within
the EDStar development environment [10,13], using the
Mcm3D library [25]. This implementation deals with three-
dimension geometries using advanced computer-graphics
tools. The input fields are the output of AVBP. Unlike in the
benchmark simulations of Section 3 where the input fields
were analytic, the input fields are now provided using the LES
grid of AVBP (4.74 million tetrahedrons) together with an
interpolation procedure provided by the combustion specia-
lists to reflect the spatial integration schemes involved in the
fluid mechanics and chemistry solvers. As radiative transfer
specialists, we therefore make no choice: we strictly accept
what would be, ideally, the input fields that PRISSMA should
reflect, in its coupling with AVBP, if no computation constraint
was taken into account. Ideally, along the same line, our
Monte Carlo simulations should use the best gaseous line-
absorption properties available, i.e. the detailed line profiles
provided by spectroscopic databases such as HITEMP [26] and
CDSD [27]. However, at the present stage, only few attempts
were reported in which such line-by-line Monte Carlo strate-
gies were tested and none of them are compatible with our
requirements in terms of three-dimension geometry and
heterogeneity. As described in Section 2.3, our “reference”
simulation makes therefore only use of a narrow band k-
distribution strategy. The corresponding spectral data were
produced using the SNB-ck approach of [28-31], separating
CO, and H,0 thanks a decorrelation assumption described at
the end of Section 2.3. Three hundred sixty-seven spectral
narrowbands are used, each of width Av =25 cm™!, and the



discrete-k sets are constructed in accordance with a Gauss—
Legendre quadrature of order 7.

Altogether, in the validation exercise reported here, the
objective was to validate PRISSMA in which

® spatial integration relies on an adapted grid, coarser
than the LES grid of AVBP, at the limits of the validity of
spatial integration criteria (which will lead to
unsmooth simulation results),

® angular discretization is reduced to a S4 quadrature,

® spectral integration is performed using only 15 FSK-
quadrature points,

and we validate it against a Monte Carlo solver that

® uses the LES input fields,

® makes no approximation as far as angular integration is
concerned,

® and uses a narrow-band discretization together with a
k-distribution model for spectral integration.

The main advantage of null-collisions was that the Monte
Carlo solver could be designed completely independently
of the LES grid structure. It can therefore be immediately
used for validation of other configurations in which AVBP
is run with another spatial-discretization strategy, or for
validation of radiative solvers embedded in other combus-
tion solvers (Fig. 9).

Typical results of this validation exercise are illustrated
in Fig. 10, where radiative budgets (W/m?>) are presented
along the X-axis (y=0, z=0, x€[0;0.3] m) and along the Y-
axis (x=0.08, ye[—0.025;0.025 m), z=0). They reflect what
would globally be interpreted as a good agreement in the
combustion simulation context. PRISSMA and Mcm3D do
not differ by more than a few percent in the regions where

1800 T

radiative source terms are high. In the flame edges that are
cold regions where the radiative source term is small, the
results show significant discrepancies. In such zones the
radiative species are more absorbing than emitting, and
the accuracy of the solution is probably more sensitive to
the DOM angular discretization. But such discrepancies
have been shown to have little influence on the overall
combustion simulation. In any case, provided that we
assume that our narrow band model is sufficiently accu-
rate, the Monte Carlo solution can be interpreted as the
exact solution (within the statistical error bars) of the
radiative transfer equation for the input fields that com-
bustion specialists define as the complete continuous fields
corresponding to the AVBP output. The question of inter-
preting the discrepancies between PRISSMA and Mcm3D is
therefore only a question of validating or invalidating the
compromises made in the DOM simulation to meet AVBP's
requirements in terms of computation times. Combustion
specialists are then in the position of refining the PRISSMA
grid, increasing the angular quadrature order, increasing
the FSK quadrature order, as a function of the assumed
sensitivity of their fluid mechanics/chemistry results to the
radiative-transfer source-field.

Coming back to the validation tool itself, and thinking
of the benchmark simulation results of Section 3, it is
worth mentioning here that the computation time is
highly dependent on the numerical optimization of the
localization/interpolation procedure. All the null-collision
algorithm needs, in order to deal with AVBP fields, is a
function that takes the three geometrical coordinates as
input and provides the local values of temperature, pres-
sure and concentrations. This procedure needs to detect
the tetrahedron to which the location belongs, and then
apply an interpolation procedure compatible with AVBP's
numerical assumptions (here a standard barycentric 3D
interpolation [35]). All CFD simulation environments
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Fig. 10. Radiative budget (kW/m?) along the X-axis (at position y=0, z=0) and along the Y-axis of the combustion chamber (at position x=0.08 m, z=0).



provide such functions, at least for post-treatment pur-
poses. But the corresponding numerics can be extremely
slow because post-treatments are not looped into iterative
algorithms. In our Monte Carlo algorithm, we need to call
this function at each collision event. Therefore the com-
putation times are very sensitive to the numerics of the
localization and interpolation procedure. Then the ques-
tion becomes the following: as the Monte Carlo code is
only used for validation purposes, one may use post-
treatment tools without much concern (relying on paral-
lelization to speed-up the Monte Carlo simulation), but if
validation exercises are to be launched in a quite systema-
tic manner, then localization/interpolation becomes an
issue. Typically, in the above example, when using a
localization/interpolation function extracted from post-
treatment tools, the computation times needed to reach
a 1% uncertainty were as high as 4 h on a single processor,
whereas the same simulation (using the same interpola-
tion function) was reduced to 40s using standard
acceleration-grids [35,36] to speed up the localization
among the 4.74 millions tetrahedrons. In summary, deal-
ing with three-dimension geometry and spectral integra-
tion rises the computation times from several seconds, as
in Section 3, to several tens of seconds, but without caring
about the quality of the localization/interpolation proce-
dure, a jump is made up to several hours.

Note finally that CFD simulation environments may
provide optimized localization/interpolation tools if they
address the question of the flow transporting solid or
liquid particles, because for different reasons they have the
same need to establish the correspondence between the
location of a particle and the characteristics of the flow it
encounters.

5. Conclusion

Validating the radiative transfer solvers embedded in
combustion simulation codes is an important issue. These
solvers need to be very fast, which leads the developers to
play, as finely as possible, with the limits of validity
of the retained numerical techniques. This is particularly
true as far as absorption line-spectra representation and
phase-space discretization are concerned. It is therefore
essential that the corresponding numerical parameters be
adjusted to each new combustion configuration, or at least
that their effect be controlled each time a new configura-
tion is addressed. From this point of view, the fact that
Monte Carlo solvers deal now easily with complex geo-
metries is a key element. We essentially benefit of the
advances of the computer graphics community: path-
tracking algorithms are now sufficiently efficient and
easy-to-handle to meet our needs. Starting from the
geometric CAD file of a new combustion chamber and
sampling optical paths in the corresponding complex
geometry is now ready-for-use. For Monte Carlo codes to
be implemented that could easily deal with all the diver-
sity of combustion codes and the diversity of combustion
configurations, the missing point is therefore only the
representation of the temperature, pressure and concen-
tration fields. In each new context, these fields are pro-
vided under different mathematical forms, with different

formats, and it is nearly required to design a new Monte
Carlo code for each new combustion-code validation
exercise.

The algorithm presented in the present paper was
meant as a contribution to such today's researches. The
initial idea was to explore a technical solution used in
neutron and electron-transport physics to deal with het-
erogeneous fields: the introduction of null-collisions, that
change nothing to the transport of particles, but that can
be tuned so that the total extinction coefficient becomes
homogeneous (or easy to handle). This idea was addressed
theoretically in [3] and we here explored its practical
meaning in the combustion-simulation context. We reach
the conclusion that null-collision Monte Carlo algorithms
are well suited. Combustion specialists wishing to validate
their radiative solver have nothing more to provide than a
function interpolating their grid point simulation results to
give the temperature, pressure and concentrations at any
given location. This commonly implies a localization
procedure (typically to determine what tetrahedron the
considered location belongs to) and an interpolation
procedure in accordance with the spatial schemes used
in their fluid mechanics and chemistry codes. This last
point is essential in order to make sure that the continuous
input fields provided to the Monte Carlo solver are
correct representations of the numerical assumptions
made within the combustion code. Usually, such localiza-
tion and interpolation routines are available, at least for
the post-treatment of combustion simulation results.
They can however be extremely slow, which can be a
source of difficulty if the number of required validation
exercises is high. We saw, in the last section, that the
Monte Carlo computation times can rise from less than a
minute to a few hours when switching to a very
slow localization procedure, but these computation
times were given without the use of any parallel hardware.
Few hours may then sound very much acceptable for only
a validation exercise. Otherwise, as we illustrated it,
some additional efforts can be made to build a better
optimized localization procedure, considering that it is
meant to be used for each of the very numerous colli
sion locations sampled in the Monte Carlo algorithm.
This simply implies using acceleration grids but will
only be required if validation exercises are frequently
repeated.

By comparison with [3], we upgraded the algorithm in
order to follow the path continuously and only exit after
absorption when an extinction criterion is reached. This
upgrade, that involves a quite limited number of algorith-
mic changes, is particularly meaningful in the combustion
context because combustion chambers are commonly
optically quite thin at most frequencies, and path-
continuation reduces significantly the required computa-
tion times, for a given accuracy, in the optically thin limit.
In thicker conditions, our new proposition may be worse
than the initial one, but then the computation-
time increase is only limited. So, when we are faster, the
gain can be very significant, and when we are slower,
the loss is limited. We therefore conclude that our new
algorithm is worth being preferred systematically to
that of [3], except in contexts where the computational



constraints are high and justify that ¢ is adapted to the
values of both the scattering and absorption optical
thicknesses.

Finally, as in [3], the algorithm is designed to allow the
occurrence of negative null-collisions. Of course this is at
the price of an increased variance. But pathological beha-
viors are only encountered when the region of negative
null-collisions is optically thick with a high single scatter-
ing albedo. Again, optically thick scattering is quite rare
among combustion configurations and the k field can
therefore be chosen without caring too much about the
risk that, because of the non-linear dependence of absorp-
tion coefficients with temperature, k is not a rigorous
upper bound to k at all locations.
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